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Unitary groups in projective octave planes 1

by

F. D. Veldkamp 

0. In this paper we consider groups of projectivities in an octave
plane which commute with a polarity in that plane. These groups
behave in a way similar to the classical unitary and orthogonal
groups. In general, not much can be said if the polarity is elliptic.
But if we deal with a hyperbolic polarity, then the corresponding
unitary group has a simple normal subgroup generated by unitary
transvections. This is also a consequence of Tits’ results [29]
which are placed in the more general framework of algebraic
groups; our results are derived with the methods in use for the

description of octave planes and they give some more detailed
information.
There are three types of hyperbolic polarities. First, the

hermitian linear polarities already considered in [10, II], [21]
and [22]; the corresponding unitary groups are simple and of
type F4. Then there exists a nonhermitian linear type of polarities;
the corresponding group has a simple normal subgroup generated
by the unitary transvections, which is a group of type C4, already
found by Tits [27] in the case of octaves over the reals. Finally,
we have a nonlinear type of hyperbolic polarity which gives rise
to a quasi-split outer form of the group E6; these groups have
already been considered by Tits [28] who used different techniques.

This paper is divided into three chapters. Ch. 1 deals with

polarities in octave planes and some general results about unitary
groups; it generalizes results already found for octaves over the
reals by Tits [26, 27]. In II, the structure of these unitary groups
is examined in more detail, especially in the case of hyperbolic
polarities. In III, methods of algebraic group theory are applied
to determine the type of the groups under consideration. For this
purpose, roots and rootvectors of some Lie algebras are explicitely
computed.

1 This research was partially supported by the National Science Foundation
under Grant No. NSF-GP-4017 during the author’s stay at Yale University.
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For notations and preliminary results on Jordan algebras and
octave planes we refer in general to [22] ; as a general background
we also need [18, 19, 20 and 21].

There are some deviations from the rule on notations we have

just fixed. Thus, linear transformations will, with a few excep-
tions, be denoted by italic capitals. We shall write p(C) instead
of f1lJc for the projective plane over the octave field C. The line
of points x such that (u, x ) = 0, will be denoted by u* instead of ü.
A (Yll V2, 03B33)-hermitian matrix

will in most cases be denoted by (el , 03BE2, e3; xi , x2, ae3); this nota-
tion, of course, does not show explicitely the coefficients Yl’ 721
03B33, but these will be equal to 1 in the greater part of this paper.
We shall frequently need the crossed product x X y of elements

x and y of a Jordan algebra of 3x3 hermitian octave matrices;
see e.g. [22, p. 418]. For convenience in computations we give
here the expression of this product in matrix form in case

Yi = Y2 = Y3 = 1, which is easily derived from the formula

where

subscripts taken mod 3. Of course, it is easy to derive a similar
formula for arbitrary (Yll y2 , 03B33)-hermitian matrices, but the

above formula will suffice for our purposes.
The author wishes to express his gratitude to Professor T. A.

Springer for some critical remarks. In particular simpler proofs
for theorems 5.1 and 5.7 are due to him.

I. Polarities, unitary groups

1. Let K be a commutative field of characteristic ~ 2,3, C
an octave field over K and 9(C) a projective plane over C.
p(C) can be described with the aid of any Jordan algebra
A - A ( C; yi , Y2’ 03B33) of 3 3 (Vl y2 , 03B33)-hermitian matrices with
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entries in C. A choice of such a coordinate algebra A defines a
polarity no in P(C), which maps a point u on the line u* ; we will
call no the standard polarity with respect to the coordinate al-
gebra A. Any duality of 9(C) can be written as

where rT’ is the collineation of éP(C) induced by the a-linear
transformation T of A satisfying

We shall call

Since

the action of n on a line u* is given by

Hence n is a polarity if and only if

for some 03BB ~ 0 in K, i.e.,

Since T’ is a-1-linear, it follows that a2 = 1. From (1.1) we get
by taking the transposed 

Hence

If 03C3 = 1, this implies 03B1 = ±1. But a = -1 would give T’ = - T,
hence (x, Tx) = 0 for all x since char. K ~ 2. So every point
would lie on its polar, which is impossible in a plane (see [22,
p. 424]). So in this case we get a = 1. If a ~ 1, then by Hilbert’s
"theorem 90" there exists a p such that oc = p-l a(p). Replacing
T by pT we find that we may assume T = T’. Thus we have
shown

(1.2) n is a polarity i f and only i f it can be written as

where the collineation [T] is induced by a 6-linear transformation
T of A satisfying
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We call a point u isotro pic with respect to 03C0 if u E nu, otherwise
nonisotropic.

(1.3) Il the point ul is nonisotropic with respect to n, it can be

embedded in a polar triangle ul, U2’ U3 -

PROOF. It suffices to show the existence of a nonisotropic point
u2 e nul. Assume v and w e nui are isotropic. Then 03C003C5 = (u1 X v )*,
03C003C9 = (ul X 03C9)*. Take x E 03C903C5, ~ Ul’ -=F v, y = nx n nw, z = nx n ny.
Then 03C0z = (x y)*. Take u2 = (u1  z)* n 03C0u1, U3 = nz n 03C0u1,
then nU2 = (ul X U3)*’ v, w, U2 and U3 are harmonic, hence U2 :A U3
since K has characteristic ~ 2.

2. Let ui, U2’ U3 form a polar triangle. Three noncollinear
points can be transformed into any other three noncollinear points
by an element of the little projective group (see [21, p. 461]),
hence we may coordinatize p(C) in such a way that

ul = (1, 0, 0; 0, 0, 0), u2 = (0, 1, 0; 0, 0, 0), u3 = (0, 0, 1 ; 0, 0, 0).

For the polarity 03C0 = 03C0o [T] we then have

The subspace R = ~e2013u1~+E0 in the Peirce decomposition of A
with respect to ul is spanned by the points x E ui = nui. For
such an x, ul e nx, hence Tx E R. Consider

Then

Now det y = 03BE1Q1(x) (see [21, p. 452]) and det (Ty) = va (det y),
hence we must have

Since Tui = 03BBiui, T must leave invariant the orthogonal com-
plement C (with respect to Q1) of u2&#x3E;+u3&#x3E; in R. Replacing
ui by U2 and U3 respectively in the above argument, we find that

which is defined by

The Ti are a-linear transformations of C.
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In this representation of T, the condition

is equivalent to the following conditions (2.4-5-6).

Here we use in (2.6) the notation

In the terminology of [12, p. 135], T1, T2, T3 form a related triple
of semi-similarities in C. (2.5) and (2.6) are equivalent to (2.5) and

subscripts taken mod 3 (see [12, p. 135] or [17, p. 152]). Here

iz = T i z . Applying N on both sides of the equation (2.8) one
obtains (2.4) (see [16, p. 16]), so (2.4) is a consequence of ( 2.5 - 6 ).

Let T’i denote the transposed of Ti with respect to the bilinear
form (.,.) on C related to N. One easily verifies that

where

From now on we coordinatize 9 (C) only with Jordan algebras
A (C; 03B31, Y2’ 03B33) such that yi = a(Yi)’ i = 1, 2, 3.
Then oc, = 1 in (2.9), hence the condition T = T’ in (1.2)

becomes equivalent to

From (2.4) and (2.10) it follows that v = a(v). (2.5) implies
that (2.11) can be replaced by

Conversely, assume that a proper semi-similarity Tl of C is given
satisfying (2.5) and (2.12) for i = 1. By [3] and [31] we can find
T2 and T3 such that (2.5) and (2.6) are satisfied for some Âi i
(i = 2, 3), if v is given. T2 and T3 are unique up to factors p
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and p-l respectively, p ~ K, ~ 0. Is (2.12) satisfied for i = 2, 3?
T21 = 03BC1, T22 and T23 form a related triple, hence T22 = 03B12, T23 = 03B13
for some 03B12, 03B13 e K.

Then

So

Furthermore,

Thus we find: either OC2 = P2’ 03B13 = P3’ or ex2 = - P2’ 03B13 = 201303BC3.

Considering first the case 03C3 ~ 1, assume that we have T2 and T3
such that T2i = 201303BCi· If F denotes the fixed field of K under a,
then = F(O), O2 E F, 03C3(O) = 2013O. Replacing T1, T2, T3 by
T1, OT2, O-1 T3 we get a related triple satisfying (2.5), (2.6)
and (2.12). (2.5) and (2.12) imply that a(,ui) = ,ui, for

03BC2iN(x) = N(03BCix) = N(T2ix) = 03BCi03C3(03BCi)N(x).

