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Fredholm formulae and the Riesz theory 1

by

A. F. Ruston

1. Introduction

In a well-known paper [31], F. Riesz studied the behaviour
of compact (= completely continuous) linear operators on the
Banach space of continuous functions on a closed interval. His

arguments can readily be applied in any Banach space, real or
complex, and the Riesz theory has been discussed by many
writers (see, for instance, [1] pp. 151-157, [3, 5, 15, 23, 30],
[32] pp. 178-182, [36, 51, 52, 53, 54, 55] and [56] pp. 330-344;
see also [13] pp. 577-580).
The classical Fredholm theory, as expounded for instance in

[14] 2, expresses the solution of an integral equation such as

where y and k are given continuous functions and the continuous
function x is to be determined, in terms of the Fredholm minors

which (for fixed si, S2’ ..., s n; tl , t2 , ..., tn ) are integral func-
tions of Â. This theory, like the Riesz theory, has been placed in a
more general setting by a number of writers (see, for instance,
[17, 22, 24, 25, 29, 33, 34, 35, 40, 41, 42, 43, 44, 45, 46, 47], [48]
pp. 79-105 and [56] pp. 261-278).
Use has already been made (cf. [35] and [36]) of the Riesz

theory in discussing the Fredholm theory. The purpose of the
present paper is to delve more deeply into the relation between

1) A sketch of part of the theory given in this paper, for the space of continuous
functions on a closed interval, was presented (under the same title) before the
International Congress of Mathematicians 1954 at Amsterdam (cf. [37]).

1) Other references are given in [34]. See also [48].



26

the two theories. In particular, we shall establish a relation 3

between the dimension numbers of certain subspaces occurring
in the Riesz theory and the orders of the corresponding zero of
certain Fredholm formulae (Theorem 3.4; cf. [37]), and we shall
identify the null space and nucleus space of the Riesz theory with
the range and kernel of a certain operator in the Fredholm theory
(Theorem 4.2).
Throughout this paper, the Banach space 58 under consideration

can be either real or complex.

2. Fredholm formulae

As in previous papers, we shall make constant use of the
theory of n-operators developed in [34] (which was based on
Schatten’s notion of direct product - cf. [39] ). An n-operator on
a Banach space 2 was defined ([34], p. 352) to be a continuous
linear 4 operator on SK into 58À. This definition was chosen
because it led to a simple formula for the bound-norm ([34]
Theorem 3.1.1, p. 352), which enabled us to obtain some im-
portant inequalities ([34] § 3.7, pp. 370-376) used in proving
the convergence of certain series ([34] Theorem 3.8.1, p. 376).
In later work ([35] and [36]) a different method was used to
prove the convergence of the series concerned. For this later work,
we could 5 have used (for instance) continuous linear operators
on Bn03B3 into 33", or continuous linear operators on Bn03BB into 58À.
To avoid confusion, however, I shall continue to use n-operators
as defined above. For further information on the theory of n-
operators, the reader is referred to [34] (see also [38]).

DEFINITION 2.1 6. A continuous linear operator K on a Banach
space 58 into itself will be called a Fredholm operator on 58 iff7
there is a scalar integral function 03940(03BB) = 03A3~r=0 0394r003BBr o f the scalar

3) I am indirectly indebted to Professor D. E. Littlewood in this connection.
It was a (somewhat hazy) recollection of his Part III lectures at Cambridge which
first put me on to the nature of this relation.

4) In my earlier papers (e.g. [33-38]) 1 used the word "linear" (following
Banach, cf. [1] p. 23, [32] p. 149) to imply continuity. More recently 1 have come
into line with most modern writers, and use it in a purely algebraic sense (cf.
[13] pp. 36-37, [21] p. 16, [49] p. 18, [56] p. 134).

5) I am indebted to A. M. Deprit for drawing my attention to this fact.
6) Cf. [36] Definition 2.1, p. 319.
’) Following Halmos, 1 use "iff" in a definition where the meaning is "if and

only if".
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03BB, not identically zero, such that I’o 0394rn03BBr is an absolutely con-
vergent series o f n-operators for every scalar À and every non-
negative integer n, where 8 0394rn = 03A3rs=0 0394r-s0Ks+1n. The integral
function 03940(03BB) will be called a Fredholm determinant for K, and
the n-operators {0394rn} will be called the Fredholm coefficients cor-
responding to 03940(03BB).

