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On a generalization of the Laplace transform 1

by

M. S. Rangachari

1. Introduction

Let s(x) be bounded and integrable in every finite positive
interval of x. Then we may define a generalization of the Laplace
transform of s(x) by the integral

whose convergence is assumed to be absolute for 0  t  03B4 and so
for all t &#x3E; 0. Jakimovski and Rajagopal [4] first employed the
transform L (t, a ) in the case ce &#x3E; 0 to obtain asymptotic versions
of known Tauberian theorems for the Laplace transform. Later
Jakimovski [5] made a study of the transform L(t, oc) even
dispensing with the condition that its convergence is absolute,
and extending to it some properties of the Laplace transform.
Still later Rubel [11] independently treated the transform

L(t, oc ) for any ce &#x3E; -1 calling it a Littlewood mean of s(x).
Taking s(x) bounded in (0, oo ), he related the behaviour of the
mean or transform L(t, oc ) when t ~+0, firstly to the behaviour
of the Cesàro mean of order k &#x3E; 0 as usually defined ([2], p.

11020131), viz.

when u - co, and secondly to the behaviour of what he called
the Pôlya mean of s (x ), say, of index 0, 0 Ç 0  1, defined as

1 The contents of this paper formed part of a th esis approved for the Ph. D.
degree of the University of Madras.
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when u - cc. Each of the means in (1.1), (1.2) and (1.3) defines
a regular method of summability as follows. First, introducing
a notation in consonance with that used to define the means of

s(x) in (1.1), (1.2) and (1.3), we write

Then we say that s(x) is summable to sum S (finite) by the
method (L, oc), ce &#x3E; -1, or by the method (C, k), k &#x3E; 0, or by
the method (P, 0), 0  0  1, according as

denoting these relations respectively by

More generally, according as

we write

The following further definition depends on the fact that L(03B1),
L(oc) in (1.4) are monotonic functions of a &#x3E; -1 (Theorem 3.1.
infra). Restricted to s(x) bounded in (0, (~), it is implicit in
Rubel’s paper [11].

The limits in (1.9) are the inner limits of oscillation of the means
of the method (L, a), L(03B1) being monotonic increasing and L(a)
monotonic decreasing. The outer limits of oscillation of the means
of the method (L, cc) and those of the means of the method
(P, 0) may be similarly defined as under:
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provided of course the second pair of limits in (1.10) exists.
It will be recalled that the notion of summability (L, oc),

ce &#x3E; -1, for a function s(x), has an analogue for a sequence
Sn (n = 0, 1, ...) which Borwein [1] has discussed calling it

summability (A03B1). However, for a sequence, Borwein’s summability
(A-1) is different from summability (A-1+0) defined as the analogue
of summability (L, - 1 + 0) in (1.9), while, for a function, Rubel
does not deal with a method of summability (L, -1) whose
definition is analogous to that of the method (A -1) and so dif-
ferent from that of the method (L, 20131+0) of (1.9). One object
of the present paper is to give a definition of summability (L, 20131)
for a function exactly analogous to Borwein’s definition of sum-
mability (A-1) for a sequence and show how the notion of sum-
mability (L, 20131) naturally and usefully supplements that of

(L, oc ), « &#x3E; -1 (Corollary 3.1). A second object of this paper
is to state and prove two results (Theorems 4.1, 4.2) which are
major Tauberians for s(x) summable (L, 20131) analogous to such
theorems given by Jakimovski [5] for s(x) summable (L, oc),
oc &#x3E; -1. A final object of this paper is to show that, though the
method (P, 0) is equivalent to the method (C, 1), as seen from
Corollary 5.1, there are some points worth noticing about the
oscillations of the means of the methods (L, oc), (C, k ), (P, 0)
stated in Theorems 5.2, 5.3.

2. Some preliminaries and lemmas

The transform (L, 20131) of s(x) may be defined, on the analogy
of the transform (L, 03B1), oc &#x3E; -1, in (1.1), by

Here the integral in the numerator is assumed to be absolutely

2 The asymptotic relation follows from a well-known limit (see e.g. (3.15) infra).
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convergent for 0 C t  03B4 and hence for all t &#x3E; 0; and the lower
limit of integration, unity, may be changed to any given xo &#x3E; 0

without affecting the asymptotic equality in (2.1). Summability
(L, -1) of s(x) to sum S may then be defined, in terms of

as follows:

Plainly summability (L, 20131) is regular, and its definition may be
supplemented by the following:

(2.3’) s(x) = 0(1) (L, -1) if -ao  L(-1 )  L(-1)  cc.