T2 and T 3 are uniquely determined by T 1 up to multiplicative
factors p, p-1 respectively. Now N(03C1T2x) = p2P2 N(x) and

(03C1T2)2 = pa(p)p2’ hence we must have p = cr(p) in order to

satisfy (2.12). Let us now turn to the case a = 1. First assume
pi = 03B221, 03B21 E K. Then U1 = 03B2-11 T1 is a rotation, U2 = 1. So U1
is a product of an even number of reflections in C. If T1 = 03B21,
take T2 = 03B2-11 v, T3 = 1. If T1 = 03B21 SaSb, Sa and Sb reflections
in al. and b~ respectively, (a, b) = 0, then it follows from [3,
p. 159-160] that

An easy computation shows that

Making use of the relations (1.2) and (1.4) of [2, p. 408] and (10)
of [13, p. 419] - also to be found in [4, p. 210], formula (1.5’)
- and taking into account that (a, b) = 0, we find
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Hence

Therefore 03B2-11T1 cannot be a (2,6)-involution.
From the above computations, however, it follows that for a

(4,4)-involution 03B2-11 T1 we get the desired relation T22 = 1l2; for
a (6,2)-involution 03B2-11T1 we obtain again that T22 = 201303BC2.

Finally, consider the case J = 1, u1 ~ K2. Extend K to K(~),
li 2 Yi - The linear extension of T1 to C ~K K(~) = C’ satisfies
T21 = ~2. If -r is the K-automorphism of K(~) mappingq on 2013~,
then on C’

hence T1x = iqx implies T1(1 0 -r)x = 2013~(1 0 03C4)x. From this
relation one easily concludes that ~-1T1 is a (4,4)-involution on
C’. Hence T1 can be extended to a related triple T1, T’2 , T’3 on C’
such that the relations N(T’ix) = 03BC’iN(x), T2i = 03BC’i, hold. On C we
can also find a related triple of similarities Tl, T2, T3 , such that
T22 = :f:,u2. The linear extension of T2 to C’ must be a multiple
of T’2. T22 = -,u2 would therefore imply T’22 = 201303BC’2, a contra-
diction. Hence T2 = ,u2 and T3 = IÀ3. Thus we have shown

(2.13). Let a2 = l, v E K, v = 03C3(v). Il Tl is a a-similarity of C
with N(T1x) = 03BC1N(x), T 2 = 03BC1 (hence 03C3(03BC1) = 03BC1), then there
exist 03C3-similarities T 2 , T3 such that T1, T2, T3 form a related triple,
N(Tix) = 03BCiN(x), T2i = 03BCi, i f and only i f one of the following
conditions holds.

(1) 03C3 = 1, T = 03B11.
(2) 03C3 = 1, ,ul E K2, ~03BC-11 T1 is a (4,4)-involution.
(3) a = 1, W K2.

(4) 03C3 ~ 1, Tl is a proper a-similarity.
Then 03C3(03BCi) = ui i for i = 1, 2, 3. T2, T3 are unique up to multi-
plicative factors p, p-1, respectively, with p = 03C3(03C1).

REMARK. The above proposition also holds in case C is a split
octave algebra, since in its proof it is of no importance whether
C is split or not.

In the case 03C3 ~ 1 we want to derive conditions for a a-similarity
to be proper. Let el , ..., es be an orthogonal basis of C. We
assume that the discriminant
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satisfies P = a(p), 1.e., fl E F, the field of a-invariant elements
of K. K = F(O), O2 = oc E F, a(fJ) = 2013O.

On the other hand, if

then

Hence

Let f1, ..., f8 be another orthogonal basis of C. f i = Ii y;;e;,
det (03B3ij) = 03B4. Then N(fi) ... N(f8) = 03B4203B2 = 03B3. If we require
again 03C3(03B4203B2) - ô2 fl, then we must have 03B42 E F.
With respect to f1, ..., f8 we put

then

Since 03B42 e F, we have either ô E F or ô E OF, hence accordingly
J(à)à-1 = 1 or -1. Now fl E K2 n F = F2 u aF 2. For P = 1 we
define T to be proper if 03BB = fl4. Then it follows from the above
considérations :

(2.14) Let K = F(O), O2 = a E F, a the nontrivial F-automor-
phism of K. Furthermore assume that C is an octave algebra over K.
Let e1 , ... , e8 be an orthogonal basis of C with N (el) ... N(es) = fl E F.
Let T be a a-similarity of C such that det T = 03BB with respect to
el, ..., e8, N(Tx) = 03BC03C3(N(x)) for all x E C. Then T is proper i f
and only i f either P E .F’2, 03BB = fl4 or P E aF2, A = _fl4.

REMARK. The proof of (2.14) can also be formulated in the
Clifford algebra of the quadratic form N; cf. [30]. It actually
works in any space of even dimension.

An important special case is the following one. Let T be a
a-similarity with ratio 03BC, T 2 = 03BC, 03BC E F2. Then C decomposes
in two F-spaces L+, L_:

x ~ L+(L_) if and only if Tx = Jfix ( - ~03BCx),
where Vil is either one of the roots of 03BC in F; thus our notation
depends on this arbitrary choice. Obviously, C = L+ E9 L_ as an
F-space, OL, = L_, OL_ = L+, hence F-dim L+ = F-dim L_ - 8.
For x E L+
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Similarly for x E L_, hence

So for any orthogonal F-basi s e1, ... , es of L+(L_), N(el)... N(e8) E F
Tei = ~03BCei ( - ~03BCei), hence det T = 03BC4. So

3. Let n be a polarity. If there exist isotropic points with
respect to n, then we call n hyperbolic, otherwise elliptic. A line
is called isotropic if it is incident with its pole, i.e., if it is the

polar of an isotropic point. Let u be isotropic. If v E nu, =1= u,
then u E 03C0v ~ nu, hence v 0 nv. Therefore

(3.1) On an isotropic line there is exactly one isotropic point,
viz. its pole. Through an isotropic point there is exactly one isotropic
line, viz. its polar.

(3.2) DEFINITION. If 03C0 is a hyperbolic polarity, the set W(n) of all
isotropic points is called the conic defined by n. For u E W(n), nu
is called the tangent to ~(03C0) at u. ro ~ P(C) is called an outer point
0f ~(03C0), if 03C0(v) ~ ~(03C0) consists of at least two points, and an inner
point, if 03C0(v) ~ ~(03C0) = 0.

If there is no danger of confusion, we shall often write W instead
of W(n), to be well distinguished from C, which denotes a com-
position algebra, in particular an octave algebra.
On W(n) we choose two distinct points v and w, on nw a point

u1 ~ 03C9. Take U2 = 03C0v n 03C0u1, u3 = nui n 03C0u2. After a suitable
coordinate transformation (in the middle projective group) we
may assume that ul = (1, 0, 0; 0, 0, 0), u2 = (0, 1, 0; 0, 0, 0),
u3 = (0, 0, 1; 0, 0, 0), v = (1, 0, 1; 0, 1, 0), 03C9 = (0,1,1;1, 0, 0),
where we have coordinatized 9(C) with an algebra A (C ; l, 1, 1).
u1, U2’ u3 form a polar triangle, hence 03C0 = 03C00 [T] with a a-linear
transformation

We may take Ài = 1.

hence
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From these relations and from Âl = 1 it follows that 03BB2 = 03BB3 = 1,
T21 = 20131, T11 = -1.

Since T21 = 03BC1, T22 = 03BC2, we have 03BC1 = 03BC2 = 1. ’V = 03BB103BB203BB3 = 1 .
Hence 03BC3 = 1. Tl1 = -1 implies 1 = Ti . Hence by (2.8)

Putting x = 1 respectively y = 1 in this formula we conclude

that T1 = T2 = - T3 . Hence there is a a-automorphism U of C
such that T3 = U, T1 = T2 = - U. From (2.13), (2.14) and the
discussion after (2.14) it follows that we have

(3.3) If 03C0 is a hyperbolic polarity, than P(C) can be coordinatized,
with an algebra A (C; 1, Î, 1) in such a way that 03C0 = 03C00 [T], where
T = [1, 1, 1; - U, - U, UJ, U a 03C3-automorphism of C satisfying
any of the following three conditions.

(1) 03C3 = 1, U = 1.

(2) 03C3 = 1, U is a reflection in a quaternion subfield of C.

(3) 03C3 ~ l, a2 = 1, F = fixed field of K under 0", C = CF 0FK
where CF is an octave field over F, U = 1 0 0".

