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On distribution of arithmetical functions
on the set prime plus one

by

I. Kétai

1. Introduction

P. Erdés proved the following theorem [1].
Let f(n) be a real valued additive number-theoretical function,
and put
f(n) for [f(n)] =1,
e = |
0 for |f(n)] > 1.

Put

Fy(z) = Itff(z 1.

n)y<w®
n<N

Then the distribution-functions Fy(z) tend for N — 4-c0 to
a limiting distribution function F(z) at all points of continuity
of F(z), if the following three conditions are satisfied:

1. > ) is convergent,
P
* 2
1
3. > —< 4o
l#@)>1 P

It has been shown also by P. Erdos that F(z) is continuous if
and only if the series X, .o 1/p diverges.

New proof of this theorem has been given by H. Delange [2]
and by A. Rényi [3].

A multiplicative function g(n) is called strongly multiplicative,
if for all primes p and all positive integers k it satisfies the con-
dition

g(p*) = g(p)-
H. Delange proved the following theorem [4].
278



2] Distribution of arithmetical functions 279

If g(n) is a strongly multiplicative number-theoretical function
such that |g(n)] <1 for n = 1,2, ..., and such that the series

.g(p)—1
270

converges, then

lim - 3 gn) = M(g)

N-ooo

M(g) =H(1+

?

exists and

(pz)) 1)

A new proof of this theorem has been given by A. Rényi [5].
Throughout the paper p, g denote primes, and >, and T], denote
a sum and a product, respectively, taken over all primes. Let
further li z = [ du/log u.
The aim of this paper is to prove the following statement.

THEOREM 1. Let g(n) be a complex-valued multiplicative function
such that |g(n)] <1 for n = 1,2, ..., and such that the series

g(p)—1
1.1 L —
a 3%
converges. Let N(g) denote the product

g(p*)—g(p*™)

(1:2) N =TT (1+ 3 S5 2.
Then
(L8) lim —— 3 g(p+1) = Nig).

x—00 h & P

From this theorem easily follows the

THEOREM 2. Let f(n) be a real valued additive number-theoretical
function which satisfies the conditions 1, 2, 3, of the theorem of
Erdos.

Put

1
F 1.
~Yy) = LN f(p+§)<y
p<N

Then the distribution-functions Fy(y) tend for N — o0 to a
limiting distribvtron-function F(y) at all points of continuity
of F(y).

Further F(y) is a continuous function if and only if

1
— = o0.
fp)#0 P
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2. Deduction of Theorem 2 from Theorem 1

In what follows ¢, ¢,, ¢,, ... denote constants not always the
same in different places.

For the proof of Theorem 2 we need to prove only that the
sequence of characteristic functions

1

eiuf(n)
N , %

(2.1) pn(u) =

converges to a function ¢(u), which is a continuous one on the
real axis.
It is easy to verify that from the conditions 1/2/3 it follows that

e‘“f(p) —1

) p

(2.2)

converges for every real 4. Using now Theorem 1 with g(n) = e®/™
we obtain that ¢y(u) — ¢(u), where

0o iuf(p¥)_ giuf(#*7h)
1+ )
( i pti(p—1)

The continuity of (2.8) is guaranteed by the continuity of (2.2),
which follows from the conditions 1/2/8 evidently.
For the proof of the continuity of F(z) in the case

(2.3) p(u) =11

F4

1
— =
fpy#0 P

we remark the following.
P. Levy proved the following theorem [8].
Let X,, X,, ..., X,, ... be a sequence of independent random

variables with discrete distribution and suppose that there exists
the sum

Mg

X, =X

&
il

1

with probability 1. Let
d, =sup P (X, = a).

Then the distribution function of X is continuous if and only if



4] Distribution of arithmetical functions 281

Let now the X’s be independent random variables with charac-

teristic functions
o giuf (o) _ piuf(s*Y)

l+k§1 p*(p—1)

and let
X=X,
¥4

It is evident from (2.8) that X has the distribution function
F(z), and so this is continuous if and only if

1 1
I (1——):0, ie. I —= .
(D) #0 p fp)=0 P

3. The proof of Theorem 1

We need the following Lemmas.

LemmA 1. Let g(p) be a complex-valued function defined on the
primes, for which |g(p)| =1 and

—1
zg(p)

(8.1)
/4

converges. Then

(8.2) > 1 < 4o

larg g(p)| > ¢ P

for every positive constant c, further

12
(8.3) s lg(p)—1| <t
» P
and
(3.4) _lg(_P)—-_” =0 for @ — + o0,
lcp<a p

Proor. The assertion in (8.4) is an immediate consequence of

(8.8) since

further ,1:_.,.,1/p is bounded, and the second sum on the
right hand side tends to zero because of (3.3).
Let us put

lg(p)l = r(p) and argg(p) = ¥(p),
where —n < d(p) < 4=, i.e. we suppose that g(p) =r(p)e?*®,



282 I. Katai [5]

From the convergence of (3.1) it follows that

s 1—Re g(p)

b4

(< +o)

converges too. This sum has positive terms and the inequality
larg g(p)| > ¢ involves that 1—Reg(p) > ¢; (> 0). Hence (8.2)
follows.

