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Laws of large numbers for functions of
random walks with positive drift

by

A. J. Stam

Summary. Let X1, X 2 , ... ’ be independent random variables, X 2 , X3, * » 
having the same distribution with characteristic function 99 and first moment

p &#x3E; 0, the absolute first moment being finite. Let Sk = XI + ... +Xk, k = 1,2, ... ·

The paper gives conditions under which, for nonlattice and integer valued Xk,
respectively,

or

either in probability or a.s.
For bounded f and b(n) = n these conditions take a simple form: For convergence

in probability it is sufficient that, respectively, limsup|u|~~ |~(u)|  1 or the Xk
are integer valued with span 1. If moreover E|X2|03C1  00 for some p &#x3E; 1, there is

convergence a.s.

As an application the condition on the renewal density in the Chung-Derman
theorem on recurrent sets is eliminated.

Proofs are based on renewal theory.

1. Introduction

Throughout this paper we assume that Xl, X2, X3’ ... are
independent nondegenerate random variables, that X2, X3, ···
have the same distribution function F(03BE) = P{Xk  03BE}, k ~ 2,
and that

We denote the characteristic function of Xk, k &#x3E; 2, by p and the
distribution function and characteristic function of Xi by Fi
and 991.
A random variable Y will be called here a lattice variable if
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Y/c is a.s. integer valued for some c &#x3E; o. The span of a non-

degenerate lattice variable Y is the largest c for which Y/c is

integer valued.
Let

We intend to study convergence of

where it will be assumed that

More precisely, we want to find conditions on the function b, the
complex valued function f and the distribution of the Xk, such
that for n - co, either in probability or almost sure,

if the Xk are nonlattice, and

if the Xk are integer valued. Here [a] df max {n : n  a, n integer}.
Ergodic theory provides us with a number of results of this kind

applying to processes of a type far more general than the random
walk. On the other hand ergodic theory is mainly restricted to
b (n ) = n and it imposes certain integrability conditions on f we
do not require here. Ergodic theorems as given by Dunford and
Miller [7] and Chacon and Ornstein [2] assume that the shift
operator has norm not larger than 1, which does not hold for
random walks.
We mention the work of Robbins [14], where f is assumed

periodic or almost periodic and ,u = 0 or E{|xk|} = +~ is not
excluded, Kallianpur and Robbins [11], where f vanishes outside
an interval, Harris and Robbins [10], where f ~ L1, Brunk [1],
where b(n) = n and the E{f(Sk)} exist, and Shur [15], where
b(t) = t and Ifl2 is integrable with respect to a subinvariant meas-
ure of the transition matrix of the process. Kallianpur and
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Robbins [11] and Skorokhod and Slobodenyuk [16] study the
central limit problem for 03A3nk=1 f(Sk).
Our proofs are based on renewal theory. Let

For any distribution function G, bounded or not, we write

Accordingly the process N(t) and the function U(t) are defined up
to an additive random variable or constant, respectively, by (1.6)
or (1.7) and

If the Xk are integer valued, we put

It is possible to choose FI in such a way that the process

tN(t), t ~ 0} has stationary increments, in particular

This is accomplished by taking

where L is the distribution function of the strict ascending ladder
heights in the random walk {X2, X2+X3, ···} and

which is finite (Feller [8], Ch. XII). That N[aj, bj), j = 1, ..., m,
under (1.12) have the same joint distribution as N[a,+h, b,+h),
j = 1, ..., m, if

is seen by considering the first entrances in [aI’ oo ) and [a1+h, oo ).
These must be strict ascending ladder points of the random walk
{Sk}. Our assertion follows from the well known stationarity
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property of the initial distribution (1.12) for the residual lifetime
in a renewal process with distribution function L of times between
renewals. The relation (1.11) follows with lim,,,,. t-1 U[0, t ) = p-1.

If the Xk, k ~ 2, are integer valued, it is possible to take X1
integer valued with a distribution such that the process

{zn, n = 0, 1, 2, ···} is stationary, in particular

To this end we take

where pL(k) is the probability that a strict ascending ladder
height in the random walk {X2, X2+X3, ···} is equal to k and
03BCL = 03A3 kPL(k).