4. In this section we consider the group PU(n) of projectivities
of P(C) which commute with the polarity n. Let n = 03C00 [T] for
some standard polarity 03C00. Then we have the following theorem.

(4.1) (i) [S] E PU(n) i f and only i f there exists a 03BB such that

S’ T S = 03BBT. Such a 03BB satisfies 03BB = a(Â).
(ii) Every element of PU(03C0) can be written as rSl where S’ T S = T.

For such an S, det s. 03C3(det S) = 1.
(iii) Il a = 1, i.e., if 03C0 is a linear polarity, then every element of

PU(n) can be written as [S] with S’ T S = T, det S = 1; such an
S is uniquely determined by [S].

PROOF. (i) The action of S on the lines is given by

hence S E PU(03C0) if and only if T S = 03BBS’-1T for some 03BB, so

S’TS = 03BBT. Taking the adjoint of both sides of this equation,
one gets S’TS = 03C3(03BB)T since T = T’. Hence = 03C3(03BB).

(ii) From S’TS = 03BBT it follows that det S · 03C3(det S) = 03BB3,
since det S’ = det S. [21, p. 455, prop. 3]. Hence = p · 03C3(03C1)
with p = 03BB-1 det S. So (03C1-1 S)’ T(03C1-1S) - T and
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(iii) Let S E PU(03C0) with S’TS = T. Then (det S)2 = 1 by (ii).
If det S = -1, take 2013S instead of S’. If S’ T S = T, det S = 1,
and (03BBS)’T(03BBS) = T, det (AS) = 1, then A2 = 1 and 03BB3 = 1, hence
A== 1.

II. The unitary groups of hyperbolic polarities

5. Let 03C0 be a hyperbolic polarity, n = 03C00[T], in the plane P(C).
We may suppose that 9(C) is coordinatized by an algebra
A (C ; 1, 1, 1) in such a way that T = [1, 1, 1; - U, - U, U],
where U is a a-automorphism of C of one of the types enumerated
in (3.3).
We now want to determine the central collineations in PU(03C0).

First consider a dilatation 1-S-1. By [21, prop. 6] we may assume
that S = da,b;03BB. We first point out two corrections of this prop. 6
of [21]. In (b), read a,b;03BB = db,a;03BB-1 instead of da,b;03BB = db,a;X-1*
(d) has to be read as follows: If u ~ 0393 is a-linear, then

du(a),u(a);03C3(03BB) = uda,b;03BB u-1.
Now [S] E PU(03C0) if and only if (Sx, TSy) = oc(x, Ty), for a

fixed a. If S = da,b;03BB, this means

hence

Hence Ta = fJb and Wl = 03C3(03BB). Since (a, b) ~ 0, we find a e na.
Thus we have shown

(5.1) A dilatation [S] belongs to PU(n) i f and only i f one can
write S = da, Ta; À with a rt na, 03BB03C3(03BB) = 1.

For 03BB = 20131 we get unitary reflections in this way. If 03C3 = 1,
the unitary reflections are the only unitary dilatations different
from the identy.
The existence of unitary reflections has the following conse-

quence. Let a be an isotropie point, b* a line through a, ~ na.
Let c be any nonisotropic point on b*. ne does not pass through a,
hence a is not fixed under the unitary reflection with center c
and axis nc. Therefore, b* contains more than one isotropic
point. From this it follows:

(5.2) If a is an isotropie point with respect to n, any line =1= na

through a contains an isotropie point ~ a, hence any point =1= a
on na is an outer point.
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Finally, we want to determine the transvections in PU(n).
Let rS’ be such a transvection with center c. Since all lines

through c are invariant under r-S-1, their poles are fixed under
r-S-1. Hence 03C0c must be the axis of F-S-1. If a is any isotropie point
not on nc, its image b is also isotropic. Therefore, by [21, prop. 5],
S = ta, 6;rc* We assert that b may be any isotropic point ~ c
on the line a X c.

(5.3) Let a, b, c be any three collinear isotropie points, c ~ a,
~ b. Then there exists a unique unitary transvection with center c
and axis ne which maps a on b. Any transvection in PU(n) is of
this f orm.

PROOF. Only the existence still needs a proof. The action of
ta,b;Tc on lines is given by a,b;Tc. Geometrically it is clear that

a,b;Tc is a transvection whose "axis" is c. If p is any point on
03C0c, then p X a is mapped on p  b. Therefore

ta, b; Tc is unitary if and only if

By [21, prop. 5], this is equivalent to

a and b are isotropic, hence lie on 03C0a and nb. na n nb is a point
of nc; take p = na n nb, then p X a = y T a, p X b = 03B4Tb, hence
the above equality (*) holds. This implies that ta, b; c E PU(03C0).
We shall call the linear transformations ta, b; c as in [21, prop. 5],

normalized transvections. Every projective transvection is induced
by a normalized transvection.

6. In this section we study the unitary transformations leaving
an outer point fixed.

Let ul be an outer point. We coordinatize as in (3.3) such that

u1 = (1,0,0;0,0,0), 03C0u1 = u*1.03C0 = 03C00 [T], T = [1,1,1; -U, -U,U].
In the Peirce decomposition with respect to ul we consider
R = ~e-u~+E0.
x is an isotropic point on ui if and only if x E R, x X x = 0,

(x, Tx ) = 0. Any x E R can be written as x = (0, e2l 03BE3, x1, 0, 0 ).
x  x = 0 amounts to

i.e., to
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Furthermore,

We now distinguish the cases u = 1 and 03C3 ~ 1.
First assume o = 1. On R we define quadratic forms Q+ and

Q- by

Then

We shall also need the bilinear forms related to Q+ and Q-;

In the subspace x1 = 0 of R we change coordinates:

In these coordinates we find

Let R+ be the radical of Q-, R- that of Q+. Then

For x E R, write

From (6.2) it follows that for x e R,

(6.7) x is an isotropic point ~ Q+(x+) = Q-(x-) = 0.

For the two standard forms for U corresponding to a = 1 in (3.3)
one easily finds Q+, Q-, R+ and R-:
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Il U is the reflection in a quaternion subfield D of C, we write
x E C as x = x’+x’’ with x’ E D, x’’ 1 D, so Ux = x’-x". Then

Here v denotes the index of a quadratic form. Note that in either
of the above cases, Q+ is not equivalent with Q-.
We can now determine the group of the transformations

[S] E PU(n) with [S]u1 = ul. By (4.1) we may assume that
S’TS = T, det S = 1.

(6.9). 03C3 = 1. Let u1 be an outer point.
(i) If [S] E PU(n), S’TS = T, det S = 1, Su, = 03BBu1, then

Sui = ul, S leaves R+ and R- invariant.
(ii) Let S+ : R+ ~ R+, S- : R- ~ W be linear transformations,

S+ E9 S- : R - R the transformation with restriction S+(S-) to

R+(R-). S+ Q S- can be extended to a linear transformation S of
A leaving det invariant and such that S’TS = T, Su, = ul, if
and only if

sp denoting the spinornorm of a rotation. For given S+ and S-,
the extension S is unique up to a unitary reflection with ul as
center and nu, as axis.

Il G denotes the group of all extendable S+ ~ S-, then the fol-
lowing sequence is exact

where il denotes the commutator subgroup of the orthogonal group,
i the mapping S+ ~ S+ Et) 1- (1- = identity on R-), i the mapping
S+ Et) S- ~ S-.

PROOF. (i) Since

we find 03BB2 = 1. Let SR denote the restriction of S to R. From
det S = 1, and Su, = Àui it follows that

Furthermore,

For 03BB = 1 it follows that SR leaves Q+ and Q- invariant, hence
SRR+ = R+, SRR- = R-.
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For 03BB = 20131, we find that

Since Q+ is not equivalent with Q-, this is impossible.
(ii) Put SR = S+ ~ S-. If SR can be extended to an S as

desired, SR has to be a rotation with respect to Q1; see [19, prop.
3] or [21, p. 456-7]. Hence S+ and S- are either both a rotation
with respect to Q+ and Q- respectively, or both a nonrotation.
First assume S+ and S- are rotations. Then S+ OE) 1- is an even

product of rotations 5: defined by

where Sa is the orthogonal (with respect to Q1 in R) reflection
in the hyperplane a’, a nonisotropic in R+, and

(see [21, p. 453]). Note that S: is a rotation in R, not in R+
and R-.

