Compositio Mathematica

Satya Narain Srivastava
 On the mean values of integral functions and their derivatives represented by Dirichlet series

Compositio Mathematica, tome 19, n 4 (1968), p. 334-340
http://www.numdam.org/item?id=CM_1968__19_4_334_0
© Foundation Compositio Mathematica, 1968, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

On the mean values of integral functions and their derivatives represented by Dirichlet series *

by
Satya Narain Srivastava

1
Consider the Dirichlet series
(1.1) $f(s)=\sum_{n=1}^{\infty} a_{n} e^{s \lambda_{n}}\left(s=\sigma+i t, \lambda_{1} \geqq 0, \lambda_{n}<\lambda_{n+1} \rightarrow \infty\right.$ with $\left.n\right)$.

Let σ_{c} and σ_{a} be the abscissa of convergence and the abscissa of absolute convergence, respectively, of $f(s)$. If $\sigma_{c}=\sigma_{a}=\infty, f(s)$ represents an integral function.

Let the maximum modulus over a vertical line be as

$$
M(\sigma)=\underset{-\infty<t<\infty}{\text { l.u.b. }}|f(\sigma+i t)|
$$

and the maximum term as

If

$$
\mu(\sigma)=\max _{n \geqq 0}\left|a_{n} e^{\lambda_{n}(\sigma+i t)}\right| .
$$

$$
\lim _{n \rightarrow \infty} \sup \frac{\log n}{\lambda_{n}}=D<\infty
$$

we know ([1], p. 68)

$$
\begin{equation*}
M(\sigma)<\mu(\sigma+D+\varepsilon), \quad(\varepsilon>0 ; \sigma>\sigma(\varepsilon)) \tag{1.2}
\end{equation*}
$$

The mean values of $f(s)$ are defined as

$$
\begin{equation*}
I_{2}(\sigma)=I_{2}(\sigma, f)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|f(\sigma+i t)|^{2} d t \tag{1.3}
\end{equation*}
$$

(1.4) $m_{2, k}(\sigma)=m_{2, k}(\sigma, f)=\lim _{T \rightarrow \infty} \frac{1}{T e^{k \sigma}} \int_{0}^{\sigma} \int_{-T}^{T}|f(x+i t)|^{2} e^{k x} d x d t$,
where k is a positive number.

[^0]In this paper we obtain a lower bound of $m_{2, k}\left(\sigma, f^{(1)}\right)$ in terms of $m_{2, k}(\sigma)$ and σ, where $m_{2, k}\left(\sigma, f^{(1)}\right)$ is the mean value of $f^{(1)}(s)$. the first derivative of $f(s)$, that is

$$
\begin{equation*}
m_{2, k}\left(\sigma, f^{(1)}\right)=\lim _{T \rightarrow \infty} \frac{1}{T e^{k \sigma}} \int_{0}^{\sigma} \int_{-T}^{T}\left|f^{(1)}(x+i t)\right|^{2} e^{k x} d x d t \tag{1.5}
\end{equation*}
$$

We also study some properties of $m_{2, k}(\sigma)$. We first prove the following lemmas.

Lemma 1. $m_{2, k}(\sigma)$ is a steadily increasing function of σ.
Proof: We have

$$
|f(s)|^{2}=\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} e^{2 \sigma \lambda_{n}}+\sum_{m \neq n} a_{m} \bar{a}_{n} e^{\sigma\left(\lambda_{m}+\lambda_{n}\right)+i t\left(\lambda_{m}-\lambda_{n}\right)}
$$

the series on the right being absolutely and uniformly convergent in any finite t-range. Hence integrating term by term we obtain

$$
\frac{1}{2 T} \int_{-T}^{T}|f(s)|^{2} d t=\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} e^{2 \sigma \lambda_{n}}+\sum_{m \neq n} \sum_{m} a_{m} \bar{a}_{n} \frac{\sin T\left(\lambda_{m}-\lambda_{n}\right)}{T\left(\lambda_{m}-\lambda_{n}\right)} .
$$

The term involving T is bounded for all T, m and n so that the double series converges uniformly with respect to T and each term tends to zero as $T \rightarrow \infty$. Thus we get

$$
\begin{equation*}
I_{2}(\sigma)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|f(s)|^{2} d t=\sum_{n=1}^{\infty}\left|a_{n}\right|^{2} e^{2 \sigma \lambda_{n}} \tag{1.6}
\end{equation*}
$$