Following Takàcs [19], Appendix 3, we call the processes

{N(t)} and {zn} homogeneous renewal processes if the distribution
of X1 is given by (1.12) and (1.15), respectively. For easy reference
we will call the corresponding process {Sk} the homogeneous
random walk and we will use the terms basic renewal process and
basic random walk if F1 = F. The expected numbers of renewals
in the basic process will be denoted by Uo and uo, so that

where F(m) is the m-fold convolution of F, and, for integer valued
Xk,

where p(m)(k) = P{X2+ ... +Xm+1 = kl.
We start studying the convergence to zero of the expressions.

and, for integer valued Xk,

For the homogeneous renewal processes
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where - denotes centering at expectation. The right-hand sides
of (1.18) and (1.19) contain a random number of summands f(Sj)
and afterwards they will have to be compared with sums of a
deterministic number of terms.
Our study of (1.18) and (1.19) is based on consideration of

second moments, i.e. only wide sense stationarity is used. This
means that our results on a.s. convergence will not be the best

possible. Moreover, if limsup|u|~~ |~(u)| = 1 in the nonlattice

case, our methods fail to a large extent (cf. the last part of section
4). Therefore it would seem important to look for ergodic theorems
ensuring a.s. existence of limn~~ 03A3k ank03BEk and f a(T, 03C4)dZ(03C4)
for stationary processes {03BEk} and processes {Z(t)} with stationary
increments. The only general result of this type (Cohen [4] ) known
to the author did not seem to fit the problem at hand.
One of our results on (1.18) made it possible to eliminate the

condition on the renewal density in the Chung-Derman recurrence
theorem (Chung and Derman [3], Derman [5] ). We refer to section
6 below.

ASSUMPTIONS. Throughout the paper the assumptions on the
random walk, stated on the first page, will apply, and also (1.4)
and (1.5). The sets of further assumptions in our theorems will
be suitable subsets of the following list of conditions:

for some 0 E (0, 1), which is implied by
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There exist 03B51(x) ~ 0 and 03B52(x) ~ 0 such that

with 0 the same as in (1.24). Sufficient for (1.28) is

for some oc, &#x3E; (1 - 0)j 0 and a2 &#x3E; (3 - 0)/ 0.

There exist 03B51(x) ~ 0 and 03B52(x) ~ 0, such that

with 0 the same as in (1.24). Sufficient for (1.33) is
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for some al &#x3E; (1 - 0)/ 0 and a2 &#x3E; (3201303B8)/03B8.

The principal conditions for convergence to zero in probability
of (1.18) are (1.22), (1.31) and (1.23) or (1.30), and for (1.19)
they are (1.26) and (1.23) or (1.25). We use (1.34) and (1.29) for
extending results on (1.18) and (1.19) to sums 03A3n1 f(5k). The other
conditions on f, q; and F are applied to obtain a.s. convergence.
For bounded f and b(n) = n, simple results appear.

Sections 2 and 3 deal with convergence in probability and a.s.
for integer valued Xk. In sections 4 and 5 we consider convergence
in probability and a.s. for nonlattice Xk, mainly under (1.22).
Section 6 is on recurrent sets.

2. Convergence in probability, Xk integer valued with span 1

LEMMA 2.1. Under (1.21) the centered homogeneous renewal
process zn = zn-03BC-1, n~ 0, is wide sense stationary with

covariance function

where uo(h) is defined by (1.1’ï). The process has spectral density

PROOF. We have
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In Spitzer [17], section 9, it is shown that

where

It follows that

LEMMA 2.2. Let 03C1(u) be given by (2.2).
(a) If (1.21) holds, 03C1(u) is bounded for 0  03B5 ~ |u| ~ 03C0.

(b) If (1.21) and (1.23) hold, p(u) is bounded on [-03C0, 03C0].
(c) If (1.21) holds and there is no a such that X2-a has span

d &#x3E; 1, then 03C1(u) is bounded away from zero on [-n, n].

PROOF. The lemma follows from well-known properties of

characteristic functions (Loeve [12], § 12, 13; Lukacs [13],
Section 2). With respect to (c) it is noted that either

or, if not, ~x2 dF  oo by Fatou’s lemma.

THEOREM 2.1. Let 03BB(n) be defined by (1.19). Under (1.21) we
have for the homogeneous and the basic renewal process : If either

(a) (1.23) and (1.26) hold,
or

(b) (1.25) and (1.26) hold,

(2.3) lim E/03BB(n)|2 = 0.
n-+oo

PROOF. First consider the homogeneous renewal process. From
(1.19a) and lemma 2.1

Under (1.23) we have by lemma 2.2b

and (a) follows.
To prove (b) we put
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With the Riemann-Lebesgue lemma and (1.25) we may take M
so large that the second term hère is smaller than 1 203B5. The first
term then is smaller than ie for n &#x3E; n(03B5) by (1.26), as is seen by
making use of the Schwartz inequality.
For the basic process the theorem is proved by writing for the

homogeneous process

and considering the term with r = 0, where P{X1 = 0} &#x3E; 0 by
(1.15).