Let us first consider the extension of S’a to a linear transfor-
mation leaving det invariant; cf. [21]. If

the extension S of 5: to E1 must be of the form

where y E K, 03B3 ~ 0 can be arbitrarily chosen.
If a E R+, then ex2 = ex3’ Ual = al . An easy computation yields

In a similar way, 1 E9 S- is an even product of rotations S:,
a E R-. a E R- means «2 = 201303B13, Uai = 201303B11. Hence the exten-
sion S of S’ to E1 satisfies

From these it is clear that S+ 0 S- can be extended to a linear
transformation S leaving det and (·, T ·) invariant such that
Sul = ul if and only if

or
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Q+|R+ has index 1, so the spinornorm on O+(Q+|R+) can assume
any value in K*/K*2. Hence S- can be any element of 0+(Qy R-);
once S- is chosen, S+ is unique up to an element of 03A9(Q+|R+),
since this coincides with the subgroup of elements of O+(Q+|R+)
with spinornorm 1.
Next let S+ and S- be nonrotations with respect to Q+ and Q-

respectively such that S+ E9 S- can be extended to an S in the
required way. Since for any 50 E 0+(Q-IR-) there exists an

5t e 0+(Q+ IR+) such that S+ E9 50 can be extended, we may after
multiplication of S- by a suitable element of O+(Q-|R-) assume
that S’ = 20131-. This will lead to a contradiction. We distinguish
two cases. If U = 1, we reason as follows.

hence

Then for x2, X3 E C,

with y2, y3 E C, The invariance of the cubic form det implies

The invariance of (. , T . ) gives

Combining we get

which obviously cannot hold for all X2’ X3 E C.
In case U is a reflection in a quaternion subfield D of C, we

reason as follows. Choose xi E C, xi 1 D, N(x1) ~ 0.
(0, 0, 0; xi, 0, 0) E R-, hence

The invariance of det then yields

which contradicts the assumption N( xl ) ~ 0.
Thus we have shown that it is impossible for S+ and S- to

be nonrotations.
To complete the proof of the theorem, take S+ = 1+, S- = 1-.

The only unitary transformations leaving ul and all points of
03C0u1 fixed are the identity and the unitary reflection with center
ul and axis nui.
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Now we turn to the case a *- 1. Let K = F(O), 03C3|F = 1,
u(à) = -0@ e2 = a e F. By (3.3) we may assume

Cp being an octave field over F. 
In R we introduce again the coordinates C2, 03B63, x1, where

03B62,3 are as defined in (6.4). We use the following notation.

We split R into a direct sum of two F-linear spaces R+ and R-,
where

Furthermore, two F-quadratic forms Q+ and Q- on R and an
F-bilinear form ~., .~ between R+ and R- are defined by

R- is the radical of Q+, R+ that of Q-. Obviously,

We now want to consider the linear transformations S of A leaving
det and (., T .) invariant and such that Su1 = ul. In this way we
do not obtain all rSl E PU(n) with rS1Ul = u1, i.e. Su, = 03BBu1.

(6.14) 03C3 ~ 1. Let ul be an exterior point.
(i) Let rSl E PU(n) with S’TS = T, det S = 1, Su, = ul. Then

S leaves the F-subspace R+ invariant.
(ii) Let S+ be an F-linear transformation : R+ ~ R+. Then there

exists an rSl E PU(n) with S’TS = T, det S = 1, Su, = ul, such
that SIR+ = S+ i f and only i f S+ E Q(Q+IR+), il denoting the

commutator subgroup of the orthogonal group. S is uniquely deter-
mined by S+ up to a unitary reflection with ul as center and 03C0u1
as axis.
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PROOF. (i) [S] leaves nui invariant, hence S transforms R
into itself. Since S leaves det and ( ·, r’) invariant, its restriction
to R leaves Ql and (·, T ·) invariant, hence also Q+, Q- and
~·, ·~. Since R+ and ,R- are the radical of Q- and Q+ respectively,
they are invariant under S.

(ii) Assume that S+ can be extended to 5 as required. S leaves
R+ and R- invariant. Now we notice that

S is K-linear, hence its restriction S- to R- satisfies

Hence

The fact that S leaves Q+, Q- and ~·, ·~ invariant is, because of
the last relation, equivalent to

Let S+ be written as a product of Q+-reflections in R+:

SR = S|R is the K-linear extension of S+, hence

where Saï’ R denotes the K-linear extension of Saï to R. Now we
have the relations 

where

The fact that S., are Q+-reflections in R+ therefore implies
that S03B1i, R are Ql-reflections in R. Since SR has to be a Ql-rotation,
it follows that k is even. But then we can write, as in the case
0=1,

where

Now a similar computation as in the proof of (6.9), (ii), shows that
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S+ can be extended in the required way if and only if sp (S+) = 1

(mod F2 ), i.e., if S+ E 03A9(Q+|R+) since Q+|R+ has index &#x3E; 0.
If S+ = 1+, [S] leaves ul and the points of nui fixed, hence S

is a unitary dilatation du1, 4. ""1’ _À. Since ul = Su, = du1, .. ""1’ -,B Ul = À2ui ,
we find 03BB2 = 1. Hence S is the identity or a unitary reflection.
This completes the proof of (6.14).

We conclude this section with the determination of the isotropic
points on the line 03C0u1, u1 an outer point. We keep the same
notations as above.

First assume a = 1. As seen in (6.7), x = x++x-, x+ E R+,
x- E R-, is an isotropie point if and only if Q+(x+) = Q-(x-) = 0.
Since Q-|R- has index 0 by (6.8), w - 0. So

If u ~ 1, the situation is as follows. x E R is an isotropic point
if and only is Ql(x) = 1 2(x, Tx) = 0. Hence

with

By (6.15), the latter condition can be written as

Hence, if we can prove that Q+|R+ has index 1, we can conclude
that

Thus we find that

with

Remains to show that Q+IR+ has index 1. Let v = v(Q+|R+).
v ~ 1 is obvious: see (6.12). Assume v &#x3E; 1. Thus the F-quadratic
form

has index &#x3E; 1. Hence there must exist an isotropic point ortho-
gonal to the hyperbolic plane given by the equations ’YJ2 = 0,
xo = 0, hence the form

is isotropic. So there exists an xo E CF , (1, x0) = 0, with

03B1+N(x0) = 0. Hence
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which contradicts the fact that N is anisotropic on C = CF Q9 F K.
Therefore v = 1.

7. Let ul be an outer point. We need some information about
unitary transvections with center on au,.
We choose coordinates in the usual way such that

and such that n = 03C00[T] with

(cf. proof of (3.3)). Then by (6.16) and (6.17)
b = (0, ex2’ a( ex2); al, 0, 0), Ual = ai (so for 03C3 ~ 1 : al e Cp).

Furthermore,

We now apply the results on transvections of [21, p. 458-9].
The transvection S whose axis is nc = (Tc)* and which maps

a on b is given by

where ce = (a, c)-1(b, c)-1,

A straigtforward computation yields

with
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A tedious but not difficult computation shows that

From this one easily derives that S leaves (·, T ·) invariant,
which yields another proof of (5.3).
We want to draw some other conclusions of (7.1) that will be

useful in the sequel. It is not hard to verify that in the case
a = 1 the infinitesimal transvection F maps R- on 0. Hence

for the restriction SR of S to R we have: S- = 1. Hence the SR,
S a unitary transvection with center on 03C0u1, belong to a group
which is isomorphic to 03A9(Q+|R+) (see (6.9)). Since the latter
group is simple, it is generated by the SR ; for the SR generate a
normal subgroup of it. In the case (J =1= 1 the situation is similar.
According to (6.14) the restriction of SR to R+ belongs to 03A9(Q+|R+).
This group being simple, it is generated by the restrictions to
R+ of the unitary transvections with center on nui .

8. In this section we consider the group generated by the
unitary transvections. It will turn out to be a simple group.

(8.1) DEFINITION. T(n) is the group generated by the normalized
unitary transvections. PT = PT(z) is the subgroup of PU(n)
generated by the projective unitary transvections.

Obviously, PT is a normal subgroup of PU.

(8.2) Let rS1 be a unitary reflection in an outer point. Then
rS1 E PT.

PROOF. Let ul be the center of rS1. Take coordinates as in the

previous sections. So the axis of r 51 is 03C0u1 = ui . Choose the
following isotropie points on ui:

where

Let S1, S2 and S3 be unitary transvections:

S1 has center a and maps c on d
S2 has center b and maps d on c
S3 has center c and maps S2S1d on d.
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Let x e 03C0c = (Tc)*, then we may assume

A straightforward computation yields

with

Hence

But from (5.1) it follows that there are no unitary dilatations
with center d, axis c*, except the identity. Hence [S] = rS3S2Sl1.

