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On the distribution of a sequence in a compact
group *

by

J. H. B. Kemperman

1. Introduction

If {xk} is a sequence of real numbers such that each derived
sequence {xk+h-xk}, h a positive integer, is uniformly distributed
modulo 1 then so is the original sequence {xk}. This important
result due to van der Corput [6] can be sharpened and generalized
in many different directions, cf. the survey [5] by Cigler and
Helmberg.
For instance, even under weaker assumptions, one can assert

that each arithmetic progression {xkL-j} (L and i fixed) is uni-
formly distributed modulo 1, see [4], [7] and [12].

Further, the group K of real numbers modulo 1 can be replaced
by a connected compact abelian group G. After all, a sequence
{xk} in G has asymptotically a uniform distribution if and only
if ~(xk) is uniformly distributed in K for each non-trivial character
~(x) of G, (= continuous homomorphism of G into K).
As was shown by Hlawka [7], the above difference theorem

carries over to any additively written compact group, commutative
or not. Subsequently, Cigler [4] (see also Tsuji [14]) generalized
this result by replacing the ordinary Cesaro sum by a very general
regular summation method. In [3] Cigler replaced points in G by
probability measures on G. For the special case of a Cesaro type
summation, Hlawka [9] considered in stead a function x(k) of the
real variable k taking values in a compact group G.

In the present paper (which is independent of Cigler’s work,
see [10]) the van der Corput difference theorem is carried over
to a very general situation which covers all of the above cases.
Our method has the advantage that it is based upon an estimate
(Lemma 5.3) of the same type as van der Corput’s fundamental
inequality, which should also be useful in deriving quantitative
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results on the speed of convergence towards a uniform distribution.
In order to bring out more clearly the essential ideas of the

proof, I have first taken up (sections 2 and 8) the special case
of a sequence {x(k)} of real numbers modulo 1. The general setting
is given in section 4, the corresponding difference theorem in
section 5. As will be seen, the method of section 5 could be regarded
as a straightforward generalization of the one in section 2. The
sections 6 and 7 are devoted to certain interesting corollaries of
the results in section 5.

2. Auxiliary results

In the sections 2 and 3, A = (a.k) denotes a fixed nonnegative
regular summation method; n, k = 1, 2, .... Thus,

while

For each sequence z = {z(k)} of complex numbers with

put

(2.2)
k=l

It follows that

where

(an,0 = 0). One has ~03B2n~ = 2/n in the particular case A = (C, 1),
that is, ank = 1/n if 1  k  n, ank = 0 if k &#x3E; n.

The following result is analogous to the fundamental inequality
of van der Corput [6], see [2, p. 71]. As will be seen, it can be
generalized to much more general situations.

LEMMA 2.1. Suppose that 11 z 11 ~ 1. Then, provided ~03B1n~ &#x3E; 0, we
have for each positive integer m that
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Proof. Without loss of generality, we may assume that ~03B1n~ = 1·
Let n be fixed, and take

Obviously,

Multiplying by ank ~ 0 and summing over k, this gives

By (2.3) and ~z~ ~ 1, replacing in the last sum z(k+p) by z(k)
introduces an error

in absolute value. Replacing in the second sum z(k+p)z(k+q)
by z(k+p-q)i(-k-) introduces an error

in absolute value. Finally, the first sum has its absolute value
at most equal to m. Using (2.6), one obtains (2.5).

Next, let L be a given positive integer, and put

and

LEMMA 2.2. If 1 Izi S 1 then, f or each positive integer m,

Proof. Apply (2.5) with (ank) and z(k) replaced by (a",kL-i)
and z(kL-j), respectively, (j = 0, 1, ..., L-1). Adding the
resulting inequalities, one obtains (2.8).
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From now on, let us assume that

that is,

(as is true for most of the classical summation methods). It follows
by (2.1) and (2.7) that

Consequently, by Lemma 2.2,

LEMMA 2.8. Suppose that lizil  oo. Let L be a positive integer
such that

Then

Note that, by (2.8), the left hand side of (2.10) is always
nonnegative. By Hôlder’s inequality, a sufficient condition for
(2.10) is that, for some 1 ~ r  ~,

Letting

a further sufficient condition for (2.10) is that yhL tends to zero
when the positive integer h tends to infinity through some set
S of integers of upper density 1.