If (1.21 ) holds and there is no a such that X2-a has span d &#x3E; 1,
the condition (1.26) is necessary in order that we have (2.3) for
the homogeneous renewal process. This is seen from (2.4) and
lemma 2.20.

For the random walk (1.3), lattice or not, we define the random
variables

To convert 03BB(n) into a nonrandom sum we need the following
lemmas on M(t).

LEMMA 2.3. For any random walk satisfying (1.1) and (1.2),
irrespective of the distribution of Xi,

PROOF We have

where Â, denotes the kth strict ascending ladder epoch of the
random walk (Feller [8], Ch. XII. 1) and y(t) the number of steps
in which the strict ascending ladder process reaches [t, oo ).

The 03BBk are independent and for k ~ 2 have the same distribution
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with finite expectation. A similar assertion holds for the ladder
heights and we have

where IUL is the expectation of the mth ladder height, m ~ 2. We
refer to Fellei [8], Ch. XII. 2, theorem 2. From the strong law of
large numbers of renewal theory, applied to the ladder process,

and from the strong law of large numbers for the 03BBk

The lemma follows from (2.7), (2.10), (2.9) and (2.8).

LEMMA 2.4. Under (1.21) we have for the homogeneous random
walk: If either

(a) (1.23) and (1.26) hold,
or

(b) (1.25) and (1.26) hold,
then

Here

PROOF. Let 03BB(n) be defined by (1.19). Then

with

Since

Moreover
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where G(T*) is the number of k with k &#x3E; M(T) and Sk e [0, T*).
Now G(T*) has the same distribution as N[-T*, 0) and

N[-T*, 0) ~ N(-oo, 0). From (1.26) it follows that

So

The lemma follows from (2.12), (2.13), (2.14) and theorem 2.1.
For the final result of this section we also need the following

lemma on convergence in probability.
LEMMA 2.5. Let {Y(t), t &#x3E; 0} be any family of complex valued

random variables. If to every sequence tk ~ oo and every e &#x3E; 0

there is a subsequence {03C4j} of {tk}, depending on e, with

PROOF. The assumption of the lemma with Fatou’s lemma
implies that to every sequence tk - oo and every e &#x3E; 0 there is
a subsequence {03C4j} with

and the lemma follows.

THEOREM 2.2. Under (1.21) we have for the homogeneous and
the basic random walk: If either

(a)(1.20), (1.23), (1.26) and (1.29) hold,
or

(b) (1.20), (1.25), (1.26) and (1.29) hold,
then for n - oo

COROLLARY 1. Under the conditions of the theorem
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with À necessarily degenerate, if and only if

COROLLARY 2. Under (1.21), if f is bounded,

PROOF. First we consider the homogeneous process and show
that for T ~ o0

with M(T) defined by (2.5) and (2.6). We make use of lemma
2.5. Take e &#x3E; 0 fixed. By (1.29) there is 03B4 = 03B4(03B5) &#x3E; 0 with

Here x* is defined by (2.11). By lemma 2.3 there is 03C41(03B4) a.s.

finite such that for T ~ 03C41(03B4)

The conditions of the theorem are such that lemma 2.4 applies
to lil as well as to f. So, with (1.20) and (1.5), to any sequence
Tk -+ oo there is a subsequence {T’j) for which the first and second
term on the right in (2.18) converge a.s. to zero, and (2.16)
follows with (2.17) and lemma 2.5
From (2.16) and lemma 2.4, with (1.5),

Here T*-1 may be replaced by [T] and by taking T = nu and
making use of (1.20) or (1.5) we find (2.15).



311

The assertion for the basic process follows by conditioning
with respect to X, in the homogeneous process, noting that
P{X1 = 0} &#x3E; 0 by (1.15). Cf. the proof of theorem 2.1.

3. Convergence almost sure; Xk integer valued with span 1

We use the technique for proving a well-known theorem on
a.s. convergence of series of orthogonal random variables (Doob
[6], Ch. IV 4, theorem 4.2).
LEMMA 3.1. Let {v(n), n = 0, 1, 2, ···} be any complex valued

stochastic process. Then for r = 0, 1, 2, ···,

with

PROOF. We refer to Doob [6], Ch. IV. 4, proof of lemma IV. 4.1.

LEMMA 3.2. If in lemma 3.1

where {wk} is a wide sense stationary process with bounded
spectral density, then

with A independent of r.