(8.3) Let c ~ ~. Then PTc, the stabilizer of c in PT, is transitive
on the set of points =1= c on nc and transitive on the set of lines
~ 03C0c through c.

PROOF. Let x, y E 03C0c, both ~ c, x ~ y. Let ui be the fourth
harmonie of c with respect to x and y. ul is an outer point, so the
unitary reflection [S] with center ul belongs to PT. rS1c = c,
[S]x = y. The second statement is deduced from the first one by
considering the polars of the points on nc.

(8.4) PT is doubly transitive on CC and transitive on the set of
outer points.
PROOF. On any line containing two isotropic points there exists

a third isotropic point. Hence (5.3) insures transitivity of PT
on W. (8.3) and (5.3) imply that PTc is transitive on the points
of ~ ~ c. The remainder of the proof is obvious if one keeps in
mind that the polar of an outer point contains isotropic points.

Before we prove the simplicity of PT we need one more lemma.

(8.5) Let f-S-1 be a unitary transvection with center c. Then there
exists a unitary transvection rV1 with center c such that rV12 --- [S].

PROOF. Take an isotropic point a ~ c. rS’a = b. Let rV1 be a
transvection with center c which maps a on d. Then [V]2 = [S]
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if and only if c and d are harmonie with respect to a and b. So it
suffices to show: If a, b, c and d are four harmonie points and
a, b and c are isotropic, then d is isotropic. Take coordinates as
usual such that

The (not unitary) reflection with center a and axis a* maps c
on d (see proof of prop. 7, p. 95 in [19] ). From [21, p. 460, formula
(17)] one derives that

Hence d is isotropic.
Now we have the tools to prove the following theorem.

(8.6). PT is a simple group.
PROOF. We apply lemma 4, p. 39 of [6]. Consider PT as a

permutation group of W; it is clear that this is a faithful representa-
tion. PT is doubly transitive on W, hence primitive.

For c ~ ~, let He be the group of unitary transvections with
center c. He is a commutative group; see e.g. [1, theorem 2.8,
p. 57] or [19, prop. 5, p. 93]. All groups Hc, c ~ ~, are conjugate
in PT and they generate PT. He is a normal subgroup of the
stabilizer of c. So there remains to be shown that PT is its own
commutator subgroup. It suffices to show that every unitary
transvection [S] is in the commutator subgroup PT’ of PT.

Let ul be an exterior point such that the center of rS1 lies on
nui. By (8.5) there exists a transvection [V] with the same
center as rus1 such that rS1 = [V]2. At the end of section 7 we
have seen that VR belongs to a simple noncommutative group
generated by transvections; hence VR i.s a product of commutators
in that group. From this it follows that either rV1 E PT’ or that
rV1 = [V]1[W], rVl1 E PT’, rW1 = unitary reflection with
axis nui. In the former case r 51 E PT’, in the latter case

An immediate consequence of (8.2) and (8.6) is the following
proposition.

(8.7) PT is generated by reflections in outer points.
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9. This section is devoted to a study of the full unitary group
PU(n) of a hyperbolic polarity and its relation to the subgroup
PT(03C0) generated by unitary transvections.

(9.1) Let n be a hyperbolic hermitian polarity; so we may assume
a = 1, U = 1. Then PU(03C0) = PT(n), i.e., PU(n) is simple.
PROOF. This is a special case of a theorem proved by N. Jacobson

in [10, II, section 11]. We shall give here a simple geometric
proof. Let [S] E PU. Since PT is transitive on the set of outer
points (see (8.4)), we may after multiplication of S by elements
of PT assume that [S]u1 = ul, ul an outer point. Then
SR = S+ E9 S-. Now dim R- = 1, Q-|R- = 03B623 (see 6.9)), so

S-/R- = :f:1. If S-IR- = -1, we multiply S by a unitary reflec-
tion in u2 , which belongs to PT since u2 is an outer point. Hence
we may assume that S-/R- = 1. From the last paragraph of
section 7 it follows that [S] is a product of an element of PT
and possibly a unitary reflection in ul. Since ul is an outer point,
the latter reflection belongs to PT, hence so does rSl.

(9.2) Let n be a hyperbolic nonhermitian linear polarity, i.e.,
we may assume a = 1, U a reflection in a quaternion subfield D
of C. Then PU(03C0) is generated by unitary reflections.
PROOF. Assume [S] E PU. After multiplication of [S] by ele-

ments of PT, we may again assume that Su1 = ul , Ut an outer
point. We coordinatize again as in (3.3) and in section 6. Then,
as in section 6,

S- can be an arbitrary rotation in R- with respect to Q-, hence
it is an even product of reflections in R-.

Consider any nonisotropic point a E u*1. The unitary reflection
in a can easily be computed from [21, formula (17), p. 460]. Its
restriction to R-, Sr, turns out to be -Sa-, where a = a++a-,
a+ E R+, a- E R- and S.- is the orthogonal reflection (with
respect to Q-/R-) in (a-)~. Since a- can be any nonzero element
of R-, it follows that the possible restrictions to R- of unitary
reflections in nonisotropic points of u*1 generate O+(Q-|R-).
Therefore, after multiplication of r 51 by a product of unitary
reflections, we may assume that

But then we see as in the previous theorem that S+ is the restric-
tion of a transformation V, 1-V-1 e PT, to R+, so rs, is a product
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of that [V] and, possibly, the unitary reflection in Ul. This

completes the proof.

Finally, we consider the case that n is a hyperbolic nonlinear
polarity, hence a =1= 1. All coordinate systems in the remainder
of this section are supposed to be chosen as in section 6, so

C = CF 0FK, U = 1 0 a, T = [1,1,1; - U, - U, U]. We shall
prove that PT(n) is the subgroup consisting of the [S] E PU(n)
with S’TS = T, det S = 1. First we need a definition and a lemma.

(9.3) DEFINITION. Let 03C0 be a hyperbolic nonlinear polarity, ul
an outer point with respect to n. Il r-S-1 E PU(n) leaves the point
u1 fixed and S is normalized such that S’TS = T, then y(S) E K*
is defined by Sul = 03B3 (S)u1.

Since S leaves (·, T·) invariant, 03B3(S)03C3(03B3(S)) = 1.

(9.4) The possible values of y(S) for S E T(n) are the 03B203C3(03B2)-1,
where 03B203C3(03B2) = N(x) for some x E CF, x ~ 0.

PROOF. Let S E T(z), Su, = y(S)ul. The products of unitary
transvections with center on ui = 03C0(u1) are doubly transitive
on the isotropic points of ui and are induced by V E T(n) with
Vu, = ul. Hence we may assume that ’-SI leaves two i.sotropic
points v and w on ui fixed. Since (v, T03C9) ~ 0, the invariance
of (·, T ·) under S implies that

Since det S = 1, y(S) = p-1 a(p). We shall determine the possible
values of p. S is a product of normalized transvections. For any
two isotropic points x and y there exists a normalized unitary
transvection W with Wx = qy. Hence we can write S in the form

where each Si is a product of at most three transvections with
Si v = 03C1iv for some pi . So we consider the case that S is a product
of at most three normalized unitary transvections, Sv = pv;
such an S need not leave the point ul invariant, of course.

(i) S is a transvection. Then v must be its center, hence Sv = v.
(ii) S = S2 S1; Si and S2 transvections with centers a and b,

respectively; S1 v = x. We choose coordinates in 9(C) such that

Then

where
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By [21, prop. 5],

Now

Since

Similarly for the other factors, hence p E F.
(iii) S = S3S2Sl; Sl’ S2 and S3 normalized transvections with

centers a, b and c, respectively.
Call S1 v = x, S2x = y. We may coordinatize so that

with

A computation as in case (ii) yields that

Now we want to compute (x, Tb) (y, Tb)-1. In the proof of
(8.3) we have seen that there exists a unitary reflection V which
transforms the line through x and y in that through x and v. The
pole of the former line is r = (03C3(03BE), 03BE, 03C3(03BE); xl, 03C3(03BE), x1), that of
the latter line is t = (1, 0, 0; 0, 0, 0). Hence the centre s of V
must be the fourth harmonie of x with respect to t and r, which is
s = (403C3(03BE), 03BE, 03C3(03BE); x1, 203C3(03BE), 2x1). By [21, formula (17)],

For y = (1, 0, 1; 0, 1, 0) this yields

Call V b = b’, then

Again

In the same way we can compute (y, Tc)(v, Tic)-1. To this end,
x has to be replaced by v in the above computations, hence e by
1; thus we find
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Therefore

Combining (i), (ii) and (iii) we find that for S s T(z) with Su, =
03B3(S)u1,

Finally, we have to show that any value of this form can be taken.
Let P be given with 03B203C3(03B2) = N(bl). From (iii) it is clear that

there exists an 51 e T(03C0) with Siv = pv, p = 03B203C11 (take xi = bl,
e = a(fJ) in (iii)), with pi e F. By (8.3) there exists a unitary
reflection S2 e T(03C0) with S2v = v which maps the line through v
and Si03C9 on the line through v and w. Finally, a suitable transvec-
tion S3 with center v (hence 53 V = v) will transform S2S103C9 into
a multiple of w. Then 03B3(S3S2S1) = 03B203C3(03B2)-1.