Clearly the transform (L, 03B1) of s(x), defined by (1.1) for 03B1 &#x3E; -1

and defined by (2.1) for a = -1, may be rewritten in terms of
y = 1/t. And it then becomes a particular case of the function-
to-function transform defined, in Hardy’s notation ([2], § 3.7) by
the absolutely convergent integral

with the result that the transformation of s(x) to i(y) is ’normal’
in Hardy’s sense ([2], p. 55, Theorem 11 ), i.e.

the limits being not necessarily finite.
For the function-to-function transform i(y) in (2.4), there is

an analogue as follows, of the essentials of a theorem for sequence-
to-sequence transforms, due in principle to Vijayaraghavan, but
actually formulated by Hardy ([2], p. 306, Theorem 238).

LEMMA 1. Let s(x) be as stated at the outset and T(y) as in (2.4).
Suppose that 03A6(x) is a positive, strictly increasing, unbounded
f unction of x &#x3E; xo satisfying the conditions:
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and i f

(ii) there are positive constants a and b such that

Then

The proof of Lemma 1 is omitted, as it is exactly like that of
its analogue for a sequence-to-sequence transform formulated
by Hardy and referred to just before Lemma 1.

LEMMA 2. Let s(x) be as stated at the outset.
(a) Suppose that 039B(x) is a positive, continuous, strictly increasing,

unbounded function of x such that for u and v subject to the condition

Then there are positive constants a and b such that

(b) Suppose that (2.6) holds, with the implication that 03C9(03BB)
exists as a monotonic increasing function o f Â in some neighbourhood
of A to the right of 03BB = 1. Suppose further that

Then

The principle underlying Lemma 2(a) is well-known (see, for
instance, [2], p. 307, Theorem 239). Lemma 2(a), in the actual
form stated, is given by Karamata and recalled with proof by
Rajagopal ([7], Lemma 2A).
Lemma 2(b) is also given by Karamata ([6], p. 36, Théorème

V).
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LEMMA 3. If g(u) is bounded for 0  u  1, and furthermore
continuous on the left at u = 1, and if 03B5 &#x3E; 0 is given (however
small), then there are polynomials h(u), H(u) such that

Lemma 3 is a corrected form of a result in the original draft
of this paper. For the lemma and its proof given below the author
is indebted to Dr. B. Kuttner.

PROOF. Suppose that g(u) ç M (0 ~ u ~ 1). Since g(u) is

given as continuous on the left at u = 1, it follows that, given a,
there is a ô such that

Now define

and define f(u) in the interval 1 -ô  u ~ 1, so that it is con-
tinuous at u = 1201303B4, u = 1 and linear in the interval. It then

clearly follows from (2.8) and (2.9) that

But f(u) is continuous for 0 ~ u ~ 1. Thus, by the Weierstrass
approximation theorem ([12], p. 414) there is a polynomial H(u)
such that

It now follows from (2.9), (2.10) and (2.11) that

We can obviously determine h(u) in a similar way.
The next two results are parallel Abelian theorems for the

summability methods (L, 03B1), 03B1 &#x3E; -1 and (L, -1). The second
result introduces a summability method (1), not altogether new
(see e.g. [5], Theorem 6.1), which is naturally associated with
the method (L, 20131).

LEMMA 4. For s(x) assumed to be as at the outset, s(x) ~ S
(C, 1) implies s(x) ~ S (L, 03B1) for every oc &#x3E; -1, in the notation
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o f (1.7’), the transform L(t, 03B1) of s(x ) existing as the non-absolutely
convergent integral

Lemma 4, though perhaps not stated explicitly anywhere else,
is easily proved as under. If we write 

then, on the hypothesis s(x) ~ S(C, 1) or s1(x)/x ~ S (x - oo ),
the integral on the left side of the following relation exists for
all t &#x3E; 0 and the relation itself may be got by a partial inte-
gration :

The integral on the right side of the above relation is the transform
L(t, oc) of s(m) and so the relation can be written in the form

Since s|(x)/x ~ S (x ~ oo ), an appeal to the Lebesgue theorem
of dominated convergence now leads us without difficulty to the
conclusion L (t, a ) ~ S(t - +0).