The series in (1.6) is absolutely and uniformly convergent and so again integrating term by term we obtain

$$
\begin{align*}
m_{2, k}(\sigma) & =\lim _{T \rightarrow \infty} \frac{1}{T e^{k \sigma}} \int_{0}^{\sigma} \int_{-T}^{T}|f(x+i t)|^{2} e^{k x} d x d t \tag{1.7}\\
& =2 \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \frac{\left(e^{2 \lambda_{n} \sigma}-e^{-k \sigma}\right)}{2 \lambda_{n}+k}
\end{align*}
$$

$m_{2, k}(\sigma)$ is steadily increasing follows from (1.7).
Lemma 2. $\log m_{2, k}(\sigma)$ is a convex function of σ.
Proof. From (1.3) and (1.4), we have

$$
m_{2, k}(\sigma)=\frac{2}{e^{k \sigma}} \int_{0}^{\sigma} I_{2}(x) e^{k x} d x
$$

Therefore,

$$
\begin{aligned}
\frac{d\left(\log m_{2, k}(\sigma)\right)}{d(\sigma)} & =\left\{\frac{2 I_{2}(\sigma)-k m_{2, k}(\sigma)}{m_{2, k}(\sigma)}\right\} \\
& =\left\{\frac{2 I_{2}(\sigma)}{m_{2, k}(\sigma)}-k\right\}
\end{aligned}
$$

which increases with $\sigma>\sigma_{1}$, since $e^{k \sigma} I_{2}(\sigma)$ is a convex function of $e^{k \sigma} m_{2, k}(\sigma)([2], \mathrm{p} .135)$.

Hence,

$$
\frac{d^{2}\left(\log m_{2, k}(\sigma)\right)}{d \sigma^{2}}>0 \quad \text { for } \quad \sigma>\sigma_{1}
$$

Lemma 3. If $f(s)$ is an integral function of Ritt-order ρ and lower order λ and $D<\infty$, then

$$
\lim _{\sigma \rightarrow \infty} \sup \frac{\log \log m_{2, k}(\sigma)}{\sigma}=\frac{\rho}{\lambda}
$$

Proof. We have from (1.6)

$$
\begin{equation*}
\{\mu(\sigma)\}^{2} \leqq I_{2}(\sigma) \leqq\{M(\sigma)\}^{2} \tag{1.8}
\end{equation*}
$$

If $D<\infty$, we get from (1.2) and (1.8)

$$
\mu(\sigma) \leqq\left\{I_{2}(\sigma)\right\}^{\frac{1}{2}} \leqq M(\sigma)<\mu(\sigma+D+\varepsilon) \quad \varepsilon>0 ; \sigma>\sigma(\varepsilon)
$$

Therefore,

$$
\begin{align*}
\lim _{\sigma \rightarrow \infty} \sup \frac{\log \log I_{2}(\sigma)}{\sigma} & =\lim _{\sigma \rightarrow \infty} \sup \frac{\log \log \mu(\sigma)}{\sigma} \tag{1.9}\\
& =\lim _{\sigma \rightarrow \infty} \inf ^{\inf \frac{\log \log M(\sigma)}{\sigma}=\frac{\rho}{\lambda}} .
\end{align*}
$$

Also, since $I_{2}(x)$ is an increasing function of x,

$$
\begin{aligned}
m_{2, k}(\sigma) & =\frac{2}{e^{k \sigma}} \int_{0}^{\sigma} I_{2}(x) e^{k x} d x \\
& \leqq \frac{2 I_{2}(\sigma)}{e^{k \sigma}} \int_{0}^{\sigma} e^{k x} d x \\
& =\frac{2}{k} I_{2}(\sigma)\left(1-e^{-k \sigma}\right)
\end{aligned}
$$

and we get, on using (1.9),

$$
\lim _{\sigma \rightarrow \infty} \sup \frac{\log \log m_{2, k}(\sigma)}{\sigma} \leqq \lim _{\sigma \rightarrow \infty} \sup \log \frac{\log I_{2}(\sigma)}{\sigma}=\frac{\rho}{\lambda} .
$$

Further for $h>0$

$$
\begin{aligned}
m_{2, k}(\sigma+h) & =\frac{2}{e^{k(\sigma+h)}} \int_{0}^{\sigma+h} I_{2}(x) e^{k x} d x \\
& \geqq \frac{2}{e^{k(\sigma+h)}} \int_{\sigma}^{\sigma+h} I_{2}(x) e^{k x} d x \\
& \geqq \frac{2 I_{2}(\sigma)}{k}\left(1-e^{-k h}\right)
\end{aligned}
$$

and we again get, on using (1.9),

$$
\lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{\log \log m_{2, k}(\sigma)}{\sigma} \geqq \lim _{\sigma \rightarrow \infty} \sup _{\inf } \frac{\log \log I_{2}(\sigma)}{\sigma}=\frac{\rho}{\lambda},
$$

and thus Lemma 3 follows.