3. Van der Corput’s différence theorem

Let G denote the additive group of real numbers modulo 1. Let

further A = (ank) be a given real and nonnegative regular summa-
tion matrix satisfying (2.9). A sequence of points (tt(k)) in G
is said to have a given regular Borel measure p as its asymptotic
A-distribution if
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holds for each complex-valued continuous function f on G; such
a function may be identified with a continuous function on the
reals of period 1.

Clearly, p must be a nonnegative measure on G of total mass 1,
a so-called probability measure. If so then (3.1) is equivalent
to the condition that

for each integer p = 1, 2, .... If y is the Haar measure (= Lebes-
que measure) on G then (3.2) becomes

If (3.3) holds we say that the sequence {x(k)} is uniformly distrib-
uted with respect to the summation method A = (ank).

Applying Lemma 2.3 with

(p a fixed positive integer), we obtain the following generalization
of van der Corput’s [6] difference theorem.

THEOREM 3.1. Let L be a fixed positive integer, and suppose that,
f or each positive integer h, the sequence

has an asymptotic A-distribution 03C4h, say. Suppose further that,
for each positive integer p, there exists a sequence {mj} of positive
integers, m, - oo, such that

Then, for each f ixed j = 0, 1, ..., L -1, we have that the sequence
{x(kL-j)} is uniformly distributed with respect to the regular
summation method (La,,,IL)-

Essentially the same result was obtained independently by
Cigler [4] ; his method is related to a treatment by random vari-
ables in [11]. Tsuji [14] proved a certain special case of Theorem
3.1 with L = 1 and
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(p,, &#x3E; 0, 03A3pn. = +~). He assumed that both p. and pn/pn+h
(h = 1, 2, ... ) are decreasing in n. In view of (2.9), it is actually
sufficient that pn is monotone, pn = o(p1+ ... +pn).

In the special case A = (C, 1), Theorem 3.1 can also easily be
deduced from the van der Corput fundamental inequality. Under
the additional assumption that each sequence {x(k+h) - x(k)}
(h = 1, 2, ...) is uniformly distributed modulo 1, this was already
done by Korobov and Postnikov [12].

4. Generalities

In generalizing Theorem 3.1, we note that the sum in (3.1)
can be written as

Here, Z denotes the collection of all positive integers. Further,
an denotes the nonnegative measure on Z having a mass ank at the
point, k, k = 1, 2, ...; its total mass ~03B1n~ tends to 1 as n tends
to infinity. Moreover, we can write

where T denotes the transformation - z+L of Z into itself.

Finally, the quantity bn,L in (2.8) is precisely the total variation
of the signed measure

With this in mind, we now introduce the following entities.
(i) First, a fixed measurable space Z = (Z, 2I). That is, Z

is a given abstract set, 3t a a-field of subsets of Z with Z ~ U,
(ii) Second, a fixed directed set D. In other words, the relation

m ~ n is defined for certain ordered pairs of elements in D such
that m &#x3E; m, while m &#x3E; n, n &#x3E; p imply m &#x3E; p; finally, given m,
n E D, there always exists a q E D such that both q ~ m and q &#x3E; n.

(iii) For each n e D, let ocn be a given finite and nonnegative
(03C3-additive) measure on the measurable space Z. We shall assume
that
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the limit being taken in the sense of the directed set D.
(iv) Next, let T denote a fixed measurable transformation of

Z into itself. By P. we shall denote the finite signed measure on
Z defined by

for each A e U. It folows that

V V

for each bounded and measurable complex-valued function h(z) on
Z; (if no integration limits are specified the integral extends over
all of Z). Later on, we shall assume that

where

denotes the total variation of the measure (ln-
(v) Let further G denote a given compact Hausdorff space. By

C(G) we shall denote the Banach space of all complex-valued
continuous functions f on G with norm

By the Riesz representation theorem, there is a 1 : 1 correspond-
ence between the bounded linear functionals 03BC(f) on C(G) on the
one hand, and the regular complex-valued (finite) Borel measures
IÀ on G on the other hand, namely by means of