From the inequality |a+bi|? < 2(|a|?4-]b|?) it follows that

—1]2 _ 2 2
5 l8@)=1P _ ) 5 Re (1—¢(p))| |Im g(p)*
) P P
The first sum on the right hand side evidently converges since
Re (1— 2 1—Re
5 Re (1—e@)i* _ 5, e, 1
? P p [8(p)>% P
It is sufficient to prove that

+23

ri(p) sin® ¥(p) _

(8.5)
[#(p) <% p

0.

Using the inequality

)
r2(p) sin? ¥(p) = ¢d?(p) =< 2c¢ sin? _(2p_) = 1—cos ¥(p)

= 1—r(p) cos ¥(p),
we have (8.5).

LemMma 2. Let Ny (x) denote the number of solutions of the equation

p+l=kq, p=X
in primes p, q. Then

@&
NulX) < ¢ o Xk

for k < x, where c is an absolute constant.
For the proof see Prachar’s book [6], Theorem 4.6, p. 51.
Let n(z, k, ) denote the number of primes in the arithmetical
progression =] (mod k) not exceeding .

LemMA 8. (Brun-Titchmarsh). For all k < 2%, 6 > 0
x
’ k9 l < TN 0
(@ )< (k) log 2
where c; is a constant depending on J only.
For the proof see [6].
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LemwMA 4. (E. Bombiert [7]).

iz cx

max |n(z, D, 1l)— <
o2y max |w(@ D D)= s | < log a)t
(L,D)=1

where Y = at (log #)~B; B = 24428, A arbitrary constant.
Let 7(n) be the number of divisors of n.

LeMMA 5.

zfz()

2, 7m) < c (logy)*,

where c is a constant.
The proof is very simple and so can be omitted.
Let us define the multiplicative function gg(n) by putting

g(p*), if p* = K,

gx<p>={1, o K

By other words we put for any natural number n

gr(n) = [T g(p*).

»*||n
pe<K

Let us put further
() = 3 1 () ewta),

where d runs over all (positive) divisors of » and u(n) is the
Mobius function. Then hg(n) is also a multiplicative function,

he(p®) = gx(p*)—gx(P*™); hx(p) = 0 for p > K; hg(p) = 0 for
Pt >K,a =2
Let further k(n) be defined by

wn) =3 e (7) @

Let us introduce the notation

Iy(z) = ngp+1) I(z) = 3 g(p+1).

pPs®

Choose now K, = (x—¢)logz, K, = at, K; = a'~%, where ¢
and ¢ are suitable small positive numbers.
We shall prove the following relations:

(8:6) Ig(x) = (1+o(1))lizN(g) for # — oo,
(8.7) Ig,(x)—Ig, (@) = o(liz) for ¢ — oo,



284 I. Kétai [7]

(8.8) Ig(x)—Ig(x)=o0(csliz) for z— co, uniformly in 6 (> 0),
(8.9) I(z)—Ig(x) = O0(0liw) for x — oo.
Theorem 1 follows if we choose é = d(z) tending to zero so

slowly that the right hand side of (8.8) is o(li ).
First we prove (8.6). We have

IKl(m)ZngKl(p‘l“l) > 2 hgle)= Ehxl(d)n(w, d, —1)

p=x d|p+1
hg (d)
o(d)

d

where
liz
——| =R,.
o(d)
Using the prime number theorem, we obtain that kg (d) = O
for d = xt~%/2 because
H pa < 8(1—8/2) logm,

v <K,

IR = g lhg ()] |7(z, d, —1)—

if z is sufficiently large.

Since |g(n)] = 1, so |hg (p*)| = 2 and |hg (d)] = ©(d).

For the estimation of R, we split all of the d’s, d < zt—"
into two classes Ay, U, as follows:

d belongs to A, or U, according to that 7(d) < (logx)® or
7(d) > (log )5, respectively.

Using Lemma 8 and Lemma 5 we have

liz . 7(d)
dg;’IhKl(d)l ”(w’ d, _1)_ m =cl ‘Q;Eg’ (;(_d—j
7(d) z

<cliz (log2)5 Y c .
scliz(oga)™ 3 2@ = logia

Otherwise, using the Bombieri’s result (Lemma 4), we have
that the sum

iz
T —-1)— —
2, )
not exceed
i@ @ x
1 5 d, —1)— —— =0—————=0———),
(log ) ,,gmm @ d, —1)= ((log m)A—S) (1og2m
ifd=n7.
Hence

z
R=0(—)-
(logzw)
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Further we have

hg (d
s hal@ _ o

a ¢d) o<k

2 8k, (p*)—gk (P*) )
(1 3, )

From the convergence of the series > (g(p)—1)/p it follows that
the product on the right hand side tends to N(g) for 2 — 4-co.