PROOF. Let g be the spectral density of the process {wk}. Then
from (3.3), since g(03BB)  A0, -03C0 ~ 03BB ~ 03C0,

and the inequality (3.4) follows with (3.2).

LEMMA 3.3. If in lemma 3.1
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where {wk} is a wide sense stationary process with spectral density
g satisfying

with 0 E (0, 1), then for r = 0, 1,2, ...,

for any choice of 03B4r E (0, 03C0), the constants A and B not depending
on r or 03B4r.

PROOF. Starting as in the proof of lemma 3.2 we find

and the inequality (3.5) follows with (3.2).
THEOREM 3.1. Under (1.21), (1.23) and (1.27) we have for the

homogeneous and the basic renewal process

PROOF. First consider the homogeneous process. It will be
shown that the series

where zk = zk-03BC-1, converges a.s. The relation (3.6) then follows
with Kronecker’s lemma (Loève [12], sec. 16.3, p. 238, Feller [8],
p. 238).

In lemma 3.1 and 3.2 we take

The spectral density p, given by (2.2), of the process {wk} is
bounded on [-n, n] by lemma 2.2b. So
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and with (1.27) it follows that the series (3.7) converges in quad-
ratic mean to a finite limit v. Similarly

with (1.27). So

and therefore

Then by lemma 3.1

the W(r) being given by (3.2) in terms of the v(k) defined above.
From lemma 3.2

with (1.27), so that

The a.s. convergence of (3.7) now follows from (3.9), (3.8), (3.10)
and (3.11).
For the basic process the theorem follows from the fact that

(3.6) holds for the homogeneous process a.s. on the event {Xl = 0}
which has positive probability by (1.15).
THEOREM 3.2. If (1.21), (1.20), (1.24), (1.25) and (1.28) hold,

then for the homogeneous and the basic renewal process

with 03BB(n) defined by (1.19).
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PROOF. First we consider the homogeneous process. From

(1.24) and lemma 2.2a it follows that the spectral density p(u)
given by (2.2) satisfies

So, from (l.19a), lemma 2.1 and (1.25)

Taking 03B4 = 03B4(n) = 03B51(r) for n = 2r, with 03B51(r) as in (1.28), we have
with (1.20)

by (1.28a) and (1.28b). So

For n = 1, 2, ···, let r. be the integer with

Then, with (1.5), (1.20) and lemma 3.1,

where W(r) is defined by (3.2) with v(le) = f(k)k, k = 0, 1,2, ....
By (3.13) lemma 3.3 applies with ck = f(k), Wk = Zk. We take
03B4r = B2(r) in (3.5) with B2(r) the same as in (1.28e) and (1.28d).
Then, with (1.25)
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where the first term converges by (1.280) and the second term is
majorized by

by (1.28d), so that

The relation (3.12) follows from (3.15), (3.14) and (3.16).
For the basic process the proof is the same as in theorem 3.1.
To convert 03BB(n) into a sum of a nonrandom number of terms

we need the following two lemmas.

LEMMA 3.4. For any random walk satisfying (1.1) and (1.2), let

Then, irrespective of the distribution of Xl,

PROOF. By 03C9 we denote points of the probability space on
which the Xk are defined. Let

where M(t) is defined by (2.5) and (2.6). Since M(t)  L(t),

If for OJ e A fixed limsupt~~ t-1L(t, 03C9) &#x3E; y-’, there would be
03B4(03C9) &#x3E; 0 and a sequence tk(03C9) - oo with

This implies the existence of integers vk(03C9), k = 1, 2, ..., with
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Since Sn(co) = n03BC{1+03B5n(03C9)} with Iimn-+ooBn(w) = 0, the relations
(3.20) and (3.21) are contradictory. So

The lemma follows from (3.19) and (3.22), since P(A) = 1 by the
strong law of large numbers and lemma 2.3.

LEMMA 3.5. If either

(a) (1.21), (1.23), (1.27) and (1.29) hold,
or

(b) (1.21), (1.20), (1.24), (1.25), (1.28) and (1.29) hold,
then for the homogeneous random walk

Here T* is defined by (2.11) and M(T) by (2.5) and (2.6).