2

Theorem 1. If $m_{2, k}\left(\sigma, f^{(1)}\right)$ is the mean value of $f^{(1)}(s)$ the first derivative of an integral function $f(s)$ other than an exponential polynomial, then

$$
\begin{equation*}
m_{2, k}\left(\sigma, f^{(1)}\right) \geqq \frac{1}{2^{2}}\left\{\frac{\log m_{2, k}(\sigma)-1}{\sigma}\right\}^{2} m_{2, k}(\sigma) \tag{2.1}
\end{equation*}
$$

for $\sigma>\sigma_{0}$, where σ_{0} is a number depending on the function f.
Proof. We have

$$
\begin{aligned}
& m_{2, k}\left(\sigma, f^{(1)}\right)=\lim _{T \rightarrow \infty} \frac{1}{T e^{k \sigma}} \int_{0}^{\sigma} \int_{-T}^{T}\left|f^{(1)}(x+i t)\right|^{2} e^{k x} d x d t \\
& \quad=\lim _{T \rightarrow \infty} \frac{1}{T e^{k \sigma}} \int_{0}^{\sigma} \int_{-T}^{T}\left|\lim _{\varepsilon \rightarrow 0} \frac{f(x+i t)-f(x(1-\varepsilon)+i t)}{\varepsilon x}\right|^{2} e^{k x} d x d t \\
& \quad \geqq \lim _{\varepsilon \rightarrow 0} \lim _{T \rightarrow \infty} \frac{1}{\varepsilon^{2} \sigma^{2} T e^{k \sigma}} \int_{0}^{\sigma} \int_{-T}^{T}\left\{|f(x+i t)|-|f(x(1-\varepsilon)+i t)|^{2} e^{k x} d x d t .\right.
\end{aligned}
$$

By Minkowski's inequality ([3], p. 384)

$$
\begin{aligned}
{\left[\int_{-T}^{T}\{|f(x+i t)|-|f(x(1-\varepsilon)+i t)|\}^{2} d t\right]^{\frac{1}{2}} } & \geqq\left\{\int_{-T}^{T}|f(x+i t)|^{2} d t\right\}^{\frac{1}{2}} \\
& -\left\{\int_{-T}^{T}|f(x(1-\varepsilon)+i t)|^{2} d t\right\}^{\frac{1}{2}} .
\end{aligned}
$$

Hence,

$$
\left.\left.\begin{array}{rl}
m_{2, k}\left(\sigma, f^{(1)}\right) \geqq \lim _{\varepsilon \rightarrow 0} \lim _{T \rightarrow \infty} \frac{1}{\varepsilon^{2} \sigma^{2} T e^{k \sigma}} & \int_{0}^{\sigma}
\end{array}\right]\left[\left\{\int_{-T}^{T}|f(x+i t)|^{2} d t\right\}^{\frac{1}{2}}\right]\left(\int_{-T}^{T}|f(x(1-\varepsilon)+i t)|^{2} d t\right\}^{\frac{1}{2}}\right]^{2} e^{k x} d x .
$$