REMARK. It is not hard to show that the possible values of
y(S) in (9.4) are the 03BB ~ K satisfying 03BB03C3(03BB) = 1, 03BB = N(m) for an
m e C with m ’ Um = 1. But the form for y(S) of (9.4) will be
more convenient for later computations.

(9.5) Let n be a hyperbolic nonlinear polarity. Then

(ii) PU(03C0)/PT(03C0) ~ NfN3, where N is the multiplicative group
of the 03BB E K with 03BB03C3(03BB) = 1 and N3 consists of all third powers of
elements of N;

(iii) PU(n) is generated by unitary transvections and dilatations.
(iv) PT(z) is the commutator subgroup of PU(n).

PROOF. (i) Every r 51 E PT is induced by a product of normalized
transvections, hence by an S with det S = 1. Conversely assume
rS1 E PU, det S = 1. After multiplication of S by a product of
normalized transvections, we may assume that

Here ul is an outer point and ro and 03C9 are isotropic points on
nui = Ut. We choose coordinates in such a way that

u1 = (1 , 0, 0; 0, 0, 0), v = (0, 1, 1; 1, 0, 0), 03C9 = (0, 1, 1; -1, 0, 0).

We use the notations of section 6 for the case 03C3 ~ 1.
In R we have
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Consider S* = a(p)S. Then

Hence

This implies that S* leaves R+ and R- invariant. With 03B6’2, 03B6’’2,
03B6’3, 03B6’’3 as defined in (6.10), x+ e R+ can be denoted by x+ =
(03B6’2, 03B6’’3; x’1), x’1 ~ CF. Then

Now S* v = 03C103C3(03C1)v, S*03C9 = w. ro and w E R+; in the coordinates
introduced for R+ we have

Let L = v~ ~ 03C9~ in R+, hence

S*L = L. If L, = {(0, 0; xi |x’1 e Ce, (1, x") = o}, dim L, = 7,
dim L = 8 (dim over F), hence S* L1 n L1 ~ 0. So there exists an
element (0, 0; x’1) ~ 0 of L1 with S(0, 0; x’1) = (0, 0; y’1) ~ L1. Then

Le.,

But

so by lemma (9.4) there exists an S1 ~ T(03C0) with 03B3(S1) = y( S )-1.
Therefore rSSll E PU, det (SS1) = 1, 03B3(SS1) = 1.
From the last paragraph of section 7 it follows that [SS1] is an

element of PT, up to a unitary dilation [W] with center ul. But
we may assume that 03B3(W) = 1, hence W is a unitary reflection
in an outer point, which belongs to PT.

(ii) If 1-S-1 E PU, S’TS = T, then det 5 E N. Hence

is a homorphism of PU into NfN3. By (i ), its kernel is PT. Let
03BB ~ N. Then there exists a unitary dilatation r-S-1 with S’TS = T,
det S = 03BB4, viz. dul, ul; -À2 if nu, = u*1. Renee det S = 03BB mod N3.
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(iii) Let [S] E PU, S’TS = T. As seen in the proof of (ii), there
exists a unitary dilatation Si with det S1 = det S mod N3. Hence
S = SlS2, rS21 E PU(03C0), det S2 = 1 mod N3, hence rS21 E PT,
which is generated by transvections.

(iv) PT is a simple noncommutative group, hence PT is con-
tained in the commutator subgroup of PU. On the other hand,
PU/PT is commutative by (ii), hence PT is the commutator sub-
group of PU.

III. Applications of algebraic group theory
to the groups PU(03C0)

10. If n is a linear polarity, then the linear transformations S
with S’ T S = T, det S = 1 form a linear algebraic group. It can
be shown that K is a field of definition, but we shall not give the
proof here. PU(n) is isomorphic with this group, hence is also a
linear algebraic group. If n is a nonlinear polarity, we shall see
that PT(03C0) is an F-form of an algebraic group.

11. We want to consider the linear groups of transformations S
with det S = 1, (Sx, TSx) = (x, Tx) for all x, over a field K such
that C is split and T = [1, 1, 1; - U, - U, U], where U is as in
(3.3). Thus we have included all K-linear extensions of L-linear
transformations T which correspond to a hyperbolic polarity, if C
is split over but not split over L. In this way we will be able to
determine the algebraic type of the groups PU(n) for a = 1,
PT(n) for 03C3 ~ 1, 03C0 being a hyperbolic polarity. In case a = 1 we
actually may include the elliptic polarities 03C0, since we can prove

(11.1) Let a = 1, T1, T2, T3 as in (2.13). There exists a finite
separable extension L of K over which C is split and such that the
L-linear extensions of T1, T2, T3 can be brought in either of the
following forms by suitable coordinate transformation in the algebra
A (C ; 1, 1, 1).

(2) - T1 = -T2 = Ta = reflection in a split quaternion sub-
algebra o f CL.

PROOF. Consider a coordinate transformation in A(C; 1, l, 1) of
thé form [03B21, 03B22, 03B23; Bl, B2, B3]. This changes T = [03BB1, 03BB2, 03BB3;
Tl, T2, T3] into [03BB103B221, 03BB203B222, 03BB303B223; B’1T1B1, B;T2B2, B’3T3B3].

(1) Assume first that T = [v03B1-21, v03B1-22, v03B1-23; (Xi, oc2, 03B13], where
det T = v = exl ex2exa. After repeated quadratic extensions of K we
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may assume that 03B1-11 = -03B221, 03B1-12 = -03B222, 03B1-13 = p2 for 03B21, P2, 03B23 EK.
Call 03B2103B2203B23 = 03BC. By a coordinate transformation [03BC03B2-21, 03BC03B2-22, yp32
03B21, ,82’ P31 we get T in the form [1, 1, 1; -1, -1, 1]. Another
quadratic extension may be needed to split C.

(2 ) T1 ~ 03B11 for any cx.l e K. Let T2 = y,. After repeated quadra-
tic extension of K we may assume that the ,ui are squares. By a
similar coordinate change as in case (1) we can get pi = fl2 =
03BC3 = 1. Then -T1 must be a reflection in a 4-dimensional sub-
space V of C by (2.13). N|V is nondegenerate, so after quadratic
extensions of the coordinate field K we may assume that N|V is
a hyperbolic form. By Witt’s theorem, V can be transformed in a
split quaternion subalgebra D of C by a rotation B1. Extending B,
to a related triple B1, B2, B3 we find a coordinate transformation
[...; B1, B2, B3]1 which brings T in the form [... ; -U, -03BBU,
03BB-1 U], U being the reflection in D. Applying a similar argument as
in case (1) we get T = [1, 1, 1; - U, - U, U].

12. For the study of the algebraic groups mentioned in the
previous section we need some facts about certain Lie algebras
of type D4, F4 and Es . We recall some results of Freudenthal
[8] in a form adapted to our present needs; we also refer to
Jacobson [11] and Soda [16, 17].

Let C be a split octave algebra. We choose a normal basis in C
[16, p. 1.4] : e, xo, X19 x2, , y0, YI’ Y2’ where the matrix of the
bilinear form (·, ·) on C with respect to this basis is

0 denoting the 4 X 4 0-matrix, I the 4 X 4 identity matrix, and
where e+é = 1, e2 = e, é2 = é, eé = ée = 0, exi = xi, eyi = 0,

éx2 = 0, ëYi = yi , xixi+1 = Yi+2’ yiyi+1 = xi+2. A complete multi-
plication table is to be found at the end of this paper, table 1.
We first consider the Lie algebra of skew linear transformations

X of C, i.e. X has to satisfy

This is a split Lie algebra of type D4; in the sequel we will denote
it by D4. According to [11, p. 140, 141] a splitting Cartan sub-
algebra hT of D4 is given by

where {03BB1, ..., 03BB8} denotes the 8  8 diagonal matrix with ocii =Âi. 
The roots with respect to H are ± 03C9i ±03C9j, i  j; as simple roots
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we may take OC, = Col-C02, 11 = 03C90-03C91, 03B12 = 03C92-03C93, 03B13 = 03C92+03C93.
In table 2, at the end of this paper, one finds a complete list of
roots oc and rootvectors X03B1. There we use the following notation:

foraEC,

For (a, 1) = (b, 1) = (a, b) = 0 one has

From the alternativity of C one derives

Table 2 is derived from [16, p. 5.6]. It is not hard to check that
X203B1 = 0 for all roots 03B1.