REMARK. If 93 is n-dimensional, and K is represented by the
n n matrix K, we can take 03940(03BB) = det (In-Âic) (cf. [34] p. 365).
The Cayley-Hamilton theorem 9 then tells us that 03A3nr=0 03944003BAn-r = 0,
from which it follows that 03A3nr=0 0394r0Kn-r = 0 (the zero operator).
For a Fredholm operator K with Fredholm determinant 03940(03BB)
on a general Banach space B, we have (by Cauchy’s test) a
generalization of the Cayley-Hamilton theorem, namely that 10

From the absolute convergence of 03A3~r=00394rn03BB4 for any scalar
follows at once (by the comparison test) the absolute convergence
of the series

for any non-negative integer r and any scalar Â.

DEFINITION 2.2. Let K be a Fredholm operator on a Banach

space B, and let 03940(03BB) be a Fredholm determinant for K. Then we
define

where {0394rn} are the Fredholm coefficients corresponding to 03940(03BB).
We call {0394rn(03BB)} the Fredholm formulae corresponding to 03940(03BB).

Clearly 0394rn(03BB) is a skew n-operator ([34] Definition 3.1.1,
p. 353) for any scalar À, 0394rn(0) = 0394rn, and 039400(03BB) = 03940(03BB) for any
scalar À.

8) We recall that

where summation is over all sets of positive integers 03BC1, 03BC2, ..., lÀ. with

03BC1+03BC2+... +p" = n+s (cf. [34] Theorem 3.1.4, p. 356).
’) Cf. [2] p. 320, [13] p. 562, [18] p. 169, [19] p. 106, [26] p. 105, [27] p. 18

and [28] p. 206.
10) Here I use ~.~ to denote the bound-norm (of a continuous linear operator),

denoted in some of my earlier papers by 03B2(.).
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Elsewhere we have called 03940n(03BB) a Fredholm minor, and have
denoted it by 0394n(03BB) (cf. [35] Definition 2.3, p. 372). In this paper
we shall frequently have occasion to consider the Fredholm

formulae for other values of r, and the value r = 0 will not in

general be singled out for special treatment.

NOTE. In an alternative treatment, one could consider {r!0394rn}
in place of the Fredholm coefficients, and {r!0394rn(03BB)} in place of
the Fredholm formulae. The above equation would then be
replaced by a slightly simpler one (say Drn(03BB) = !:o Dr+sn03BBs/s!).
To avoid confusion, however, I shall continue to use the notation
1 have used elsewhere.
The fundamental properties of the Fredholm formulae on

which the calculations in this paper are based are given in the
next two theorems, which are immediate consequences of the
definitions (cf. [34] Theorems 3.8.2 and 3.8.5, pp. 377 and 379).
THEOREM 2.1.

for any scalar Âo, the series on the right being absolutely convergent
in bound-norm for every scalar Â.

THEOREM 2.2. Il n ~ 1 and r &#x3E; 1, then

We may note, in passing, that (i) and (ii) of this theorem can
be expressed in the form (iii) and (iv) by putting, conventionally,
0394rn(03BB) = e when r  0.

We shall be concerned with relations between the Fredholm
formulae with particular reference to a fixed (but arbitrary)
value Âo of the parameter. Considerable light will be thrown on
these relations by our discussion of the Riesz theory, but before
starting that discussion we prepare the ground.
We shall be interested, in particular, in the order of 03BB0 as a

zero of the integral function 03940n(03BB) of the scalar 03BB. In view of
Theorem 2.1, this order can be expressed in terms of the vanishing
of the Taylor coefficients 0394rn(03BB0). 1 now introduce some notations
to describe the situation (for brevity, the dependence on Âo will
not be made explicit).
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DEFINITION 2.3. For each integer n &#x3E; 0, we define the number
p(n) to be the smallest integer p for which 0394pn(03BB0) ~ 0, with the
convention that, when no such integer p exists, then p(n) = 00.
Thus p(n) is the order referred to above.
In order to study the variation of p(n) with n, we introduce

some further notation.