Again, using Minkowski's inequality, we obtain

$$
\begin{aligned}
& m_{2, k}\left(\sigma, f^{(1)}\right) \geqq \lim _{\varepsilon \rightarrow 0} \lim _{T \rightarrow \infty} \frac{1}{\varepsilon^{2} \sigma^{2} T e^{k \sigma}}\left[\left\{\int_{0}^{\sigma} e^{k x} \int_{-T}^{T}|f(x+i t)|^{2} d x d t\right\}^{\frac{1}{2}}\right. \\
& \left.-\left\{\int_{0}^{\sigma} e^{k x} \int_{-T}^{T}|f(x(1-\varepsilon)+i t)|^{2} d x d t\right\}^{\frac{1}{2}}\right]^{2} \\
& \geqq \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{2} \sigma^{2}}\left[\left\{m_{2, k}(\sigma)\right\}^{\frac{1}{2}}-\left\{\frac{e^{-\varepsilon k \sigma}}{(1-\varepsilon)} e^{k((\sigma-\sigma \varepsilon) \varepsilon /(1-\varepsilon))} m_{2, k}(\sigma-\sigma \varepsilon)\right\}^{\frac{1}{2}}\right]^{2} \\
& =\lim _{\varepsilon \rightarrow 0}\left[\frac{\left\{m_{2, k}(\sigma)\right\}^{\frac{1}{2}}-\left\{(1-\varepsilon)^{-1} m_{2, k}(\sigma-\sigma \varepsilon)\right\}^{\frac{1}{2}}}{\varepsilon \sigma}\right]^{2} .
\end{aligned}
$$

Now take $g(\sigma)=\log m_{2, k}(\sigma) / \sigma ; g(\sigma)$ is a positive indefinitely increasing function of σ for $\sigma>\sigma_{0}=\sigma_{0}(f)$, in fact $\log m_{2, k}(\sigma)$ is a convex function of σ, and so we have

$$
\begin{aligned}
m_{2, k}\left(\sigma, f^{(1)}\right) & \geqq \lim _{\varepsilon \rightarrow 0}\left\{\frac{e^{\sigma g(\sigma) / 2}-(1-\varepsilon)^{-\frac{1}{2}} e^{(\sigma-\sigma \varepsilon) g(\sigma-\sigma \varepsilon) / 2}}{\varepsilon \sigma}\right\}^{2} \\
& \geqq \lim _{\varepsilon \rightarrow 0}\left\{\frac{e^{\sigma g(\sigma) / 2}-\left(1+\varepsilon / 2+\frac{3}{8} \varepsilon^{2}+\cdots\right) e^{(\sigma-\sigma \varepsilon) g(\sigma) / 2}}{\varepsilon \sigma}\right\}^{2} \\
& =\left\{\frac{g(\sigma)}{2} e^{\sigma g(\sigma) / 2}-\frac{1}{2 \sigma} e^{\sigma g(\sigma) / 2}\right\}^{2} \\
& =\frac{1}{2^{2}}\left\{\frac{\log m_{2, k}(\sigma)-1}{\sigma}\right\}^{2} m_{2, k}(\sigma) .
\end{aligned}
$$

Corollary 1. If $m_{2, k}\left(\sigma, f^{(1)}\right)$ is the mean value of $f^{(1)}(s)$, the first derivative of an integral function $f(s)$ other than an exponential polynomial, then

$$
\lim _{\sigma \rightarrow \infty} \sup ^{\inf } \frac{\log \left\{\frac{m_{2, k}\left(\sigma, f^{(1)}\right)}{m_{2, k}(\sigma)}\right\}^{\frac{1}{2}}}{\sigma} \geqq \frac{\rho}{\lambda},
$$

where ρ and λ are the Ritt-order and lower order of $f(s)$ respectively, and $D<\infty$.

This follows from Theorem 1 and Lemma 3.

3

Theorem 2. Let $m_{2, k}\left(\sigma, f^{(r)}\right),(r=1,2, \cdots, p)$, be the mean value of $f^{(r)}(s)$, the r-th derivative of an integral function $f(s)$ other than an exponential polynomial. If $\lambda \geqq \delta>0$ and $D<\infty$, then

$$
m_{2, k}(\sigma)<m_{2, k}\left(\sigma, f^{(1)}\right)<\cdots<m_{2, k}\left(\sigma, f^{(p)}\right)
$$

for $\sigma>\sigma_{0}=\max \left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{p}\right)$.
Proof: Writing the above corollary for the r-th derivative, we have

$$
\lim _{\sigma \rightarrow \infty} \sup ^{\inf \frac{\log \left\{\frac{m_{2, k}\left(\sigma, f^{(r)}\right)}{m_{2, k}\left(\sigma, f^{(r-1)}\right)}\right\}^{\frac{1}{2}}}{\sigma} \geqq \frac{\rho}{\lambda} ~ . ~}
$$

Therefore,

$$
m_{2, k}\left(\sigma, f^{(r)}\right)>e^{2 \sigma(\lambda-\varepsilon)} m_{2, k}\left(\sigma, f^{(r-1)}\right)
$$

for $\sigma>\sigma_{r}$.
If $\lambda \geqq \delta>0$

$$
m_{2, k}\left(\sigma, f^{(r)}\right)>m_{2, k}\left(\sigma, f^{(r-1)}\right)
$$

for $\sigma>\sigma_{r}$.
Giving r the values $r=1,2, \cdots, p$, we get

$$
m_{2, k}(\sigma)<m_{2, k}\left(\sigma, f^{(1)}\right)<\cdots<m_{2, k}\left(\sigma, f^{(p)}\right)
$$

for $\sigma>\sigma_{0}=\max \left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{p}\right)$.