PROOF. Since the conditions (a) and (b) are such that theorem
3.1 or 3.2 applies, and since N(-~, 0)  oo, a.s., it is sufficient
to prove that limT~~ 03B6(T) = 0, a.s., where

We have

Now

where L(t) is defined by (3.17). Lemma 2.3 and lemma 3.4 imply
that to every ô &#x3E; 0 there is 03C4(03B4) a.s. finite such that

Therefore, taking into account (3.24), we have for T &#x3E; 03C4(03B4),
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So, with (3.23), since N( - oo, 0)  oo, a.s.,

The conditions (a) and (b) are such that theorem 3.1 or 3.2

applies to III. Therefore, with (1.5)

So Ç(T) - 0, a.s., with (1.29).
THEOREM 3.3. Under (1.21), if either

(a) (1.20), (1.23), (1.27) and (1.29) hold,
or

(b) (1.20), (1.24), (1.25), (1.28) and (1.29) hold,
we have for the homogeneous and the basic random walk

COROLLARY 1. Under the conditions of the theorem

with k necessarily degenerate, if and only if

COROLLARY 2. If (1.24) holds and f is bounded,

PROOF. For the homogeneous process the theorem is proved
in the same way as theorem 2.2, except that no subsequences
need to be taken. Lemma 3.5 holds for f as well as for lil and
plays the same rôle as lemma 2.4 in the proof of theorem 2.2.
For the basic process we consider the event {X1 = 0} in the
homogeneous process. This event has positive probability by
(1.15 ).
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4. Convergence in probability; F nonlattice.

Throughout this section we assume that Ifl2 and therefore 1/1
is integrable over finite subintervals of [0, ~), an assumption
implicit in (1.31).
We make use of the Fourier representation, given by Feller

and Orey [9], of the symmetrized basic renewal function, defined
by

where

LEMMA 4.1. Let F be a nonlattice distribution function satis-

fying (1.1) and (1.2). If g E LI is continuous and vanishes outside
some finite interval, and if

is nonnegative and belongs to L1, then

with 99 the characteristic function of F.

PROOF. Since our assumptions differ slightly from those in [9],
we sketch the proof. Let the distribution functions Kr, 0  r  1,
be defined by

Integrating the relation

with respect to dKr(x), applying Fubini’s theorem and using
(4.3) with x = 0, we find

With the Lévy-Cramér continuity theorem it follows that for

r t 1 the measure with density function
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converges completely to a finite measure ml with characteric
function

The measure ml is absolutely continuous on (- ~, 0) ~ (0, ~)
with density (203C0)-1(u)03C31(u) and

So

and (4.2) follows from (4.4) and (4.5) with t = 0.

LEMMA 4.2. If F is nonlattice and if the function h E L2 vanishes
outside some finite subinterval of [0, oo ), we have for the homo-
geneous renewal process

with K defined by (4.1) and

Moreover

with

PROOF. Let Fm be the distribution function of Sm and F(m) be the
m-fold convolution of F. Then
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The relation (4.6) follows with (1.11), since h(x) = 0, x  0,
and with g(y) = g(-y).
The function g defined by (4.7) satisfies the conditions of lemma

4.1. We note that

So from (4.6) and (4.2)

and (4.8) follows with E( JhdN) = p-1 f h(x)dx.
LEMMA 4.3. Let Q(u) be defined by (4.10)

(a) If (1.22) holds, o(u) is bounded for 0  03B5 ~ lui  co, B &#x3E; 0.

(b) If (1.22) and (1.23) hold, Q(u) is bounded.
(c) If (1.22) holds, a(u) is bounded away from zero.

We refer to the proof of lemma 2.2.

THEOREM 4.1. Let ~(T) be defined by (1.18). If either

(a) (1.22), (1.23) and (1.31) hold,
or

(b) (1.22), (1.30) and (1.31) hold,
we have for the homogeneous renewal process

PROOF. From lemma 4.2

with Q(u) given by (4.10) and
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The assertion (a) follows with lemma 4.3b and Parseval’s formula.
To prove (b) we note that 6(u) is bounded for |u| ~ a &#x3E; 0 by

lemma 4.3a and therefore, with Parseval’s formula

Here the second term tends to zero for T - oo by (1.31). The
proof that the first term tends to zero is similar to the proof of
theorem 2.1b.
We note that under (1.22) the condition (1.31) is necessary

for (4.11). This follows from lemma 4.3c.

THEOREM 4.2. If either Fi is absolutely continuous, or, F1
being arbitrary, some F(-) has an absolutely continuous compo-
nent, we have under the conditions of theorem 4.1

Here F(-) denotes the m-fold convolution of F.

PROOF. First consider the case that X, has an absolutely con-
tinuous distribution of special type, viz.

where the oc, are positive and have sum 1 and FL denotes the
distribution function given by (1.12). Since FL has positive
density on some interval, we may and do take a so that Go has
positive density on ( - oo, +~).
Whether the process is homogeneous or not, we have for

T ~ tr finite

where {N0(t), - oo  t  ~}, the renewal process defined on

Xr+1, Xr+l+Xr+2’ ..., is independent of Sr. The first term in
the right-hand side of (4.13) tends to zero for T - oo, irrespective
of the distribution of XI.