LEMMA 5. For s(x) defined as at the outset, let us write

Then, in the notation o f (2.12 ) and (2.3),

the transform L ( t, -1 ) of s(x) in ( 2.1 ) existing with a non-absolutely
convergent integral in the numerator.

PROOF. Assuming that s(x) ~ S(l), we prove the existence of
the L(t, 20131) transform of s(x) as defined by (2.1), through the

3 In the only application made of Lemma 4 in the sequel (to establish Corollary
5.1 B) s(x) is effectively positive and the convergence of the L(t, oc) transform is
necessarily absolute convergence as stipulated in our definition of (L, oc) sum-
mability.
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following relation where the left-hand integral exists because the
condition in (2.12) is assumed and the right-hand integral is

derived therefrom by an integration by parts.

i.e.

where we choose xo &#x3E; 1 (corresponding to any given c &#x3E; 0) so
that

by appealing to the condition in (2.12) assumed by us. Thus

Integrating by parts the infinite integral on the right side of (2.13),
we get

where

Hence (2.13) gives us:

In (2.14), J, and C tend to finite limits as t ~ +0, so that, as we
wished to prove,
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The final lemma which follows is a general result due to

Rajagopal ([8], Theorem 4).
LEMMA 6. Let s(x) be as stated at the outset and furthermore

bounded in (0, oo). Let 03C8(x) be non-negative and bounded above
for x &#x3E; 0, and let

Then the hypothesis

implies the conclusion

In particular, taking successively

we see that

in the notation of (1.4) and (1.5).
NOTE. The following familiar notation, employed in the sequel

may be explained at this point. If two methods of summability
(P) and (Q) say, for a function s(x) are such that s(x) ~ S (P)
implies s(x) ~ S (Q), following Hardy ([2], p. 66) we say that
the method ( P ) is included by the method ( Q ) and write:

If the methods (P) and (Q) are such that (P) Ç (Q) and (Q) Ç (P),
then following Hardy again, we say that the methods are equiv-
alent.

3. On summabilities (L, 20131) and (L, a), a &#x3E; -1

The first theorem given below extends the scale of summability
methods for s(x) consisting of the methods (L, oc) for all values
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of oc &#x3E; -1. That the methods (L, 03B1) form a scale is a result due
to Jakimovski ([5], Theorem 3.1) stated, for s(x) bounded in
(0, (~), by Rubel ([11], Theorem 2.2).

THEOREM 3.1. Let s(x) be bounded and integrable in each finite
positive interval of x. Then, in the notation of (1.4) and (2.2),
we have, for p &#x3E; oc &#x3E; -1,

Here L(t, 03B2) is defined as in (1.1) and supposed to exist as an
absolutely convergent integral for t &#x3E; 0, L(f3) and L(03B2) being
defined according to (1.4). Theorem 3.1 is the assertion that by
this supposition, we ensure the existence, firstly, of L (t, cx) and
secondly, of L(t, 20131) defined by (2.1), as absolutely convergent
integrals for t &#x3E; 0, the associated limits L(03B1), L(oc), Z(20131),
L(20131) of which the two last are defined by (2.2), satisfying the
inequalities of Theorem 3.1 (without any condition that some
or all of them are finite).

PROOF. The part of Theorem 3.1 which asserts

is proved by Rubel ( loc. cit. ) for s(x) bounded in (0, oo ) and im-
plicit, without this restriction on s(x), in a result given by Jaki-
movski (loc. cit.). The proof which follows is that of the assertion

We start with the proof of the existence of the L(t, -1) trans-
form of s(x) defined according to (2.1), or more particularly,
with the proof of the existence of

as an absolutely convergent integral, on the hypothesis of the
existence of the L(t, oc ) transform in (1.1) as an absolutely con-
vergent integral for t &#x3E; 0. Now, we may clearly suppose, without
loss of generality, that

and hence, formally for the present,
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The repeated integral in (3.3) converges absolutely for all t &#x3E; 0,
since, after replacement of s(x) by |s(x)| it is obviously less than

where, by hypothesis, the inner integral converges for all t &#x3E; 0.