The norm of the functional 03BC(f) is precisely the total variation
~03BC~ of the corresponding measure ,u.
Let M(G) denote the linear space of all such bounded linear

functionals on C(G). The topology in M(G ) will be taken as the
weak* topology. That is, a subset F of M(G ) is said to be open if,
for each po e F, one can find a number E &#x3E; 0 and finitely many
f1’ ..., fm in C(G) such that

In other words, the net (also called generalized sequence) {03BCm}
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of elements in M(G), (m running through some directed set E),
converges to an element 03BC0 in M(G) if and only if {03BCm(f)} converges
to 03BC0(f) for each f in C(G).

(vi) For each n e D, let xn(z) be a given measurable function
from Z to G, ("measurable" taken with respect to the a-field of
Borel subsets of G).
We shall be interested in the asymptotic distribution of the

values xn(z) in G. More precisely, for each n e D, the formula

defines a nonnegative regular Borel measure y. on G of norm
~03BCn~ = ~03B1n~. Equivalently,

for each Baire measurable subset V of G. Thus, the measure an
acts as a sort of weight function on Z.

DEFINITION. We shall say that the net

of measurable functions from Z to G has the measure po on G as
its asymptotic distribution (with respect to the summation method
{03B1n, n E D}) if lim. Pn = Po’ that is, if

holds for each f e C(G).
This in turn implies that (4.8) holds whenever f is a bounded

function on G such that po(4,) = 0, where L1, denotes the set of
points xo e G at which f is discontinuous; this generalizes a resûlt
of Hlawka [8]. His proof carries over immediately; namely, if f
is bounded and 03BC0(0394f) = 0 then ([1], p. 104, 109) for each number
e &#x3E; 0 there exist real and continuous functions fi and f2 on G
such that fl(x)  Re(f(x))  f2(x) and 03BC0(f2-f1)  03B5.

5. A général différence theorem

From now, on, we assume that (4.4) holds. Further, we shall take
G as an additively written compact group, (not necessarily,
commutative ). By v we denote the Haar measure on G, normalized
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in such a way that 11 v 11 = 1. If (4.8) holds with 03BC0 replaced by
v (all f e C(G») we say that the net (4.7) is (asymptotically)
uniformly distributed.

THEOREM 5.1. Suppose that, for h as a sufficiently large positive
integer, the net

of functions from Z to G possesses an asymptotic distribution
The M(G) which tends to the uniform distribution v as h tends to
infinity. Then the net {xn(z), n e D} is itself uniformly distributed.

This result corresponds to the special case L = 1 of Theorem
3.1. In generalizing the full Theorem 3.1, we shall assume that the
measurable space Z = (Z, U) is the direct product of the pair of
measurable spaces Z’ = (Z’, U’) and Z" = (Z", U"), such that

Here, we think of a point z e Z as a pair of points z’ E Z’, z" e Z",
(the coordinates of z). Thus, (5.2) states that each section z" =
const. is invariant under the transformation T.
Note that this assumption trivially holds on taking Z’ - Z,

(Z" as a set consisting of one point only). Usually, also other
decompositions are possible. For instance, if Z consists of the

positive integers (or the positive real numbers) and Tz = z+L,
this is true with Z’ - {0, L, 2L, ...} and Z" as the interval
(0, L], (Z being a direct sum of Z’ and Z").
Let us denote by p. the measure on Z" which is the marginal of

an, in other words, the projection of the measure an on Z = Z’ X Z"
onto the component Z". In the present case we shall further
assume, as we may in most applications, that there exists a
function 03B1n(Az" ), A E U’, z" E Z", which is a probability measicre
in A for each fixed z", and a measurable function in z" for each
fixed A, such that

for each bounded and measurable function h(z) = h(z’, z") on Z.