DEFINITION 2.4. For every integer n &#x3E; 0, we define the number
q(n) to be p(n-1)-p(n), with the conventions 11 that q(o) = 00
and that q (n) = - oo when p(n) = 00.

It is convenient to represent the situation diagrammatically.
The Fredholm formulae (for the parameter Âo) can be conveniently
arranged in a doubly infinite array:

Here the formulae {0394rn(03BB0)} in any row are the Taylor coefficients
of the corresponding Fredholm minor 03940n(03BB), higher rows correspond-
ing to Fredholm minors of higher order. Then the orders of the
zeros can be represented by putting a white spot to represent
4£(Ào) for r  p (n ) (when 41(Ào) = 0398), and possibly a black
spot to represent 0394p(n)n(03BB0) (which does not vanish) if p (n ) is
finite.
On the face of it, the diagram so obtained might be infinite

in extent. However, it has certain properties which enable us to
concentrate our attention on a finite part of it. These properties
we now discuss (others will appear when we discuss the Riesz
theory). To this end 1 now prove two lemmas.

LEMMA 2.1. Il X A A = e, where A is an n-operator and X a
1-operator, then either A = e or X is of rank at most n.
Let us suppose that X A A = 0398, but that A ~ 0398. Then we

can choose elements x(1), x(2), ..., x(n) of B and continuous linear
functionals f(1), f(2), ..., f(n) on ? so that

11) These conventions are consistent, since by hypothesis p(0) is finite (cf. Defini-
tion 2.1).
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Then, for any x ~ B, we have

and so Xx is a linear combination of Xx(1), Xx(2), ..., Xx(n).
It follows that the range of X is spanned by Xx(1), Xx(2), ..., Xx(n),
and so that X is of rank at most n. In fact (using the notation
of [33] p. 110)

NoTE. The condition is not sufficient, as can be seen by taking
X to be a 1-operator of rank precisely unity and A to be a 1-
operator of rank greater than unity.

LEMMA 2.2. Xrn+1 = e f or all r ~ 1 il (and only if) X is 0f
rank at most n.

By [34J Theorem 3.1.5 (p. 356) X1n+1 = e if and only if X

is of rank at most n. But, if X1n+1 = e, then

for any set of positive integers 03BC1, 03BC2, ..., 03BCn+1, and so (by [34]
Theorem 3.1.4, p. 356) Xrn+1 = 0 for any positive integer r.

THEOREM. 2.3. If q(n)  0, then q(m) = -~ for every m &#x3E; n.

In other words, p(n) p(n-1) unless p(n) = ao, and then
p (m ) = oo for every m ~ n.

Let us suppose that q(n)  0, and let no be the smallest positive
integer with q(no)  0 (so that n &#x3E; no). Then p(no-1) must be
finite (else q(n0-1) = -~  0). Since q(no)  0, we have

p(no) &#x3E; p(no-1), and so 0394rn0(03BB0) = e when r  p(no-1). It

follows (by Theorem 2.2 (iii) - or (i) if p(no-1) = 0) that
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But, by definition of p(no-1),

Hence, by Lemma 2.1, K is of rank at most no -1. It now follows,
by Lemma 2.2, that K. = 0398 whenever m ~ no, r &#x3E; 1. Hence

03940m(03BB) is identically zero for all m :2= no, and so for all m &#x3E; n.
Thus p (m ) = ao and q (m ) = -00 for ah m &#x3E; n.

NOTE. The rank of K is, in fact, precisely n0-1, else we should
have q(n0-1) = -~  0 by the above argument.
We now introduce two more numbers.

DEFINITION 2.5. We define 03BC to be the smallest non-negative in-
teger such that 039403BCn(03BB0) ~ 0398 f or some non-negative integer n, and we
define d to be the least such integer n.

Cf. [34] Theorem 4.2.1, p. 380. Clearly p = p(d).
The number d is known in German as the "Defekt" of 03BB0.