Hence, by Fubini’s theorem, we may pass from (3.3) to (3.2)
and prove that I(t) exists as an absolutely convergent integral
for t &#x3E; 0. 

To prove the theorem in the case of finite L(ex) and L(03B1),
we have to show that to &#x3E; 0 can be found, corresponding to an
arbitrary small e &#x3E; 0, so as to make the hypothesis

imply (3.1) which can be written, in the notation of (2.1) and
(3.2):

Now the formula for I(t) in (3.3) gives us:

where h can be written, for 0  t  to:

whence we get, using (3.4)
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Using the above upper estimates for I11 and I12 in (3.7), we see
that, for 0  t  to,

Next we find that, in (3.6),

To obtain (3.9) we use the fact that the existence of the L(t, 03B1)
transform of (1.1), as an absolutely convergent integral for

t &#x3E; 0, implies (as in [13], p. 183, Corollary le, and [5], Lemma
2.1)

since s(x) = 0 (0 ~ x  1) by supposition. Hence

From (3.9), we have

Employing (3.8) and (3.10) in (3.6), then dividing both sides of
(3.6) by log lit and letting t ~+0, we get

which is the first inequality of (3.5), e being arbitrary. The second
inequality of (3.5) may be deduced from the first, by considering
the transforms L(t, oc) and L(t, -1) of the function -s(x) instead
of the function s(x).
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To complete the proof of (3.1), we have to consider the further
cases:

Obviously (a), (b), (c) require no proof after the preceding
treatment of the case |L(03B1)|  oo, |L(03B1)|  oo. Finally (d) is

proved as follows and (e) similarly. In the notation of (3.6)
and (1.1 )

where now to &#x3E; 0 is chosen so that L(t, 03B1) &#x3E; G (given arbitrarily
large positive number) for 0  t  2to, using our present hypo-
thesis, L(t, oc) - oo as t ~ +0. Therefore, for 0  t  t o ,

An upper estimate for |I2| as in (3.10) is still valid and, in conjunc-
tion with the above lower estimate for Il, leads to the required
result, expressible as follows in the notation of (3.5) and (3.6):

Thus (3.1) is proved whether its extreme members are both

finite, or both infinite, or finite one at a time.

COROLLARY 3.1. In the notation recalled at the end of Section 2,

This corollary follows also from certain general considerations
which may be of interest in themselves [10].
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The next theorem leads on to a Tauberian counterpart of the
Abelian result in Lemma 5. It is an adaptation to summability
(L, 20131) of a technique of Karamata’s ([2], p. 157, Theorem 100)
which has become classical. Clearly it is one of a class of results,
such as Theorems 3.2, 4.1 of the sequel, in which·the hypothesis
of ’boundedness below of s(x)’ may be changed to that of ’bounded-
ness on one side of s(x)’, since in case s(x) in the theorems is

bounded above, we may replace s(x) by s*(x) ~ -s(x) which is
bounded below.

THEOREM 3.2. Let s(x) be bounded and integrable in each finite
positive interval of x. Let g(u) be bounded and integrable in the
interval 0  u  1, and be furthermore continuous on the left at
u = 1. Suppose that

(i) s(x) is bounded below in (0, oo),

(ii) s(x) ~ S (L, -1) in the sense of (2.3).
Then the integral in (3.11) below is convergent absolutely for t &#x3E; 0 and

PROOF. The convergence of the integral of (3.11) for t &#x3E; 0

follows from that of the integral which is the L(t, -1) transform
of s(x) according to (2.1), the convergence of these two integrals
being in effect absolute convergence on account of hypothesis
(i) being assumable (without loss of generality) as s(x) &#x3E; 0 in

(0, oo ). For, in case s(x) &#x3E; -K in (0, co ), we may change s(x)
to s(x)+K in both hypothesis (ii) and the conclusion (3.11) in
view of the relation

which is easily proved in the form

Because, we can choose ô &#x3E; 0 corresponding to an arbitrary
03B5 &#x3E; 0, so that, for 0  03C4 ~ x ~ 03B4,

and consequently, for 0  t  03B4,
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The first term on the right side of (3.14) tends to g(1) as t ~ +0,
since

(3.15) log 1ft - f 00 e-ae dx x ~ Euler’s constant (t ~ +0).