THEOREM 5.2. Suppose that, for h as a sufficiently large positive
integer, h &#x3E; ho, the net (5.1) has an asymptotic distribution 7:11,.
Let U be a given unitary representation of G and suppose that
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f or some sequence {mj} o f integers tending to infinity. Then

where

Theorem 5.2 generalizes certain results of Cigler [3], [4] and
Hlawka [7], [9], compare sections 6 and 7.
By a unitary representation U = U(x) of degree r (r = 1, 2, ...)

of the given compact group G we shall mean a continuous mapping
of G into the group of all complex-valued unitary matrices of
order r, such that

A matrix is said to be unitary if its inverse U-1 exists and is equal
to its adjoint U*, (u*ij = uji). Thus, (5.7) implies

(1 denoting the identity matrix of order r).
The so-called trivial representation Uo is the representation of

degree 1 defined by Uo(x) = 1 for all x e G. The unitary represen-
tation U = U(x) of degree r is said to be irreducible if no non-trivial
linear subspace of the r-dimensional Euclidean is invariant under
all the transformations U(x), x E G. As is well-known, there exists
a family

of irreducible (mutually inequivalent) unitary representations
of G (possibly of different degrees), such that all the matrix
elements of all the Uy(x) together span a linear manifold which is
dense in the Banach space C(G). Finally, if U is any non-trivial
irreducible unitary representation of G then (as can be seen from
(5.7))

It follows from these remarks that the net {xn(z)} has (with
respect to the summation method {03B1n}) asymptotically a uniform
distribution i f and only if, for each non-trivial irreducible unitary
representation U = U(x), one has
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This shows that Theorem 5.1. is a special case of Theorem 5.2;
(take Z = Z’ X Z" with Z" consisting of one point only ).
That Theorem 3.1 is a special case of Theorem 5.2 can be seen

from the remark following (5.2) and the well-known fact that the
group K of real numbers modulo 1 has as its irreducible unitary
representations the functions

The proof of Theorem 5.2 is based on the following generalization
of Lemma 2.2. Here, if V is a complex r  r matrix we denote

by V » 0 the property that V is positive definite in the sense
that w.V.w* &#x3E; 0 for every complex 1 X r vector w = (w1, ... w,).
One always has V .V * » 0. We write V « W or W » V if and
only if W - V » 0. This is a true partial ordering, for 0 « V « 0
implies V = 0.

LEMMA 5.3. ,Let U = U(x) denote a given unitary representation
of G o f degree r. Define 4)n(z") by (5.6) and 03C8n,h (n E D, h = 0,
1,...)by

Then

Here, I denotes the identity matrix of order r.

Proof. Let n e D be fixed. The inequality being trivial when
~03B1n~ = 0, we may assume that ~03B1n~ = 1. Consider the r  r

matrix

By V(z)V(z)* » 0, (5.7) and (5.8), it follows that
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We now integrate this relation over all of Z with respect to the
nonnegative measure oc.. By (5.3), the second term yields

The terms with p = q in the double sum yield a contribution mI,
while the terms with p =1= q yield

Here,

where

By (5.3) and (5.6), the last sum yields a contribution

where

Note that, by (5.2), we may write

where

Adding all these contributions, (and dividing by m2 ), one obtains
(5.13) provided it can be shown that

Let w = (w1, ..., wr) be any complex 1 X r vector of Euclidean
length 1. It sufficies to show that

But U(x) is unitary, thus, |wDh(z)w*| ~ 1; similarly, by (5.6),
|wE(z)w*| ~ 1. Hence, multiplying (5.14) and (5.15) on the left
by w and on the right by w*, the desired result follows by (4.3).

Proof of Theorem 5.2. It is given that, for h &#x3E; ho,
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It follows by (4.4) and (5.13) that, given e &#x3E; 0 and the positive
integer m, m &#x3E; ho, one has for n sufficiently large (in the sense
of the directed set D ) that

Letting m tend to infinity and using (5.4), one obtains (5.5).

6. Random functions

Let again G be an arbitrary additively written compact group;
by v we denote the Haar measure on G, ~03BD~ = 1. Let further
A = (a"k) (n, k = 1, 2, ...) be a given nonnegative regular
summation method satisfying (2.9).

Following Cigler [3], let us consider the asymptotic A-distribu-
tion of a sequence {03C3k} of probability measures on G (= nonnega-
tive regular Borel measures of total mass 1). Namely, we shall say
that {03C3k} has an asymptotic A-distribution 0’ if

that is,

This generalizes (3.1); for, take 03C3k as the measure having all its
mass at the single point x(k) e G.