So (8.6) is proved.

Let now g(n) be a multiplicative function defined by

g(p*), if p £ K,,
g(p), if p>K,.

It is evident that g(n) = g(n) except eventually those n’s
for which there exists a ¢, ¢ > K;, such that ¢%n. So

g(p*) = {

(3.10)
1
L g(p+1)—g(p+1)| < 2 1<2cliz
ﬂgﬁ glp+1)=8(p+1) q>zK1 ﬂ+lg(:1(q2) K <a<av2q(q—1)
p<q
1 — olli
+wq>zxm i o(li z).

From (8.10)
Uy, (2)—Ig(2)] = g 18k, (P+1) 8k, (p+1)|+o(li )
<3| TI glg)—1l+o (liz) = Vo (liz)

PSS o+l
K, <q¢=K,

follows. Using the formulas
log (1+2) = 2+0(|2]*); exp (2+0(J3]*)) = 1+2+0(J*)
for |3| = 1, |arg 2| =< =/2, we have that

3811) II gl@)—1= 3 hri@+0( I [k(g)l),

a|p+1 a|p+1 a|p+1
K,<q=K, K,<q¢=KkK, K, <asK,
if all primdivisor ¢ of p+1 in the interval K; < ¢ < K, satisfies
the relation |arg g(¢q)| < =/2. Let U; denote the set of the p’s
possessing this property, and %, the other p’s.
We can easily estimate the sum

Vi=21 TI &@-1

pedy  g|p+1
K, <¢=K,

since
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. 1
Vi<2 3 axg—1l)<cliz =
K, <esK, larg g(a)| >nl2 4
larg g(@) 2 7/2 K, <q¢<K,
and by (8.2)
V,=o0(lia)
Let

V2=2| II gl9)— 1!

PeNA q|p+1
K, <¢=sK,

From (8.11) we have that
Ve = 3| .El MOIH0 (X 3 1k (g)]) = Vs+O0(Vy).

2  q|p+l
K, <q¢<K, K, <q<K,

Using (8.8) in Lemma 1 and Lemma 8 we have

h2

K, <¢=<K, ¢>K,

Further, from the Cauchy’s inequality

Vy <e(li “’)%{K 2 K”(Ql)k(%)”(fva q192 —1)
1<, ¢a<HKg
PR

+ 2 IMWM%%—UR

K, <e¢=K
Using Bombieri’s result we have that

> h(q)

K1<qSK2q'_‘

Vs, <c(lia)t

w) =o(liz),

iz ﬁ+0(g

since

h h
s - 3 Mio(s 2=

K<isk, (—1 g <<k, ¢ K, <
So we proved that
V,=VstO(V,) = olliz); V,=o(lia); V ="V,+V,=o(liz),

whence (8.7) follows.
Similarly we have

U (@) —Ig@ =21 X hgl+cX 3 |h(g)?

p<z  q|pt+l =2 q|p+l
Ky<q=K, Ky<g=K,4
4¢3 a(x,q, —1) = Vyt+cVe+cV,.
K,<qsK,

larg 9(p)| 2 7/2
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Using Lemma 8 and (8.4) in Lemma 1 we have that

Ves 3 ot g -1 <eliz 3 o0,

Ky<g=<Kyg K,<qsK,
Further using (8.8) and (8.2) we obtain that

1h*(q)

Ve 3 [B(Q)ln(z, ¢, —1)<cpliz Y = o(cs li @),
R, <q=K, Ky<asK, 4
. 1 .
Vosegliz > —=o(gliz).
Q>K3 q
larg g(p)] Z 7/2
Hence (8.8) follows.
Finally using Lemma 2 we have
I(@)—Ig(@) <2 3 aleg —1)= 3 Nz)
Ky<g<2 jisw®s
z z
=c : . <c == <o )
igc‘ ¢(j) log*zfj —~ log*x 2, (f) log 2

because

1
. "'—T<CIO .
igv‘l’(” &y

So the inequality (8.9) is proved, and from (8.6)—(8.9) our
theorem follows.

4. Some remarks

1. From our Theorem 2 it follows evidently that if g(n) is a
positive valued multiplicative number-theoretical function such
that

*
1. > @ig—(—-p))—— is convergent,
? P
*2
2. z M < + o0,
b4
1
3. > =< Hoo,

[log g(p)|>1 P

then putting
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1

Faly) = — 3
Y =R 2

the distribution functions Fy(y) tend for N — + oo to a limiting
distribution function F(y) at all points of continuity of F(y).
Hence it follows especially that the functions

p(p+1) o(p+1)
p+1 = p+l

(o(n) denotes the sum of the divisors of n) have limiting dis-
tribution functions.

2. Recently M. B. Barban, A. I. Vinogradov, B. V. Levin proved
that all results of J. P. Kubilius theory (see [9]) are valid for
strongly additive arithmetic functions belonging to the class H,
when the argument runs through ‘“‘shiffed”” primes {p—I}, (see

[10], [11]).
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