A triple Ll, L2, L3 of elements of D4 is called Lie related or a
Lie triple if

for all x1, x2, x3 in C; (. , . , .) as in (2.7). L1, L2, L3 are Lie related
if and only if they satisfy the principle of local triality in C :

i(xy) = (Li+1x)y+x(Li+2y), (subscripts mod 3),
where iz = Liz. Any one of L 1, L2, L3 determines the other two
uniquely. If L 1, L2, L3 are Lie related, then so are Lp(1), LP(2) 
Lp(3) for even permutations p, and Lp(1), Lp(2), L1)(3) for odd per-
mutations p. The mapping

is an exterior automorphism of D4. For (1, a) = 0 we get (see
[8, p. 15] or [16, p. 5.2])

We want to determine the action of À on the Cartan subalgebra
hI of D4. If we denote {03C90, col, lO2’ w3, 201303C90, 201303C91, -lO2’ 201303C93} by
(coo, Col’ lO2’ 0-)3) for brevity, then a basis of Tf is given by
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This is easily verified using table 1. With (12.1) and table 1 the
action of 03BB on these vectors is easily determined. It turns out that
03BBH = H and that, in coordinates (wo, cvl, W2’ 03C93), we get for 03BB the
matrix

(cf. [8, p. 13]). For convenience we mention the formula for 03BB2:

i.e., the transposed of 03BB.

13. We now consider the Lie algebra of derivations of the Jordan
algebra A = A (C ; Yll 03B32, Y3). This Lie algebra is of type F4; we
shall call it F4 in the sequel. If we have

then D e F4, Du, = Du2 = Du 3- 0 p D = [0, 0, 0; Dl, D2, D3]1
where Dl. D2, D3 are a Lie triple, i.e. D2 = 03BBD1, D3 = 03BB2D1. We
shall use the notation

039B is a representation of D4 which is the sum of three nonequivalent
representations. Any D e F4 can be written in a unique way as

where D’ui = 0 (i = 1, 2, 3), i.e. D’ c- AD4, and where ai is the
derivation of A defined by

a being a skew hermitian octave matrix with zeros in the main
diagonal. Obviously

As a Cartan subalgebra for F4 we take AH, H the Cartan sub-
algebra of D4 we have introduced. As rootvectors with respect to
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AH one finds the images under 039B of the rootvectors of Il in D4,
and the ad with

with al’ a2’ a3 running over the normal basis e, xo, xl, X2, el yo, yl,
y2 of C. As roots we get those of D4 and

all possible combinations of + and - being permitted. For the
above rootvectors ad, a2d ~ 0, a3d = 0. For proofs we refer to [8,
p. 21-25].

14. In this section we consider the Lie algebra of linear trans-
formations T of A = A ( C; 03B31, Y2, 03B33) satisfying

where ~. , . , .~ is the symmetric trilinear form associated to the
cubic form det; cf [8, p. 36-40]. We shall see that this is a Lie
algebra of type E6; we shall call it E6.

Let t E A. By [18, formulas 15,2 and 7]

Hence, for (t, e) = 0, the mapping

belongs to E6. For arbitrary T E E6, consider t = Te.

Hence

belongs to B6 and T1e = 0. Therefore, T1 is a derivation of A, so
T1 E F4. Consequently each T E E6 can uniquely be written as

Define for any two 3 X 3 matrices x and y with entries in C,
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where - denotes the ordinary matrix product and where * is the
mapping

For x, y e A we have the usual Jordan product in A. For x E A,
t = -t*, 

For an arbitrary 3 X 3 octave matrix t, define

By (13.1) and (14.1), the T ~ E6 are the transformations of the
form

D ~ 039BD4, t = (tij) a 3 X 3 octave matrix with tii E K for i = 1, 2, 3,
t11 + t22 + t33 = o.
Let H be the Cartan subalgebra of D4 we used in the previous

section. Let I be defined by

A Cartan subalgebra of B6 is

For D E D4 and sm ~ I,

Therefore, the images under 039B of the rootvectors of D4 with
respect to Il are also rootvectors in B6 with respect to J. Let
apq denote the 3 X 3-matrix (xij) with aei; = 03B4ip03B4jpa, a e C, and

afJfl,m - (apq)m.
Let p, q, r denote any permutation of 1, 2, 3. For D e D4 and

sm E I we have

Hence, for a = e, xo, xi, x2, é, yo, yi, y2, we find rootvectors apq,m.
For the computation of the corresponding roots we need the ma-
trices of 03BB and Â2 given in (12.2) and (12.3). The result is given in
table 3 at the end of this paper. For convenience in later computa-
tions we have chosen a = -e, -xo, ..., -y2 in case of a root
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of the form l(03C9)-1 2(03BE2-03BE3), l(03C9)-1 2(03BE3-03BE1), l(03C9)-~ 2(03BE1-03BE2), l(03C9)
being a linear function in 03C90, mi, lO2’ ro3.
As a simple root system we take

The corresponding Dynkin diagram is

A straightforward computation yields that

From this it follows that all rootvectors of E6 we have written
up in table 3 have square 0, which was already proved for the
rootvectors of D4.

leaves the cubic form det invariant, for

for all x, y, z, hence

Let G be the group of linear transformations S of A (C; Vl, 03B32, Y3)
such that det Sx = det x, and PG the factorgroup of G over its
(finite) center. The adjoint representation of PG in B6 is faith-
full, hence the transformations exp (tXa), where t E K and Xa
any rootvector of B6, generate a subgroup of G whose image in
PG is isomorphic to the Chevalley group of type E6 (see [5]).
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Since PG is simple (see [10, III]), PG is isomorphic to the Che-
valley group of type E. (cf. also [15] ). This is also an isomorphism
in the sense of algebraic groups, since it induces an isomorphism
in the Lie algebras, which are ~ B6.
From now on we assume that y, = y, = y, = 1 and that C is

split. Furthermore we assume that T is of the type considered in
section 11, i.e., T = [1, 1, 1; - U, - U, U], where any of the three
following conditions holds. (i) U = 1 ; (ii) U is a reflection in a
split quaternion subalgebra of C; (iii) K is a quadratic extension
of F with Galoisgroup ~03C3~, C = CF ~F K with a split octave
algebra Cp, U = 1 0 J. We consider the projective group PU+ of
those r Sl for which

This includes groundfield extensions of the groups PU(03C0), 03C0 a
linear polarity, and PT(03C0), 03C0 a hyperbolic nonlinear polarity.
PU+ is the subgroup of elements of PG fixed under the auto-
morphism

If S = exp X = 1+X, X E E6, X2 = 0, then

So we must compute the action of

on the Lie algebra E6.We take T as in section 11.

computed as follows

Hence (tm)’ = (t*)m.
For t = aij, t* - âji, if we assume 03B31 = V2 = Y3 = 1. So we

can determine X’a for all rootvectors Xa, making use of table 3.
The result can be expressed in the following way. Define the
mapping 03C4 of the rootsystem of E6 by roe = oc if a is a root of D4,

where

and
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are linear forms in the 03C9i and e, respectively. Then

So

maps exp (Xa) on exp (X03C403B1). Hence 99 is the outer automorphism
of PG defined by the diagram automorphism

In this way one obtains the wellknown result that in this case
PU+ is the Chevalley group of type F4. For the details of the
remainder of the proof one has to make use of Steinberg’s results
in [23] and [25]. The technique is the same as in the following
two cases, where we shall give complete proofs.

(ii) T = [1, 1, 1; - U, - U, U], U a reflection in a split qua-
ternion subalgebra D of C. For C we take a normal basis e, xo, xi,
x2, é, yo, yl, Y2 as in section 12. Since any two split quaternion
subalgebras of C are conjugate under an inner automorphism of
C by [9], we may assume that e, é, xo, yo form a basis for D. Hence

Let Xa be a rootvector of B6. First assume a = roi-roi’ a root of
D4. Then X’a = -Xa and

if

as is easily computed with the aid of table 2.
Hence

Now let Xa = aii,m as in table 3. Then

Making use of the mapping i as defined in case (i), we find: For

For
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The action of cp on the Cartan subalgebra J of E6 is computated
in the following way (see section 14).