The second term on the right side of (3.14) tends to 0 as t ~ +0,
since g(e-°’) is bounded for 03B4 ~ x  co. And finally the absolute
value of each of the last terms on the right side of (3.14) is less
than

by (3.15) again. Hence (3.14) readily gives us (3.13), or equivalent-
ly (3.12 ).
We proceed to prove (3.11), supposing that s(x) &#x3E; 0 in (0, oo ).

By definition, hypothesis (ii) is that

and yields the following relation when we replace t by (n+l)t,
n = 0, 1, 2, ...: 

From (3.16) we see that, for any polynomial G(u) in u =e-111
(t &#x3E; 0, 0 ~ x  co ), we have the relation:
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In (3.17), we may take G(u) to be successively the polynomials
H(u), h(u) associated with g(u) as in Lemma 3. Recalling the
relation between g(u) and H(u) in Lemma 3, along with our
supposition s(x) &#x3E; 0, we get from (3.17) with G(u) = H(u)

Now we have, by Lemma 3,

and, by continuity of H(u) and g(u) to the left of ic = 1, there
is a ô &#x3E; 0 such that

As t ~ + 0 finally, we may suppose that e-t ~ 1201303B4. For any
fixed t &#x3E; 0 subject to this condition, we get by using (3.19) in
the final integral of (3.18):

Hence

Since H, g are bounded, it is easily seen that, for any fixed
ô &#x3E; 0, the third and the fourth integrals on the right side of (3.20)
are each o (log 1/t) as t ~ +0; also the second integral is less than
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Therefore, using (3.20) iri (3.18 ), then dividing both sides of (3.18)
by log 1/t and letting t ~ +0 we obtain

Similarly,

and (3.11), which we require, follows from (3.21) and (3.22)
together.

4. Tauberian theorems for summability (L,-1)

The theorems of this section may be viewed as successive

consequences of Theorem 3.2.

THEOREM 4.1. Let s(x) be bounded and integrable in each finite
positive interval of x. Suppose that

(i) s(x) is bounded below in (0, oo),

(ii) s(x) ~ S (L, -1) in the sense of (2.3). Then, in the sense
o f (2.12)

PROOF. Theorem 4.1 is the particular case of Theorem 3.2 with
g(x) defined thus:

The following corollary to Theorem 4.1 gives the essential
content of a theorem proved by Jakimovski ([5], Theorem 6.1)
independently of Theorem 4.1, by means of his M(a, fl) transform
and Frullani’s integral. In the proof given below, only Lemma 1
and Lemma 2(a) are required in addition to Theorem 4.î.

COROLLARY 4.1 (Jakimovski). If s(x) is defined as in Theorem
4.1, then the hypotheses

(i) lim inf lower bd {s (u’) 2013 s(u)} 201303C9(03BB) &#x3E; - 00 for a Â &#x3E; 1,
U-00 uu’03BBu .

(ii) s(x) ~ S (L, oc), oc &#x3E; -1, in the notation of (1.7’’), together
imply in the notation of (2.12):
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PROOF. In Lemma 2(a), let 039B(x) = x. Then hypothesis (i) of
our corollary yields:

Next, in (2.4), let

Then the transform i(y) of (2.4) is the same as the transform

L(1/y, 03B1) as defined by (1.1). Also, the choice of c(y, x) in (4.2),
together with the choice 0(x) = log x satisfies the condition

(i) of Lemma l, as we can easily verify 4. Furthermore, in con-
sequence of hypothesis (i) of our corollary, with its implication
(4.1), s(x) satisfies the condition (ii) of Lemma 1 with

03A6(x) = log x again. Hence, firstly, hypothesis (ii) of our corollary,
or even the broader hypothesis that s(x) = 0(1 ) (L, oc) in the sense
of (1.8’), implies s(x) = 0(1), x ~ ~, by Lemma 1. And, secondly,
hypothesis (ii) of our corollary implies s(x) ~ S(L, -1) by Corol-
lary 3.1. From the two implications last stated, it follows by
Theorem 4.1 that s(x) ~ S(l) as we wished to prove.
The next theorem is the analogue for summability (L, -1) of

Jakimovski’s theorem for summability (L, oc), a &#x3E; -1 ([5],
Theorem 5.6 with M = 1, 03B2 = 0, c = 0).