Given the measures p/ and p" on G, let us define the measure
03BC’ ~ 03BC" by

( f e C(G)). The following generalization of Theorem 3.1 is due to
Cigler [3].

THEOREM 6.1. Let L be a fixed positive integer. Suppose that,
for h = 1, 2, ..., the sequence
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has an asymptotic A-distribution zh, say. Suppose further that

Then, f or each i = 0, 1,..., L - 1,

Theorem 6.1 in turn is a consequence of Theorem 5.2. Let

be a fixed measure space, where P is a probability measure on the
a-field é9. By a random variable taking values in G we shall mean
a measurable function X(03C9) from S2 to G..Its so-called distribution
is the probability measure on G defined by

The joint distribution of two random variables X’ and X" taking
values in G is defined as the probability measure on G X G which is
the distribution of the random variable (X’(03C9), X"(ro») E G X G.
If this joint distribution is the direct product of the distributions
03BC’ and 03BC" of X’ and X ", respectively, then the random variables
X’ and X" are said to be independent; notice that in this case the
random variable X’-X" has its distribution precisely equal to
03BC’ e .

Consider a sequence {03C3k} of probability measures on G. Taking
(03A9, B, P) as the direct product of the measure spaces (G, a,)
and letting Xk(03C9) denote the k-th coordinate of a point cv in this
product space, one obtains a sequence {Xk} of independent random
variables, such that the distribution of Xk is equal to Grk-

Let Z, D, ocn(n E D ) and T be as in section 4; we assume that
(4.4) holds. Suppose further that Z = Z’ X Z", such that (5.2)
and (5.3) hold. Next, for each n ~ D and z ~ Z, let Xn(z) =
Xn(z, w) be a given random variable. We shall assume that

Xn(z, ro) is jointly measurable in 2 e Z, ro e Q.

DEFINITION. The net 

of "random functions" on Z will be said to have the asymptotic
distribution Il, with respect to the given summation method
{03B1n, n E D}, if
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Here, fln,z denotes the distribution of the random variable Xn(z),
that is,

Relation (6.3) generalizes (4.8) and denotes that

If IÀ is the Haar measure on G then (6.5) is equivalent to

to hold for each non-trivial unitary representation U of G.

THEOREM 6.2. Suppose that, for h as a sufficiently large positive
integer, h &#x3E; ho, the net of random variables

has an asymptotic distribution Th, say. Let U be a given non-trivial
unitary representation of G such that

for at least one sequence {mj} of positive integers tending to infinity.
Then

where

Proof. In view of (6.4), this is an immediate consequence of
Theorem 5.2, with Z’, 03B1n(dz’| z") and xn(z) replaced by

respectively; (a slightly stronger conclusion would result if in

stead we replace Z" by Z" X il).
Theorem 6.1 is obtained as the special case of Theorem 6.2,

where Z is the set of positive integers, an the measure of mass ank
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at k E Z (k = 1, 2, ... ), T the translation z’ = z+L; finally, the
Xn(z) = X(z) (z = 1, 2, ... ) are taken as independent random
variables, such that X(k) has a preassigned distribution Gk,

compare the remarks following Theorem 6.1.

7. Further applications

(I) Suppose that in Lemma 5.3 the quantity xn(z) and/or the
measure an depends on a hidden parameter 03BB E A. If further

limn Pn,h = 0 uniformly in 03BB then the left hand side of (5.13) tends
to zero uniformly in 03BB; this remark implies a result of Hlawka
[7, p. 10].

Actually, uniform convergence of a net {03C8n(03BB), n e D} is nothing
but ordinary convergence of the net

where D  039B is the directed set defined by (n, 03BB) ~ (n’, ,1,’) if

and only if n  n’. In other words, uniform convergence with
respect to a hidden parameter can simply be handled by merely
replacing D by a new directed set.