In the past I have translated this "defect" (cf. [34] loc. cit.,
[35] Theorem 2.4, p. 373), but "deficiency" would be a more
idiomatic translation. The number p is of the nature of a "coef-
ficient of irrelevancy", since the integral functions 039400(03BB), 039401(03BB),
039402(03BB), ... have a common factor (03BB-03BB0)03BC, which could be divided
out and contributes nothing to the Fredholm theory (indeed we
could do this simultaneously for alt scalar 03BB0 by dividing by a
suitable scalar integral function of 03BB). It will be observed that
,u = 0 for the formulae "constructed" in [35] (see [35] Theorem
2.4, p. 373) 12. It is still an open question whether the same is
always true for the formulae constructed for operators in the trace
class (cf. [34] Corollary to Theorem 4.2.1, p. 381; see also [16]
Chap. 1 § 5, pp. 164-191).
We can now see how it is that we can concentrate our attention

on a finite part of the diagram of spots mentioned above. For,
in the first place, either q(n) = 0 for all n &#x3E; d, or there is an
integer ro &#x3E; d such that q(n) = 0 for d  n ~ r0 and q(n) = - ~
for n &#x3E; ro (this can be proved by induction, using Theorem 2.3
and the definition of d). In the first case K is not of finite rank;
in the second case it is of rank ro. Thus the "shape" of the part
of the diagram of spots corresponding to n &#x3E; d depends only
on the rank of K, and is of no great interest in connection with
the Riesz theory. Thus we need only concern ourselves with the
part of the diagram corresponding to n  d, for which values of

11) It is also true (in effect) for the classical Fredholm theory.
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n (again appealing to Theorem 2.3) q(n) &#x3E; 0 (of course q(d) &#x3E; 0).
In the second place, the diagram includes 03BC columns of white
spots, which are (as we have seen) not really significant, and
these can be omitted. What is left is that part of the diagram
of spots corresponding to n ~ d and r ~ 03BC. I call this the spot
diagram. This will be a diagram such as

It will have d+1 rows; the bottom row (which we call row 0
since it corresponds to n = 0) will have p(0)-03BC white spots, the
next row (row 1) will have p(1)-03BC white spots, and so on.

3. The Riesz theory

We shall continue to concentrate our attention on a fixed
scalar 03BB0, which will not be mentioned explicitly in our notations.

If T is a continuous linear operator on 2 into itself, then we
call T-1 (e) (the set of solutions x of the equation Tx = 0398) the
kernel. of T (following common usage in algebra 13 - 1 have
elsewhere called this the "zerospace" of T), and we call TB (the
set of values taken by Tx for x in B) the range of T.

DEFINITION 3.1. For each integer n ~ 0, we denote by M. the
kernel, and by Rn the range, o f the operator (I-03BB0K)n.
We have seen elsewhere ([36] Lemma 2.1, p. 320) that 9R, is

finite-dimensional for every non-negative integer n (this will also
follow from Lemma 3.2). The principal aim of this paper is to
show how the structure of these spaces is related to the Fredholm

formulae, and in particular how the number of dimensions of M.
can be read off from the spot diagram.
DEFINITION 3.2. For each integer n ~ 0, we denote by mn the

number o f dimensions o f mn.
It has been known for some time that 14 ml = d, that is the

number of white spots in the first column of the spot diagram,
and that 15 m, = p(0)-03BC, that is the number of white spots in

13) Cf. [2] p. 151, [13] p. 39, [21 p. 470. This use of the word "kernel’ should
not be confused with that in connection with intégral équations, cf. [48] p. 2,
[56] p. 177.

1’) Cf. [34] Theorem 4.2.2, p. 381.
15) This lay behind the argument in [35].
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the bottom row of the spot diagram (where v is the index in the
Riesz theory - cf. [31] p. 81, [32] p. 179 - such that mn = mv
when n h v and mn  mn+1 when n  v). It was these facts
that led me to suspect a connection between the dimension
numbers {mn} and the spot diagram.
The main tools we shall use in our investigations are given in

Lemmas 3.1 and 3.2.