H is the Cartan subalgebra of D4. As a basis of H we have
Te-e, [LlIi’ Lxi], i = 0, 1, 2. For D c- D4, D’ = 2013D. Furthermore,

Thus we see that

For s. c- I,

Define the Lie algebra

Then

L has AH as a Cartan subalgebra. As rootsystem we find {± 03B1},
where « runs over

This is a simple Lie algebra of type C4. As primitive roots we
may take

Define

Then

L ~ M with respect to the Killing-Cartan form.
We have

Now S E PG is fixed under 99 if and only if the automorphism
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commutes with 99 (on E6). Hence 99S = S if and only if S

leaves L invariant, hence also M since M = L~. So for 99S = S,
AdS|L E Aut(L). Assume AdS|L = 1. We shall prove that this
implies S = 1.
AdS M = M. Since

we have

So A dS leaves the Cartan subalgebra J of B6 invariant, hence
it transforms rootvectors in scalar multiples of rootvectors. The
vectors

which belong to L, are fixed under AdS. Hence

From this we can compute the action of ç on 7.
Denote

by (03BE1, e2l e3), then A dS must act on I as follows:

Since the sum of the vectors on the left hand side is zero, so must
be the sum on the right hand side. Hence

Then

Hence

Let a = ± 03C9i ± 03C9j, with (i, j) ~ (0, 1), ~ (2, 3). Then X03B1 E M.
There exists a root 1(03C9)+m(03BE) such that 03B1+l(03C9)+m(03BE) is again
a root, say l’(03C9)+m(03BE). Then, for some N ~ 0, we have
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since [M, L] Ç M. Let A dS act on both sides of the equation;
then we find

Therefore

So A dS = 1 or 99. Now 99 is a product of the outer automorphism

and an inner automorphism, hence 99 is an outer automorphism.
Therefore A dS = cp is impossible, hence A dS = 1. This means
that the mapping

is an isomorphism of PU+ into Aut (L).
We have seen that L is a Lie algebra of type C4. The rootvectors

of L with respect to AH are the X03B1+~X03B1 ~ 0. Since X03B1 and 99X,
are rootvectors of E6, exp (t(X03B1+~X03B1)), t ~ K, belongs to the
Chevalley group correspondong to E6, i.e., to PG. This implies
that AdPG/L contains Aut(L)’, the commutatorsubgroup of

A ut (L ), which is the Chevalley group of type C4 .
Now assume K algebraically closed. Then by [25,4.6 and 4.7],

A ut (L) is simple and AdPG | L = Aut (L ). Aut (L) has a Lie
algebra ~ Land PU+ has a Lie algebra which contains an algebra
~ L. Hence the isomorphism S ~ AdS L induces a surjective
transformation in the Lie algebras, hence is also an isomorphism
in the sense of algebraic groups. [14, th. 1] implies that AdPG | L
= Aut (L) over any field K. By [25, 4.6], Aut (L)/Aut (L)’ ~
K*|K*2.

REMARK: In [25, 4.6] it is said that f = 3 if 27 is of type C
this must be f = 2.

Summarizing our results we have shown

(15.2) Let C be a split octave algebra over a field K, T = [1, l, 1 ;
- U, - U, U], U a re f lection in a split quaternion subalgebra of C.
Let PU+ be the group of transformations r-S-1 with det (Sx) = det x,
(Sx, TSx) = (x, Tx) for all x, and let PU+’ be the commutatorsub-
group of PU+. Then pu+’ is isomorphic with the Chevalley group
o f type C4 and PU+/PU+’ ~ K*/K*2.

(iii) 03C3 ~ 1, T = [1, 1, 1; - U, - U, U], U = 1 Q9 a. The ac-
tion of



253

on the exp (tX03B1), X03B1 a rootvector of E6, is the same as in case (i)
except for a "twist" with a:

This means that 99 acts on the Lie algebra B6 as the Steinberg
automorphism. PU+, the subgroup of elements of PG fixed under
cp, is a group G~ which contains the Steinberg group Gl of type
B6 ; see [23, p. 891]. G~/G1 is isomorphic to the group of self-
conjugate characters on Pr extendable to P, modulo the subgroup
of self-conjugate characters on P; here P denotes the free abelian
group generated by the weights on a Cartan subalgebra of B6, Pr
the subgroup generated by the roots. By an argument as used
in [25, p. 1126, last paragraph of section 6] one obtains the result

Now K = F(e), O2 = 03B1 E F. Assume x = (03BE+~O)3 E F, for 03BE, ~ E F.
Then

Hence n = 0, so x E F3, or -3 = ap2, p E F. Then ~ = ± 03C103BE,
hence

So K*3 n F = F3, therefore G~ = Gl.
Thus we have shown

(15.3) Assume K = F(O), O2 E K, a the F-automorphism *1 of
K. Let CF be a split octave algebra over F, C = CF 0F K, U =
1 0 cr, T = [1, 1, 1; - U, - U, U]. The group PU+ of transforma-
tions [S] with det Sx = det x, (Sx, T Sx ) = (x, Tx ) for all x, is a
simple group, viz., the group of rational points (over F) of the Stein-
berg group of type El, i.e. the quasi-split outer f orm of the group
E6 over F.

16. We conclude this paper with some remarks.
Let n be a hyperbolic nonhermitian linear polarity. So we may

assume n = 03C00 T, T = [1, 1, 1; - U, - U, U], U a reflection in a
quaternionsubfield D of C. We have seen that PU (03C0) is generated
by reflections and that PT(n) is simple. Nothing has been said
about PU(n)fPT(n). If one extends the ground field such that
D and C are split, then PU(03C0) extends to PU+, which has a simple
normal subgroup P U+’ such that PU+/PU+’ ~ K*fK*2. PU+’ is
generated by the exp (tX03B1), t E K, X03B1 a rootvector, which are
transvections. It seems likely that in the case C non split, PU(03C0)/
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PT(03C0) ~ K*/K*2, which isomorphism would be induced by a
kind of spinornorm; then we would have PT(n) = PU(n)’, the
commutatorsubgroup of PU(n). But we have not been able to
furnish a complete proof of these conjectures.

In (11.1) we showed that if a = 1, any polarity can be brought
in one of two standard-forms over a sufficiently large extension
field. If 03C3 ~ 1, a similar result does not hold. Actually, if one

considers a polarity different from the type considered in (15.3),
one finds a unitary group which may be another form of E6. For
instance, if F = R, K = C, U = U1 ~ a, where Ul is a re-

flection in a split quaternion subalgebra of the split octave

algebra CF, then the corresponding unitary group is a real form
of Eg corresponding to an outer automorphism of the complex
form, different from the real form we have found in (15.3). There
seem to be some interesting problems in this direction; undoubt-
edly there is a close relationship with the work on Lie algebras of
type Eg done by J. Ferrar in his Yale dissertation [7].

In this paper we have paid no attention to the geometry of re-
flections with respect to a polarity, as was done in [22] for the
case of hermitian linear polarities. In case of a linear non-hermitian
polarity it seems that the theory will be much more complicated
than in the hermitian case; this makes it doubtful whether the

geometry of a group of type C4 , which can be described in other
ways, is worth so much energy. In case 03C3 ~ 1, 03C0 as in (9.3), the
corresponding geometry of reflections shows similar features as in
the hermitian linear case. The generalized theorem of three re-
flections [22, 27.1] seems to hold in the following form: a product
of three reflections Sv1, Sv2 , Sv3 is involutory if and only if vl, v2,
V3 lie on one and the same F-line, where F is the subfield of a-
invariants in K. It seems that the proper algebraic apparatus to
cope with this kind of problems still has to be developed.

It is very likely that the results of section 15 can also be derived
by working in the algebraic groups themselves without making
use of Lie algebras. On the other hand, section 15 shows that there
is quite a lot in the theory of algebraic groups that can be done
with Lie algebras.
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TABLE 1. Multiplication x · y for a normal basis

TABLE 2. Roots and rootvectors for D4

For oc &#x3E; 0, X-03B1 is deduced from X. by replacing xi by Yi and yi by xi .

TABLE 3. Roots and rootvectors for B6
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TABLE 3 (continued)
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