if log y/M ~ oo or y/M ~ oo and a &#x3E; 20131;

if log N/y ~ o0 or N/y ~ oo, since oc &#x3E; -1 and f o e-u u03B1 du  oo ; and using the
fact log X ~ X -1 (X &#x3E; 0)

as we can assume y to be less than N if log Nfy - ~ or Nfy - oo, and again, since

f~0 e-u03B1 du  oo, a &#x3E; -1.
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THEOREM 4.2. If s(x) is bounded and integrable in each finite
positive interval o f x, then the hypotheses

(1) lim inf lower bd {s(u’)-s(u)} = -03C9(03BB) t 0 (Â ~ 1 + 0),
u~~ u  u’  u03BB

(ii) s(x) - S (L, -1) in the sense of (2.3), together imply

A result intermediate between Theorems 4.1 and 4.2 is the

following Theorem 4.2’ which invites comparison with Corollary
4.1 and which, in fact, may be proved like that corollary.

THEOREM 4.2’. I f , in Theorem 4.2, hypothesis (i) alone is changed
to

(i’) lim inf lower bd {s(u’)-s(u)} = -03C9(03BB) &#x3E; - ao for a A &#x3E; 1,
U~~ u  u’  u03BB

then the conclusion will be changed to the following in the sense of
(2.12):

PROOF OF THEOREM 4.2’. Lemma (2a) with 039B(x) = log x
shows that hypothesis (i’) implies:

(4.3) s(v)-s(u) &#x3E; -a (log log v-log log u)-b, v &#x3E; u &#x3E; xo &#x3E; 0.

Also, the transform i(y) of s(x) in (2.4), with

is, to recall (2.1), asymptotically equal (as y - oo ) to the trans-
form L(1/y, -1) of s(x). Then, firstly, the condition (i) of Lemma
1 holds for the function-to-function transform 03C4(y) with the choice
of c(y, x ) in (4.4) and the choice 0(x) = log log x by an argu-
ment essentially the same as that used by Rangachari [9] in
the corresponding case of the sequence-to-function transform
03A3 cn(x)sn 5. And, secondly, the condition (ii) of Lemma 1, with

if log y/log M ~ oo ;

as we may assume y to be less than N, if log Nllog y - oo ; and lastly, using the fact
that log X ~ X -1 (X &#x3E; 0) (Continued on page 186)
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03A6(x) = log log x is realized in (4.3). Hence, by Lemma 1,
s(x) = O(1), x ~ oo, in Theorem 4.2’. Since also s(x) ~ S(L, -1),
it follows by Theorem 4.1 that s(x) ~ S(l) as required.

PROOF OF THEOREM 4.2. Hypothesis (i) of Theorem 4.2 implies
hypothesis (i’) of Theorem 4.2’. Consequently, by Theorem 4.2’,
s(x) ~ S(l) in Theorem 4.2; and s(x) ~ S(l) leads to the con-
clusion s(x) ~ S by Lemma 2(b), since hypothesis (i) of Theorem
4.2 is just the supposition 03C9(03BB) ~ 0 (A t 1 + 0) of Lemma 2(b) with
A (x) = log X.
The easy deduction from Theorem 4.2 given below as a corol-

lary is the precise analogue for a function s(x) of a theorem
by Rangachari for a sequence s,, ([9], Theorem 1 (L)).
COROLLARY 4.2. Let a(x) be bounded and integrable in every

finite positive interval of x; and let

Then the two suppositions

together imply

5 ( Continuation of page 185)

if log N/log y - oo in which case we may assume y to be less than N.
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5. Inclusion and oscillation theorems for the methods of

summability in Section 1

In Theorem 5.1 which follows, s(x) is not necessarily bounded
in (0, ~), but P(03B8), P(03B8), C(1), and C(l), ), defined according to
(1.5) and (1.6), are finite. An example of such a function s(x) is
s(x) ~ x sin x, which is considered in the addendum.