Let n be any integer with 1 ~ n ~ d, and let p = p (n ),
q = q(n) and q’ - q(n+1). By definition of p(n), 0394pn(03BB0) ~ e.
Let us then choose elements x(n)1, x(n)2, ..., x(n)n of 58 and con-
tinuous linear functionals fi""), f(n)2, ...,f(n)n on 58 so that lg

Then we put

and

for

LEMMA 3.1 With the above notation,

are elements of mr linearly independent modulo 17 mr-1 whenever
1  r  q.
We know that

whenever r  p+q = p(n-1). It follows, by repeated application
of Theorem 2.2 (iii), that

18) It would be sufficient to arrange for this expression to be non-zero, but making
it unity simplifies our calculations. Note, however, that, when this argument is
adapted for the classical Fredholm theory, we must be content with arranging
for the corresponding "kernel"

to be non-zéro (the duplicated notes for my talk at Amsterdam [cf. 87] require
amendment accordingly).

17) That is to say 03A3n03B8=1 03B103B8(I201303BB0K)q-r03BE(n)03B8 e mr-1 only if03B11 = 03B12 = ... = 03B1n = 0.
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and so that

But

and

that is

Now

for q = 1, 2, ..., n. It follows 18 that

then
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are linearly independent modulo mr-1. The lemma is thus proved.
The corresponding result for n = 0 is trivial.

COROLLARY 1. Il 1  r  q(n), then mr-mr-1 &#x3E; n.

COROLLARY 2. 0394rn(03BB0) =1= e when p(n)  r  p(n-1).
Thus the spot diagram may be augmented by adding a black

spot above any white spot which has not already a spot above
it. These black spots correspond to formulae which cannot

vanish.

LEMMA 3.2. With the above notation, m1 n ffir-1 is contained in
the subspace of B spanned by iîl , ~(n)2, ..., ~(n)n whenever r &#x3E; q’. .
Let (I-03BB0K)r-1x be any element of ml n Rr-1. Then

(I-03BB0K)rx = 0. But, by repeated application of Theorem 2.2
(iv), we have

(unless q’ - 0 or - oo, when we draw the same conclusion more
directly, since then 0394p-1n+1(03BB0) = 0398). Hence

and so (since 
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This proves the lemma.

COROLLARY. Il r &#x3E; q(n+1 ), then mr-mr-1 ~ n.
Suppose that n is positive. We have just seen that 3Ri n 9!r-l

is contained in a space of dimension n. It follows that it is spanned
by a set of n of its elements (not necessarily linearly independent),
say

(e.g. we could augment a base of the space by adding as many
zeros as are needed to make up n elements; if r ~ q = q(n),
we can clearly take 03B603B8 = (I-03BB0K)q-r03BE(n)03B8).
Now let x be any element of mr. Then (I-03BB0K)r-1x belongs

to m1 n ffir-1’ and so we can write

Thus

that is

where y is a member of mr-1. It follows that ID1r is spanned by
CI, C2, ..., Cn modulo mr-1, and so that m,.  mr-1+n. This

proves the corollary when n &#x3E; 0.

The proof when n = 0 is similar (cf. [36] Lemma 2.2, p. 320).

THEOREM 3.1. I f 0  m  n  d, then

In other words, the number of "new" white spots in any row
of the spot diagram is at least as great as the corresponding
number in any higher row.

It will be sufficient to prove that

when 0 s n  d. Suppose, on the contrary, that

By Theorem 2.3, q(n) &#x3E; 0, and so r &#x3E; 1. Hence, by Corollary 1
to Lemma 3.1 and the Corollary to Lemma 3.2,
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This contradiction proves the theorem.
The values of n of most interest are those for which

q(n+1)  q(n) ~ 0, since then mr-mr-1 = n whenever

q(n+1)  r  q(n). In fact we have

THEOREM 3 then

form a base for W1r modulo mr-1.
DEFINITION 3.3. We denote the values of n for zvhich

q(’n+1)  q(n) =1= 0, arranged in descending order o f magnitude,
by d1( = d), d2,.., dN,dN+1 (= 0), and put q0 = 0 and q03C1 = q(d03C1)
f or p = 1, 2,..., N +1.
The most important Fredholm formulae (in view of Theorem

3.2) are 0394p(d03C1)d03C1(03BB0). The corresponding spots on the spot diagram
can be thought of as the points where a string stretched round
the black spots (from ’In = oo" to "r = ~") would bend.