4

Theorem 3. Let $m_{2, k}\left(\sigma, f^{(p)}\right)$ be the mean value of $f^{(p)}(s)$ the p-th derivative of an integral function $f(s)$ other than an exponential polynomial. If $\lambda \geqq \delta>0$ and $D<\infty$, then

$$
\begin{equation*}
m_{2, k}\left(\sigma, f^{(p)}\right)>\frac{1}{2^{2 p}}\left\{\frac{\log m_{2, k}(\sigma)-1}{\sigma}\right\}^{2 p} m_{2, k}(\sigma) \tag{4.1}
\end{equation*}
$$

for $\sigma>\sigma_{0}=\max \left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{p-1}, \sigma_{1}^{1}, \sigma_{2}^{1}, \cdots, \sigma_{p}^{1}\right)$.
Proof: Writing (2.1) for the r-th derivative, we have

$$
\frac{m_{2, k}\left(\sigma, f^{(r)}\right)}{m_{2, k}\left(\sigma, f^{(r-1)}\right)} \geqq \frac{1}{2^{2}}\left\{\frac{\log m_{2, k}\left(\sigma, f^{(r-1)}\right)-1}{\sigma}\right\}^{2}
$$

for $\sigma>\sigma_{r}^{1}$.
Giving r the values $r=1,2, \cdots, p$ and multiplying them, we get

$$
\begin{aligned}
\frac{m_{2, k}\left(\sigma, f^{(p)}\right)}{m_{2, k}(\sigma)} \geqq \frac{1}{2^{2 p}} & \left\{\frac{\log m_{2, k}\left(\sigma, f^{(p-1)}\right)-1}{\sigma}\right\}^{2} \\
& \left\{\frac{\log m_{2, k}\left(\sigma, f^{(p-2)}\right)-1}{\sigma}\right\}^{2} \cdots\left\{\frac{\log m_{2, k}(\sigma)-1}{\sigma}\right\}^{2}
\end{aligned}
$$

for $\sigma>\sigma_{0}^{1}=\max \left(\sigma_{1}^{1}, \sigma_{2}^{1}, \cdots, \sigma_{p}^{1}\right)$.
Using Theorem 2, we get

$$
\frac{m_{2, k}\left(\sigma, f^{(p)}\right)}{m_{2, k}(\sigma)}>\frac{1}{2^{2 p}}\left\{\frac{\log m_{2, k}(\sigma)-1}{\sigma}\right\}^{2 p}
$$

for $\sigma>\sigma_{0}=\max \left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{p-1}, \sigma_{1}^{1}, \sigma_{2}^{1}, \cdots, \sigma_{p}^{1}\right)$.
Corollary 1. If $m_{2, k}\left(\sigma, f^{(p)}\right)$ is the mean value of $f^{(p)}(s)$, the p-th the derivative of an integral function $f(s)$ other than an exponential polynomial, then

$$
\lim _{\sigma \rightarrow \infty} \sup ^{\inf } \frac{\log \left\{\frac{m_{2, k}\left(\sigma, f^{(p)}\right)}{m_{2, k}(\sigma)}\right\}^{1 / 2 p}}{\sigma} \geqq \frac{\rho}{\lambda}
$$

where ρ and λ are the Ritt-order and lower order of $f(s)$ respectively, and $D<\infty$.

REFERENCES

Y. C. Yu^{2}
[1] "Sur les droites de Borel de certaines fonctions entières", Ann. Sci. De L'Ecole Normale Sup., 68 (1951), pp. 65-104.
P. K. Kamthan
[2] On the mean vaiues of an entire function represented by Dirichlet series, Acta Mathematica Tomus XV (1964). pp. 133-136.
E. C. Titchmarsh
[3] Theory of Functions, (1939).

[^0]: * This work has been supported by a Senior Research Fellowship award of U.G.C., New Delhi (India).