THEOREM 5.1. Let s(x) be bounded and integrable in each finite
positive interval of x. Then, either of the tzvo assumptions,
s(x) = O(1) (P, 0) and s(x) = 0(1)(C, 1) in the sense of (1.8’),
implies the other. Furthermore we have, with either assumption,

PROOF. Suppose first that P(B), P(0) are finite for a 0 such
that 0  0  1. Then, from definition (1.6), we have, for any
given positive E,

In the notation of (1.2), the above inequality is

s1(u) being an indefinite integral is bounded in any finite range
of u; hence there is a K (depending on uo, and thus on a, but
fixed once uo has been chosen) such that

For any u &#x3E; uo let integer n = n(u) be such that u03B8n ~ uo  uOn-1.
Then we write

and get from (5.2) and (5.3):

Since P(03B8) is finite and u03B8n is bounded, being such that

uo 03B8  u03B8n ~ uo, we get
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where K’ is a constant. For sufficiently large u, K’+K C eu
and thus

Letting u ~ oo, we find that C(1) is finite and satisfies the

inequality C(1) ~ P(B). This result along with the corresponding
one for lower limits (similarly proved), gives us

Now we have only to use the identity

take upper or lower limits of both sides as u ~ oo and get the
following inequalities which, together with (5.4), give us the
desired conclusions:

Suppose next that C(l) and C(l) are finite and 0 is any given
number such that 0  0  1. Then we prove that P(O) and P(03B8)
are finite and satisfy (5.5). The proof of (5.4) is as before.

COPOLLARY 5.1A. If C(1) = C(1) = S (finite), then P(03B8) = P(03B8) = S
and conversely, i.e. summability (C, 1) and summability (P, 0) are
equivalent.
The above corollary is due to Dr. B. Kuttner and was kindly

communicated by him in a letter to the author.

COROLLARY 5.1B. For s(x) bounded and integrable in each finite
positive interval of x and also bounded on one side in (0, ~), sum-
mability (L, 03B1) for all oc &#x3E; -1, summability (C, k) for all k &#x3E; 1,
and summability ( P, 03B8) for all 0 such that 0  0  1, are equivalent.

Corollary 5.1B follows from Corollary 5.IA taken in con-

junction with Lemma 4 and the fact that, for s(x) as in Corollary
5.1B,

In addition to the particular cases stated as part of Lemma 6,
we may have the case
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which makes

From Lemma 6 thus augmented 6 we get the following theorem.

THEOREM 5.2. Lét s(x) be bounded and integrable in each finite
positive interval of x and also bounded in (0, (0). Then the hypo-
thesis

implies the conclusion

for all oc ~ 0, k &#x3E; 0, 0  0  1, the notation being that of (1.4),
(1.5) and (1.6).
The final result which follows is in the same class as the

preceding.

THEOREM 5.3. (i) Let s(x) be bounded and integrable in each
finite positive interval of x and f urthermore either slowly increasing
or slowly decreasing. Then

both exist (whether they be finite or not), and

(ii) In case s(x) is also bounded in (0, (0) we have

the notation being that of (1.10).

PROOF. (i) We shall prove the required result on the hypothesis
that s(x) is slowly increasing, i.e.

lim sup lower bd {s(x)2013s(u)} = w(Â) t 0 as Â t 1 + 0.
U-00 ux03BBu

Il This augmentation of Lemma 6 was suggested by Dr. Kuttner. Theorem 5.2
had been originally obtained by combining Lemma 6 and Theorem 5.1.
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For 03BB &#x3E; 1, we have the identity:

Taking upper limits as u ~ 00 of the two sides of this identity,
we get

Hence, recalling that P(1/03BB) ~ S universally, we have

whence we obtain when 03BB -&#x3E; 1 + 0:

We then complete the proof, showing that P(1) = S, by arguments
similar to the above applied to the identity:

The preceding argument tacitly assumes that S and S are finite.
In the case of one or both of S and S being non-finite, the modifica-
tion to be made in the argument is obvious.

(ii) From a theorem of Rubel ([11], Theorem 3.1) we have now
the additional equalities

which, in conjunction with the equalities proved in part (i),
lead to the desired conclusion.
An example of Theorem 5.3 is furnished by the function

s(x) = sin log x = faei (the imaginary part of xi ) considered by
Rubel ([11], pp. 1001-2). For this function

while Rubel has shown that

On the other hand,
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where

Hence

Addendum

Remarks on the existence of P(l) and P(l). The remarks which
follow have been kindly communicated to the author by Dr. L. A.
Rubel and Dr. B. Kuttner.