In view of Theorem 3.1 and the definition of dp+1, we have

for p = 1, 2, ..., N. Hence we have

whenever qp-1  r  q p . But

Hence, given any positive integer r, there is a unique integer p
between 1 and N+1 such that

Thus we can calculate mr-mr-1, and so mr (since clearly mo = 0),
for any positive integer r. In fact
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and so on. In general we have

where p is chosen so that q03C1-1  r ~ q03C1 - in fact this equation
also holds if r = q03C1-1.
We can find another formula for m, as follows. Assuming that

q03C1-1 ~ r ~ qP , we have

THEOREM 3.3. The number of dimensions mn of the kernel W1n of
(I-03BB0K)n is given by the equations

where p is such that q03C1-1  n  q03C1.
In particular, if n &#x3E; qN, we have (since dN+1 = 0)

Thus qN(= q(1)) is the index v of the Riesz theory referred to
early in this section 19.
We can express Theorem 3.3 in terms of conjugate partitions

(cf. [20] p. 271, [26] p. 94).

THEOREM 3.4. The sums

and

are conjugate partitions o f m, = p(0)-03BC.
Cf. [37].

19) Cf. [31 p. 81. We also have, in terms of notations used elsewhere, di = d(Âo)
([34] p. 380), p(d1) = 03BC(03BB0) ([34] p. 380), p(0) = p(Âo), ([36] p. 320), mqN = m(03BB0)
([35] p. 369).
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This relation can be represented diagrammatically by means
of the spot diagram and the usual representation of conjugate
partitions. For instance, we have the following diagram 20.

Here the number of dots in any row is the number of "new"

white spots in the corresponding row of the spot diagram; mn
is then the total number of dots in the first n columns.
More detailed use of Theorem 3.2 yields the following base

for mn:

where p is chosen so that q03C1-1 C n s qP .

NOTE. This does not quite correspond to the arrangement given
by Zaanen in [54] (p. 280), [55] (p. 84) and [56] (p. 342). For
instance, some of 03BE(d1)1, ..., 03BE(d03C1-1)d03C1-1 could be replaced by elements
of the form (I-03BB0K)r03BE(d03C1)03B8. The arrangement 1 have given is that
which follows most naturally from the work of this paper.

REMARK. Any spot diagram that accords with the rules which

20) This diagram occurs for the operator in 7-dimensional space given by the
’Union Jack" matrix

with 03940(03BB)=(1-03BB)7 and A, = 1; see also the remark below.
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we have established can arise (for a given non-zero scalar 03BB0)
provided our space is of a sufficiently large number of dimen-
sions (e.g. if it is infinite-dimensional). For instance, let xl,
x2,..., xmv be m, linearly independent elements, where m, is
the number of white spots in the bottom row of the required spot
diagram, and let fi, f2, ..., fmv be continuous linear functionals
such that f03B8(x~) = 03B403B8~. Let us arrange the indices 1, 2, ..., mv
in an array corresponding to the diagram of dots associated with
the required spot diagram as described above (thus there are d rows,
the first (bottom) row has p(0)-p(1) = q(1 ) entries, the second
row has q(2) entries, and so on). Then, for each 0 = 1, 2, ..., mv,
we put go = frp if ~ is immediately to the right of 03B8 in this array,
and put go = e if 0 is on the extreme right of its row. Then it
can be shown that the operator

has 21 the required spot diagram for the parameter Âo (e.g.
with 03940(03BB) = (1-03BB/03BB0)mv).

