Quantifier-free axioms for constructive plane geometry
Compositio Mathematica, Tome 20 (1968), pp. 143-152.
@article{CM_1968__20__143_0,
     author = {Moler, Nancy and Suppes, Patrick},
     title = {Quantifier-free axioms for constructive plane geometry},
     journal = {Compositio Mathematica},
     pages = {143--152},
     publisher = {Wolters-Noordhoff Publishing},
     volume = {20},
     year = {1968},
     mrnumber = {229123},
     zbl = {0183.24902},
     language = {en},
     url = {http://www.numdam.org/item/CM_1968__20__143_0/}
}
TY  - JOUR
AU  - Moler, Nancy
AU  - Suppes, Patrick
TI  - Quantifier-free axioms for constructive plane geometry
JO  - Compositio Mathematica
PY  - 1968
SP  - 143
EP  - 152
VL  - 20
PB  - Wolters-Noordhoff Publishing
UR  - http://www.numdam.org/item/CM_1968__20__143_0/
LA  - en
ID  - CM_1968__20__143_0
ER  - 
%0 Journal Article
%A Moler, Nancy
%A Suppes, Patrick
%T Quantifier-free axioms for constructive plane geometry
%J Compositio Mathematica
%D 1968
%P 143-152
%V 20
%I Wolters-Noordhoff Publishing
%U http://www.numdam.org/item/CM_1968__20__143_0/
%G en
%F CM_1968__20__143_0
Moler, Nancy; Suppes, Patrick. Quantifier-free axioms for constructive plane geometry. Compositio Mathematica, Tome 20 (1968), pp. 143-152. http://www.numdam.org/item/CM_1968__20__143_0/

D. Hilbert The Foundations of Geometry. LaSalle, Illinois: Open Court Publishing Co., 1947; reprint edition. | JFM | MR

H.L. Royden Remarks on primitive notions for elementary Euclidean and non-Euclidean plane gemetry. In L. Henkin, P. Suppes and A. Tarski (Eds.), The Axiomatic Method, With Special Reference to Geometry and Physics. Amsterdam: North-Holland Publishing Co., 1959, pp. 86-96. | MR | Zbl

L.W. Szczerba & A. Tarski Metamathematical properties of some affine geometries. Proceedings of the 1964 International Congress for Logic, Methodology and Philosophy of Science. Amsterdam: North-Holland Publishing Co., 1964, pp. 166-178. | MR | Zbl

A. Tarski What is elementary geometry? In L. Henkin, P. Suppes and A. Tarski (Eds.), The Axiomatic Method, With Special Reference to Geometry and Physics. Amsterdam: North-Holland Publishing Co., 1959, pp. 16 - 29. | Zbl

O. Veblen A system of axioms for geometry. Transactions of the American Mathematical Society, 1904, 5, pp. 343-384. | JFM | MR