322

Let {Tk} be any sequence with Tk -+ oo. By theorem 4.1 there
is a subsequence {03C4j} with limj~~ A(Íj) = 0, a.s., for the homo-

geneous process, and therefore limj~~ Yr(03C4j) = 0, a.s., for every
r. So the event Ar = {limj~~ Yr(03C4j) = 01 in the product space of
Sr and the No-process has probability 1 if the distribution of Sr
is FL * F(r-1), where FL is given by (1.12) and * denotes con-
volution.
Now let denote total variation and U c the unit step function

with jump at c. Then

where the right-hand side tends to zero for n - oo since

tends to zero as n - oo (Stam [18], theorem 5).
Therefore, if Xi has the distribution (4.12), we may take

r = r(03B5) so large that P(Ar) &#x3E; 1-B. But by (4.13) this implies
that P{limj~~ A(Tj) - 0} &#x3E; 1-E. Since this holds for every
a &#x3E; 0, we proved the existence of a subsequence {03C41} of {Tk}
with ~(03C4j) - 0, a.s. So ~(T) converges to zero in probability if
F1 = Go.
For general absolutely continuous F1 the theorem follows from

the fact that F1 is absolutely continuous with respect to Go.
If some F(m) has an absolutely continuous component, the

theorem follows by an argument similar to the first part of the
proof, now starting from the convergence of ~(T) for F1 = Go.
The relation P(Ar) &#x3E; 1- E now follows from the fact that we

may take r so large that the component of F1 * F(r-1) that is

absolutely continuous with respect to G0 * F(r-1), is larger than
1-E.

LEMMA 4.4. If either

(a) (1.22), (1.23) and (1.31) hold,
or

(b) (1.22), (1.30) and (1.31) hold,
then for the homogeneous random walk

Here M(T) is defined by (2.5) and (2.6).
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PROOF. By theorem 4.1 it is sufficient to show that E(T) 1 0,
where

Here the first term tends to zero a.s. since N(-~, 0)  oo, a.s.

For the second term, denoted by D(T), we have

where X oo Y means that the random variables X and Y have the

same distribution. Also

Since E{~[0,T) |f|2dN} = 03BC-1~T0 |f|2dt, it follows from (1.31) and

(4.15)-(4.18) that D(T) ~ 0.
THEOREM 4.3. If either

(a) (1.22), (1.20), (1.23), (1.31) and (1.34) hold,
or

(b) (1.22), (1.20), (1.30), (1.31) and (1.34) hold,
then for the homogeneous random walk, as n ~ 00,

COROLLARY 1. Under the conditions of the theorem

necessarily degenerate, if and only if ~n03BC0 f dt/b(n) ~ Âfl.

COROLLARY 2. For the homogeneous random walk, if (1.22)
holds and f is bounded,
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PROOF. The theorem is proved by the same method as theorem
2.2 for the homogeneous process. Lemma 4.4, 2.3 and 2.5 are

applied in the same way as lemma 2.4, 2.3 and 2.5 in the proof
of theorem 2.2.

THEOREM 4.4. If either Fi is absolutely continuous, or, FI
being arbitrary, some F(m) has an absolutely continuous com-
ponent, theorem 4.3 and its corollaries continue to hold for the

nonhomogeneous random walk.
Here F(m) denotes the m-fold convolution of F.

PROOF. The theorem follows from theorem 4.3 in the same way
as theorem 4.2 follows from theorem 4.1. The relations (4.13)
and (4.14) are replaced by

If (1.22) does not hold, the proofs given above fail. Some

results on convergence in probability however may be obtained
under additional conditions on f. A function f on ( - oo, +~)
will be called here a strict step function on [0, ~) if for some
d&#x3E;0

THEOREM 4.5. Let ~(T) be defined by (1.18). If F is nonlattice
and if either

(a) (1.20a), (1.30) and (1.31) hold and f is a strict step function
on [0, ~),

or

(b) (1.20a), (1.30) and (1.31) hold and to every e &#x3E; 0 there

is a strict step function f, on [0, oo) with

with Tl independent of e, then for the homogeneous renewal
process
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with a(u)u-2 sin2 lud E LI by lemma 4.1. With the Riemann-

Lebesgue theorem, in the same way as in the proof of theorem
2.1b, we may show that limN~~ E/~(Nd)|2 = 0 and then (4.21)
follows with (1.5), (1.20a) and (1.31).

