G-functions as self-reciprocal in an integral transform
Compositio Mathematica, Tome 18 (1967) no. 1-2, pp. 181-187.
@article{CM_1967__18_1-2_181_0,
     author = {Kesarwani, Roop Narain},
     title = {$G$-functions as self-reciprocal in an integral transform},
     journal = {Compositio Mathematica},
     pages = {181--187},
     publisher = {P. Noordhoff N. V., Groningen},
     volume = {18},
     number = {1-2},
     year = {1967},
     mrnumber = {234223},
     zbl = {0148.36701},
     language = {en},
     url = {http://www.numdam.org/item/CM_1967__18_1-2_181_0/}
}
TY  - JOUR
AU  - Kesarwani, Roop Narain
TI  - $G$-functions as self-reciprocal in an integral transform
JO  - Compositio Mathematica
PY  - 1967
SP  - 181
EP  - 187
VL  - 18
IS  - 1-2
PB  - P. Noordhoff N. V., Groningen
UR  - http://www.numdam.org/item/CM_1967__18_1-2_181_0/
LA  - en
ID  - CM_1967__18_1-2_181_0
ER  - 
%0 Journal Article
%A Kesarwani, Roop Narain
%T $G$-functions as self-reciprocal in an integral transform
%J Compositio Mathematica
%D 1967
%P 181-187
%V 18
%N 1-2
%I P. Noordhoff N. V., Groningen
%U http://www.numdam.org/item/CM_1967__18_1-2_181_0/
%G en
%F CM_1967__18_1-2_181_0
Kesarwani, Roop Narain. $G$-functions as self-reciprocal in an integral transform. Compositio Mathematica, Tome 18 (1967) no. 1-2, pp. 181-187. http://www.numdam.org/item/CM_1967__18_1-2_181_0/

R. Narain, [1] A Fourier kernel, Math. Z., 70 (1959), 297-299. | Zbl

C. Fox, [2] The G and H functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98 (1961), 395-429. | Zbl

Bateman Manuscript Project, [3] Higher transcendental functions, vol. 1, McGraw Hill, New York, 1953. | Zbl

R. Narain, [4] The G-functions as unsymmetrical Fourier kernels. III, Proc. Amer. Math. Soc., 14 (1963), 271-277. | Zbl

R. Narain, [5] The G-functions as unsymmetrical Fourier kernels. I, Proc. Amer. Math. Soc., 13 (1962), 950-959. | MR | Zbl

E.T. Whittaker and G.N. Watson, [6] A course of modern analysis, Cambridge, University Press, 1915. | JFM | MR

G.N. Watson, [7] A treatise on the theory of Bessel Functions, Cambridge, University Press, 1922. | JFM | MR

E.C. Titchmarsh, [8] Introduction to the theory of Fourier integrals, Oxford, University Press, 1937. | JFM

R. Narain, [9] On a generalization of Hankel transform and self-reciprocal functions, Rend. Sem. Mat., Torino, 16 (1956-57), 269-300. | Zbl

R.S. Varma, [10] Some functions which are self-reciproval in the Hankel transform. Proc. London Math. Soc., Ser. 2, 42 (1936), 9-17. | JFM | Zbl

R.P. Agarwal, [11] On some new kernels and functions self-reciprocal in the Hankel transform, Proc. Nat. Inst. Sc., India, 13 (1947), 305-318.

G.N. Watson, [12] Some self-reciprocal functions, Quart, J. Math. Oxford, Ser. 1, 2 (1931), 298-309. | JFM | Zbl

K.P. Bhatnagar, [13] Two theorems on self-reciprocal functions and a new transform, Bull. Calcutta Math. Soc., 45 (1953), 109-112. | MR | Zbl