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On non-normal numbers *

by

Bodo Volkmann

It was first discovered by D. D. Wall [13] in 1949 that a real
number x is normal to the base g ~ 2 if and only if the sequence
g"x(n = 1, 2, ...) is uniformly distributed mod 1. But it had
been known since the occurrence of Borel’s [2] celebrated theorem
in 1909 that almost all real numbers are normal to any base, and
consequently the problem arose to investigate various types of
sets of non-normal numbers. In particular, several authors have
determined the Hausdorff (or fractional) dimension (cf. Hausdorff
[6]) of such sets. The following results are typical:

1. Given digit frequencies

For any real number x e (0, 1], we consider the g-adic expansion

where g &#x3E; 2 is a fixed integer and the digits ei, 0 ~ ei  g,
are so chosen that infinitely many of them are different from
zero. Let

and define, for given non-negative numbers 03B60, 03B61,..., 03B6g-1 with
03A3g-1j=0 03B6j = 1, G = C(03B60, ..., 03B6g-1) to be the set of all such x

satisfying

Then, as was shown in 1949 by H. G. Eggleston [4],

* Nijenrode lecture.
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For reference, we denote the function in this equation by
d(03B60, ..., 03B6g-1) = d(03B6).

In the special case g = 2 this theorem has been proved in-
dependently by V. Knichal [7] in 1933 and by A. S. Besicovitch
[1] in 1934, in slightly different forms.

2. Missing digits.

The Cantor ternary set C may be interpreted as the set of all
x e (0, 1] in whose expansion (*) to the base g = 3 all digits
et are different from 1, united with a certain countable set.

It was shown by F. Hausdorff [6] in 1918 that

dim C  log 2 log 3.

The following generalization was proved by the speaker [9] in
1953: Let g &#x3E; 2 be fixed and let F = f1f2 ... fi i be any finite
block of (not necessarily distinct) g-adic digits. Furthermore, let
KF be the set of all x e (0, 1] in whose g-adic expansion no block
of i consecutive digits equals F. Then, if P(F) denotes the set
of all integers p for which the block of the first p digits and the
block of the last p digits of F are equal, and if y(F) is the greatest
positive root of the i-th degree equation

then

In a later paper [11] the case was studied where a finite set
J = (Fi , ..., Fn} of such blocks are excluded.

.3. Given digit averages

For each x e (0, 1] with the g-adic expansion (*), we define
S(x, n) = 03A3ni=1 ei and consider, for a given 03B6 e [0, g-1], the set
M(03B6) of all x satisfying
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It was shown in 1951 by H. G. Eggleston [5] that

where r is the greatest positive root of the equation.

This theorem was generalized by the speaker [10] to the case where
the set {0, 1, ..., g-1} is subdivided into mutually disjoint sub-
sets 1, 2, ..., m, and weighted averages

with given non-negative weights 03BB0, 03BB1, ..., Â.-j are considered.
Then the dimension of the set M(C1, ..., Cm) of all x E (0, 1] was
determined for which the limits

exist and have given values C1, ..., Cm.

4. Oscillating digit frequencies

In order to study real numbers x for which some or all of
the frequencies A,(x, n)/n oscillate, the speaker [12] used the
following method: For any index n let pn(x) be the point in the
simplex Hp = {0 ~ 03B6j ~ 1 (j = 0, ..., g-1); 03A3g-1j=0 Ci = 1} which
has coordinates (Ao(x, n)/n, ..., Ag-1(x, n)/n). Furthermore, let
Vo(x) be the set of limit points of the sequence Pl(X), p2(x),....
Obviously, V,(x) may consist of a single point, and this happens,
in particular, whenever x is normal. But it was shown in 1957
(cf. [12]) that, given any continuum (i.e. a closed, connected set)
C C Hg, there exists a non-empty set G(C) of numbers x e (0, 1]
for which V,(x) = C. Furthermore,

where d(03B6) is the function defined above. Conversely, for any
number x, the set Vp(x) is a continuum contained in the simplex
Hg.
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5. Unsolved problems

In connection with results mentioned above, the following
questions appear to be of interest:
A) Given two integers g ~ 2, h ~ 2 such that gn ~ hm f,.- all

positive integers m, n, and two continua CI C Hg, C2 -C Hh, de
there exist numbers x e (0, 1] for which

B ) If so, what is the Hausdorff dimension of the set of all such x?
C) Which of the sets G(C) contain, and which do not contain.

any algebraic number?
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