Proof of (b). First we show that any f E in (4.20) satisfies

(1.30) and (1.31). With f03B5=f+(f03B5-f) and Minkowski’s in-

equality (1.31) follows for fe. With the Schwartz inequality and

and (1.30) follows for fë.
Then with Minkowski’s inequality, f~ satisfying (4.20) with

where

Using (4.6) and (4.7) and then (4.20), the Schwartz inequality
and (4.22), we find

with K given by (4.1). Since K[-T, T] ~ c1 T for T ~ T2 ,
theorem 4.5b follows from (4.23), (4.20) and theorem 4.5a.
From theorem 4.5 we may derive results analogous to lemma

4.4, theorem 4.3 and theorem 4.4. We note that if the conditions
of theorem 4.5 apply to f, they also apply to Ifl.

5. Convergence almost sure if limsup |~(u)|  1
1 ul-. 00

Throughout this section we assume that |f|2 and therefore 1/1
is integrable over finite subintervals of [0, ~), an assumption
implicit in (1.32), (1.33) etc. We use the same methods as in

section 3.

LEMMA 5.1. If (1.22) and (1.23) hold and if 03B1 ~ L2(a, b) for
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o  a  b  oo, then there is W(r), r = 0, 1, 2, ···, such that
for the homogeneous renewal process

and

PROOF. From lemma 3.1 with v(0) = 0 and

it follows that in (5.1) we may take

with ~(03BD, Ic) defined by (3.3), so that

From (4.8), (4.9), (4.10), where 03C3(u) is bounded by l emma 4.3b,
it follows with Parseval’s formula that

and (5.2) follows with (5.4).

LEMMA 5.2. If (1.22) and (1.24) hold and if 03B1 ~ L2(a, b) for
0 Ç a  b  oo, then there is W(r), r = 0, 1, 2, ···, such that
for the homogeneous renewal process (5.1) holds and

for any 03B4r e (0, 1), r = 0, 1, 2, ···, the constants A and B not

depending on r or 03B4r. The constant 0 in (5.6) is the same as in
(1.24).

PROOF. By lemma 3.1 we may take W(r) as in (5.4) and (5.5).
By (1.22), (1.24) and lemma 4.3a

and so from (4.8), (4.9), (4.10) we have
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The inequality (5.6) now follows with (5.4), with the aid of the
relation

In the proof of theorem 5.1 below we need a continuous version
of the Kronecker lemma used in proving theorem 3.1.

LEMMA 5.3. Let H be of bounded variation on finite subintervals
of [0, oo), let Igi be integrable with respect to )dH) over finite
subintervals of [0, oo) and let b(t) be nonnegative and non-
decreasing on [0, oo). Then, if

with s finite, we have

PROOF. Let S(t) = ~[0,t) gdH, t &#x3E; 0, S(t) = 0, t ~ 0. The lemma
follows from the relation

where A is a constant, S*(t) = q(t)S(t)+{1-q(t)}S(t+), with
0  q(t)  1 and A and q(t) depend on the behaviour of b(t)
at its discontinuities.

THEOREM 5.1. Let Il(T) be defined by (1.18). If (1.22), (1.23)
and (1.32) hold, we have for the homogeneous renewal process

PROOF. By lemma 5.3 it is sufficient to show that limT~~03B2(T)
exists and is finite, a.s., where
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By methods similar to those used in the proof of theorem 3.1 it
may be shown that

Instead of lemma 2.1, 3.1 and 3.2 one has to apply lemma 4.2,
where 03C3(u) is bounded by lemma 4.3b, and lemma 5.1 with
a = f/b.

Finally let nT denote the integer with nT Ç T  nT+1. Then

where, for n = 0, 1, 2, ···,

Here the first term tends to zero a.s. by (5.7) applied to III,
where it is noted that the conditions of the theorem also apply
to Ifl. The second term tends to zero by (1.32), since

It follows now from (5.8), (5.7) and (5.9) that 03B2(T) ~ zv, a.s.

THEOREM 5.2. Let ~(T) be defined by (1.18). If (1.22), (1.20),
(1.24), (1.30) and (1.33) hold, then for the homogeneous renewal
process

PROOF. From (1.24) and lemma 4.3a

By methods similar to those used in the proof of theorem 3.2,
applying lemma 4.2 with Parseval’s formula and lemma 5.2

with (x = f, it may be shown that

Finally, let nT be the integer with nT Ç T  nT +1. Then,
with (1.5) and (1.20),
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Here the first term tends to zero a.s. by (5.11) applied to Ifl,
and the second term by (1.5), (5.10) and (1.33d). The theorem
now follows with (5.12) and (5.11).