So far we have concentrated our attention on the kernels lmn
(leading to the null space mv). I should like to consider now the
ranges mn (leading to the nucleus space Rv).
The range Utn of (I-03BB0K)n is, of course, the subspace of 0

orthogonal to the kernel m’n of the adjoint (I-03BB0K*)n of (I-03BB0K)n
([36] p. 321, proof of Lemma 2.4; see also [22] Theorem 2.13.6,
p. 28, [1] Théorème 9, p. 150). If we put

where p = p(n) and q = q(n), for each n, then 91n will consist
of all elements of 113 orthogonal to all of the continuous linear
functionals

where p is chosen so that q03C1-1  n ~ q03C1. Alternatively, we may

Il) This is connected with the Jordan, or "classical", canonical form of a matrix
(cf. [2] pp. 333-334, [18] pp. 167-169, [19] pp. 122-132, [27] p. 69, [56] p. 202;
[26] pp. 109-113, [28] p. 312; see also [13] p. 563), as well as with Zaanen’s tables
referred to above. 1 am indebted to Prof essor G. E. H. Reuter for suggesting this
approach.
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adapt the arguments of [34] pp. 382-383 to obtain information
about Rn.

LEMMA

are elements of ffir-1 linearly independent modulo ffir.
We have

and

(cf. proof of Lemma 3.1). Hence

It follows that, if 03A3n03B8=1 03B103B8(I-03BB0K)r-1Kx(n)03B8 is an element of 9Ir’
(I-03BB0K)rx say, then

for 0 = 1, 2, ..., n. Since the elements all manifestly belong to
Rr-1, this completes the proof of the lemma.

LEMMA 3.4. Il r &#x3E; q(n+1), then ffir-l is contained in the sub-
space of 58 spanned by

modulo 9t(l.
Let y = (I-03BB0K)r-1x be any element of 9tr-l. We put
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(cf. proof of Lemma 3.2), and so

This proves the lemma.

Combining these results, we get
THEOREM then

f orm a base f or ffir-1 modulo Rr.
This result is less informative than Theorem 3.2, in that it

does not enable us to find a base for 9t., but only a base for ffin
modulo Rv. It is perhaps of more interest for the light it throws
on the choice of x(n)1, 1 X(2 -) ..., x(n)x.

4. The Riesz decomposition

Finally we consider the Riesz decomposition K = KI +K2 of
K, where K1x = 0 for all null elements of I-03BB0K and K2X = e
for all nucleus elements ([31] Satz 10, p. 88). Then H(03BB) =
H1(03BB)+H2(03BB) for any regular value Â, H(03BB) = K(I-03BBK)-1,
H1(03BB) = Ki(I-ÀKI)-1 and H2(03BB) = K2(I-03BBK2)-1 being the resol-
vents of K, Kl and K2 respectively (cf. [35] § 2, p. 370). Using
the notation of [35] § 2, we have
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where D0(03BB)=(1-03BB/03BB0)mv ([35] § 2, p. 371), and D1(Â) is a polynomial
of degree at most mv-1 in A ([34] Theorem 3.3.4 Corollary, p.
364). Hence, for all regular values of Â,

where Bl, B2,..., Bm v are continuous linear operators (in-
dependent of 03BB) on 113 into itself. On the other hand, H1(ÂO)
exists ([31] Satz 11, p. 89), and so H,(Â) is holomorphic in 03BB

at Âo. It follows that H2(03BB) is the principal part ([50] p. 92) of
H(03BB) at Âo. Since

whenever 039400(03BB) ~ 0, we can express H2(03BB) in terms of the Fredholm
formulae 0394rn(03BB0). In fact it is clear that each of B1, B2 , ..., Bmy
is a linear combination of 039401(03BB0), 039411(03BB0), 039421(03BB0),..., 0394p(0)-11(03BB0).
Hence

is also a linear combination of 039401(03BB0), 039411(03BB0),..., L1f(O)-l(Âo). In
fact detailed calculation shows that

(where p = p(0)), but we shall not here need the details of this
expression.

It will be convenient to denote by 0. the polynomial given by

so that
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LEMMA 4.1. For any scalar 03BB, and any continuous linear operator
K, the null space 22 o f I-03BBK is contained in the range of K.

If x belongs to the null space of I-03BBK, then for some integer
n we have (I-03BBK)nx = e, and so

LEMMA 4.2. For any scalar 03BB, and any continuous linear operator
K, the nucleus space 22 o f I-03BBK contains the kernel o f K.