Dr. Rubel suggests that his assertion without proof in [11],
Theorem 1.3, viz. that P(1) and P(1) exist for s(x) bounded in
(0, oo ), may be established as follows.
Given u, 8 such that 0  u, e  1, we can choose a positive

integer n = n(03BE) such that 03BEn+1  u  en. Then 03BEn2013u~ 0 as

03BE~120130. Also it is known ([11], Theorem 1.1) that P(O) is a

continuous function of 9 for 0  0  1 when s(x) is bounded in
(0, oo ). Therefore

But, by another known result ([11], Theorem 1.2), we have
P(03BEn) ~ P(e), and so
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Since u and e are independent of each other, we get from the
extreme members of the last step:

wh ile, by definition,

Hence P(1) exists and is given by

Similarly P(1) exists.
When s(x) is unbounded in (0, ~) above as well as below,

we may have P(1) = oo, P(1) = - ~, as Dr. Kuttner shows by
considering the function

For this function

on integration by parts. Thus

First, if 0 is irrational, then by Kronecker’s theorem (e.g. Hardy
and Wright [3], p. 380, Theorem 444) we can find arbitrarily
large values of u such that Ou is arbitrarily near to an even
multiple of n, and u to an odd multiple of n. Also, we can find
arbitrarily large u such that Ou is arbitrarily near to an odd
multiple of 03C0, and u to an even multiple of n. Thus from (a),

Next, if 0 is rational, let 0 = p/q (p, q integers with no common
factor). Then, in (a),

has period 2nq, so that
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(with a corresponding result for lim inf).
Now

and trivially,

so that, from (c), we have

If we write, as usual,

it follows, from (d) and (e) that

Hence, clearly

and, by (a),

It is evident, from (b) in the case of irrational 0 and from
(f) in the case of rational 0, that P(0) - co, and P(03B8) ~ -~
as 6 ~ 1-0, for s(x) = x sin x.



194

Acknowledgement

The author is greatly indebted to Professor C. T. Rajagopal
for his help in the preparation of the paper and to Dr. B. Kuttner
for his constructive criticism of an earlier version of the paper,
which has resulted in the present version.

Added in proof. Recently B. Kwee has given (Proc. Cambridge
Philos. Soc. 63 (1967), 4012013405) the analogue of Theorem 4.2 for
a sequence {sn} and Borwein’s sequence-to-function transform of
Sn [1] corresponding to the transform (L, 20131) of s(x).

REFERENCES

D. BORWEIN

[1] Theorems on some methods of summability. Quart. J. Math. Oxford Ser. (2)
9 (1958), 310-316.

G. H. HARDY,
[2] Divergent series. Oxford, 1949.

G. H. HARDY and E. M. WRIGHT,
[3] An introduction to the theory of numbers, 3rd ed., Oxford, 1954.

A. JAKIMOVSKI and C. T. RAJAGOPAL,
[4] Applications of a theorem of O. Szász for the product of Cesàro and Laplace

transforms. Proc. Amer. Math. Soc. 5 (1954), 3702014384.

A. JAKIMOVSKI,
[5] Some remarks on Tauberian theorems. Quart. J. Math. Oxford Ser. (2) 9

(1958), 114-131.

J. KARAMATA,
[6] Sur les théorèmes inverses des procédés de sommabilité (La théorie des

fonctions VI). Actual. Sci. Industr. No. 450. Paris, 1937.

C. T. RAJAGOPAL,
[7] Tauberian oscillation theorems. Compositio Math. 11 (1953), 71201482.

C. T. RAJAGOPAL,
[8] Some theorems on convergence in density. Publ. Math. Debrecen 5 (1957),

77201492.

M. S. RANGACHARI and Y. SITARAMAN,
[9] Tauberian theorems for logarithmic summability (L). Tôhoku Math. J. (2)

16 (1964), 257-269.

M. S. RANGACHARI,
[10] A generalization of Abel-type summability methods for functions. Indian

J. Math. 7 (1965), 17201423.

L. A. RUBEL,
[11] Maximal means and Tauberian theorems. Pacific J. Math. 10 (1960),

99720141007.



195

E. C. TITCHMARSH,
[12] The theory of functions, 2nd ed. Oxford, 1939.

D. V. WIDDER,
[13] The Laplace transform. Princeton, 1946.

(Oblatum 19-1-1967). Ramanujan Institute of Mathematics

University of Madras
Madras-5 (India)