(II ) Suppose we take Z as the collection of all vectors (y1, ..., Yr)
in r-dimensional Euclidean space having positive integral co-

ordinates. Let D be any directed set. For each n E D, let Qn be a
given r-dimensional interval in Z of the form

(cnj ~ dnj positive integers), and let an denote the measure on Z
defined by

(j BI denoting the number of elements in B ). Then (4.6) reduces to

Let us further choose T as the translation

with L as a fixed positive integer. Finally, assume that (4.4) holds;
this is equivalent to the assumption that

The resulting special case of Theorem 5.1 generalizes a result of
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van der Corput [6, p. 411]. More can be said on applying Theorem
5.2.

(III) Let us finally consider the case where Z is chosen as the
interval (0, ~) of all positive real numbers, together with the
a-field of all Lebesgue measurable subsets of Z; this case was first
studied in detail by Kuipers [13].

Let D be any directed set. For each n e D, let oc,, denote the
measure on Z defined by

Here, an(z) denotes a given Lebesgue measurable function on
(0, oo ), such that

Suppose further that, for each fixed zo &#x3E; 0,

As an important illustration, choose

where dn is any positive function on D such that lim dn = oo. In
any case, the assumption (7.3) implies that the basic condition
(4.4) with respect to each transformation from Z into Z of the
special form

where L is a fixed positive real number.
Let {xn(z), n e D} be a given net of measurable functions from

Z to a fixed compact group G.
Definition. By H we shall denote the collection of all positive

numbers h, such that the net

is asymptotically uniformly distributed with respect to the
summation method {03B1n, n E D}, that is
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for each non-trivial irreducible unitary representation U = U(x)
of G.
For L &#x3E; 0, m as a positive integer, put

(7.6) HL(m) = [number of k = 1, ..., m with kL 0 H].

It follows from Lemma 5.3 (with Z’ = Z) that the net {xn(z),
n e D} is itself uniformly distributed (with respect to the summa-
tion method {03B1n, n e D}), provided that

Condition (7.7) holds, for instance, if H contains a measurable
subset of density 1 at 0 (such as an interval (0, c) with c &#x3E; 0),
and it holds also if, for some L &#x3E; 0, we have kL e H for all positive
integers k (outside some set of lower density zero ). This generalizes
a result of Hlawka [9] who took an(z) of the form (7.4), xn(z) =
x(z) independent of n (and continuous in z for the case (0, c) C H).
By an obvious modification of Lemma 5.3, one easily obtains the

more general result that {xn(z), n e D} is uniformly distributed
whenever one can find arbitrarily large sets {z1, ..., zm} of positive
numbers zj such that, for all but o(m2) pairs (zi, zj) with z,  zf,
one has z;-zi e H. However, it is not sufficient that H contains
an interval as can be seen from counter examples of the type
xn(z) = x(z) = y([x/c]), where {y(k), k = 1, 2, ...} is a sequence
having two successive differences uniformly distributed modulo 1.

Let L &#x3E; 0 be fixed, and let us consider in a little more detail
them case that

(except for the integers k in some set of lower density zero). One
may regard the measurable space Z as the direct product of

In the notation (5.3), one has

(Rn(z)  oo for almost all z). By (7.8) and Theorem 5.2, we have,
for each non-trivial irreducible unitary representation U of G, that
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where

if Rn(z) &#x3E; 0; (actually, (7.9) holds under much weaker conditions
than (7.8), see Lemma 5.3.)
Now, suppose that G is second countable (so that we need to

consider only denumerable many representations U) and further
that D contains a countable cofinal subset.

It follows from (7.9) that each cofinal subset of D contains
a cofinal subsequence {nj} such that for almost all 0  z  L

one has

for each non-trivial irreducible unitary representation U of G.
Let us finally assume that an(z) is of the special form (7.4)

with dn ~ co. Then Rn(z) ~ 1/L, consequently, the above {nj} is
such that, for almost all 0  z  L we have the sequence

{xnj(z+kL)} uniformly distributed in the sense that

for each f e C (G ), v denoting the Haar measure on G. In particular,
if D denotes the positive integers and dn = n, and further xn(z) =
x(z) is independent of n, it follows from (7.8) that, for almost
all real numbers z &#x3E; 0, the sequence {x(z+kL), k = 1, 2, ...}
either has no distribution at all or it has the uniform distribution,
(both with respect to the ordinary Cesaro summation).
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