If Kx = e, then for every non-negative integer n we must
have

THEOREM 4.1. The null space and nucleus space of I-ÂOK
coincide with the range and kernel (respectively) of K2.
By [31] Satz 10 (p. 88), the range of K2 is contained in the

null space of I-03BB0K, and the kernel of K2 contains the nucleus
space of I-03BB0K. But, by [31] Satz Il (p. 89), the null space and
nucleus space of I-03BB0K coincide with those of l -ÂOK2. The
theorem now follows from Lemmas 4.1 and 4.2.

THEOREM 4.2. The null space and nucleus space of l -ÂoK
coincide with the range and kernel (respectively) of 0394p(0)-11(03BB0).
For r ~ p-1 = p(0)-1 we have (by successive application of

Theorem 2.2 (iv))

and so, if r  p-1,

Moreover all these operators commute with each other. Thus
the range of 0394r1(03BB0) is contained in that of 0394r+11(03BB0), and so (by
induction) in that of 0394p-11(03BB0). Hence the range of K2 (which, by
Theorem 4.1, is the null space of l -ÂoK) is contained in the range
of 0394p-11(03BB0). But, since (I-03BB0K)p0394p-11(03BB0) = e, the range of

0394p-11(03BB0) is contained in the null space of I-03BB0K, and so the
two must coincide.

22) We interpret the null space of a general continuous linear operator T on
fl3 into itself as the union of the kernels of Tn for n = 1, 2, 3, ..., and the nucleus
space of T as the intersection of the ranges of Tn for n = 1, 2, 3, ....
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Similarly, if r  p-1,

and so the kernel of 0394r1(03BB0) contains that of 0394r+11(03BB0), and so (by
induction) that of L1r-1(Âo). Hence the kernel of K2 (which, by
Theorem 4.1, is the nucleus space of l -ÂoK) contains the kernel
of 0394p-11(03BB0). But, since 0394p-11(03BB0)(I-03BB0K)p = e, the kernel of

L1r-1(Âo) contains the nucleus space of I-03BB0K, and so the two
must coincide.
We can deduce 23 from this that the range and kernel of

0394p-1-r1(03BB0) (0  r ~ v) are mv-r n ffir and the subspace of
spanned by ffiv-r u SJa2, respectively.
NOTE. In [36] (p. 319), 1 defined a continuous linear operator

K on a complex Banach space B to be a Riesz operator iff it had
the following three properties (cf. also [35], p. 376):

(i) For every scalar 03BB, the set of solutions x of the equation
(I-03BBK)nx = e forms a finite-dimensional subspace of B,
which is independent of n provided n is sufficiently large.

(ii) For every scalar 03BB, the range of (1 -ÂK)"" is a closed sub-
space of B, which is independent of n provided n is suf-
ficiently large.

(iii) The characteristic values of K have no finite limit point.
In fact condition (iii) is redundant, being a consequence of
(i) and (ii). For the Riesz decomposition K = K1+K2 follows
from (i) and (ii) (cf. [31] Satz 10, p. 88), as also does the fact
that l -ÂOK1 has an inverse ([31] Satz 11, p. 89). We conclude
that I-03BBK1 has an inverse when 03BB is near Ao (cf. for instance
[35] p. 370). But I-03BBK2 has an inverse when 03BB ~ 03BB0 (cf. [31]
Satz 13, p. 91) - in fact we can easily verify that

23) This can be proved by induction, using the facts that the range of 0394p-1-(r+1)1(03BB0)
is the direct image under I-03BB0K of the range of 0394p-1-r1(03BB0) and that the kernel of
0394p-1-(r+1)1(03BB0) is the inverse image under I-03BB0K of the kemel of 0394p-1-r1(03BB0).
Thèse follow from the equations

and

(remembering that all the operators concerned commute with each other).
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Hence I-03BBK = (I-03BBK1)(I-03BBK2) has an inverse when Â =A Âo
is near 03BB0, and so Âo is not a limit point of characteristic values
of K. Since 03BB0 is an arbitrary scalar, condition (iii) follows (see
also [11] p. 199, [12] p. 645).
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