THEOREM 5.3. If either Fi is absolutely continuous, or, F1
being arbitrary, some F(m) has an absolutely continuous com-
ponent, theorems 5.1 and 5.2 continue to hold for the nonhomo-

geneous renewal process.

PROOF. The theorem follows from theorem 5.1 and 5.2 in the
same way as theorem 4.2 follows from theorem 4.1, except that
no subsequences need to be taken.

LEMMA 5.4. If either

(a) (1.22), (1.23), (1.32) and (1.34) hold,
or

(b) (1.22), (1.20), (1.24), (1.30), (1.33) and (1.34) hold,
then for the homogeneous random walk

where M(T) is defined by (2.5) and (2.6).

PROOF. The lemma follows from theorem 5.1 and 5.2 in the
same way as lemma 3.5 follows from theorem 3.1 and 3.2, the
main difference being that 03A3T*-1k=0 f(k)zk is replaced by ~[0, T) f dN.
THEOREM 5.4. If either

(a) (1.22), (1.20), (1.23), (1.32) and (1.34) hold,
or

(b) (1.22), (1.20), (1.24), (1.30), (1.33) and (1.34) hold,
then for the homogeneous random walk

COROLLARY 1. Under the conditions of the theorem

with necessarily degenerate, if and only if ~n03BC0 f dt/b(n) ~ Ây.

We have
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COROLLARY 2. If (1.22) and (1.24) hold and f is bounded,

PROOF. The theorem follows from lemma 5.4 by essentially
the same methods as theorem 2.2 from lemma 2.4. Since the

theorem is on almost sure convergence it is not necessary to

consider subsequences.

THEOREM 5.5. If either FI is absolutely continuous, or, Fi
being arbitrary, some F(-) has an absolutely continuous com-
ponent, theorem 5.4 and its corollaries continue to hold for the
nonhomogeneous random walk.

PROOF. The theorem follows from theorem 5.4 in the same way
as theorem 4.2 from theorem 4.1 ,but without taking subsequences
and with the same modification as in the proof of theorem 4.4.
The first part of theorem 5.5 also may be formulated as follows:

For the basic random walk

for almost all y with respect to Lebesgue measure.

6. Recurrence

Here we consider the theorem of Chung and Derman on re-
current sets. (Chung and Derman [3], Derman [5]).
Throughout this section we assume that f E L2(0, T), T &#x3E; 0.

As before, the conditions

essential for our results, will be assumed to hold.

THEOREM 6.1. Under (1.22), if f is nonnegative on [0, oo ) and if

then for the homogeneous random walk
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COROLLARY. Let A be a Lebesgue measurable subset of [0, oo ).
Under (1.22), for the homogeneous random walk, P{Sk E A, i.o.}
is zero or one according as A has finite or infinite Lebesgue
measure.

i.o.: infinitely often.

PROOF. We put

By Chebychev’s inequality, for b(T) &#x3E; c,

where for T - oo the right-hand side tends to zero by theorem
4.1b, since (1.31 ) and (1.30) follow from (6.2) and (6.4), respec-
tively. Now limT~~ Y(T) exists, finite or +~. By what was
shown above, the limit must be + oo, a.s., and the theorem follows

by taking into account that N(- oo, 0)  oo, a.s.

PROOF OF COROLLARY. That P{Sk E A i.o.} = 1 if A has infinite
Lebesgue measure follows from theorem 6.1 by taking for f the
indicator function of A. Then (6.1) implies (6.2).
THEOREM 6.2. If f is nonnegative on [0, oo ) and if (1.22), (6.1)

and (6.2) hold, then for the basic random walk

for almost all y with respect to Lebesgue measure. If moreover
some F(m) has an absolutely continuous component,

PROOF. From theorem 6.1, by the same method applied to
derive theorem 4.2 from theorem 4.1, but without taking sub-
sequences. Cf. the proof of theorem 4.4.

In the same way, from the corollary to theorem 6.1:

THEOREM 6.3. Let A be a Lebesgue measurable subset of [0, oo ).
Under (1.22) for the basic random walk P{y+Sk E A i.o.} is zero
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or one for almost all y with respect to Lebesgue measure, according
as A has finite or infinite Lebesgue measure. If moreover some
F(-) has an absolutely continuous component, a similar assertion
holds for P{Sk E A i.o.}.

If the Xk are integer-valued with span 1, the theorem of Chung
and Derman may be derived from theorem 2.1b. The counterpart
of theorem 6.1 now may be simplified to:
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