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Asymptotic expansions and analytic continuations
for a class of Barnes-integrals

by

B. L. J. Braaksma

§ 1. Introduction

§ 1.1. Asymptotic expansions for Izl -&#x3E; oo and analytic con-
tinuations will be derived for the function H(z) defined by

where z is not equal to zero and

in which Log Izl denotes the natural logarithm of Izi and arg z
is not necessarily the principal value. Further

where p, q, n, m are integers satisfying

aj(j - 1, ..., p), pj(j - 1, ..., q) are positive numbers and

a,(i-== 1, ..., p), bj(j = 1, ..., q ) are complex numbers such that

C is a contour in the complex s-plane such that the points 

resp.

lie to the right resp. left of C, while further C runs from
s = oo-ik to s = oo + ik. Here k is a constant with k &#x3E; Im b, 1 /Pl
(i = 1, ..., m). The conditions for the contour C can be fulfilled
on account of (1.5). Contours like C and also contours like C but
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with endpoints s = -i oo + a and s = ioo+O’ (a real) instead of
s = oo-ik and s = 00 +ik are called Barnes-contours and the

corresponding integrals are called Barnes-integrals.
In the following we always assume (1.4) and (1.5).
In § 6.1, theorem 1, we show that H(z) makes sense in the

following cases:
I. for every z =A 0 if p is positive where

II. if Il = 0 and

where

In general H(z) is a multiple-valued function of z.

§ 1.2. The function H(z) and special cases of it occur at

various places in the literature. A first systematic study of the
function H(z) has been made in a recent paper by C. Fox [18]. 1)
In the case that some special relations between the constants
aj, Pl, aj, bi are satisfied Fox derives theorems about H(z) as a
symmetrical Fourier kernel and a theorem about the asymptotic
behaviour of H(z) for z -&#x3E; oo and z &#x3E; 0.

The function defined by (1.1) but with the contour C replaced
by another contour C’ has been considered by A. L. Dixon and
W. L. Ferrar [12]. C’ is a contour like C but with endpoints
8 = -00 i+a and s = oo i + a (03C3 real). Their investigation
concerns the convergence of the integrals, discontinuities and
analytic continuations (not for all values of z) and integrals in
whose integrands the function defined by (1.1) with C 1B C’
(j | means: replaced by) occurs.

Special cases of the function H(z) occur in papers on functional
equations with multiple gamma-factors and on the average order
of arithmetical functions by S. Bochner [5], [5a], [6] and K.
Chandrasekharan and Raghavan Narasimhan [9]. In these papers
in some cases the analytic continuation resp. an estimation for
H(z) has been derived.
A large number of special functions are special cases of the

1) Numbers between brackets refer to the bibliography. In each paragraph the
footnotes are numbered anew.
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function H(z). In the first place the G-function and all special
cases of it as for instance Bessel-, Legendre-, Whittaker-, Struve-
functions, the ordinary generalized hypergeometric functions

(cf. [15] pp. 216-222) and a function considered by J. Boersma
[7]. The G-function is the special case of the function H(z) in (1.1)
with a, = 1 (i = 1, ..., p), Pi = 1 (i = 1, ..., q). The ordinary
generalized hypergeometric function is a special case of the

G-function with m = 1, n = p among others.
Further H(z) contains as special cases the function of G. Mittag-

Leffler (cf. G. Sansone-J. C. H. Gerretsen [28], p. 345), the

generalized Bessel-function considered by E. M. Wright [31], [35]
and the generalization of the hypergeometric function considered
by C. Fox [17] and E. M. Wright [32], [34].
The results about the function H(z) which will be derived here

contain the asymptotic expansions for [z) - oo and the analytic
continuations of the functions mentioned above. The latter

expansions and continuations have been derived by various
methods among others by E. W. Barnes [2], [3], [4] (cf. a correc-
tion in F. W. J. Olver [25] ), G. N. Watson [29], D. Wrinch [38],
[391, [40], C. Fox [17], [18], W. B. Ford [16], E. M. Wright
[81J-[36], C. V. Newsom [23], [24], H. K. Hughes [19], [20],
T. M. MacRobert [21], C. S. Meijer [22] and J. Boersma [7]. The
most important papers in this connection are those of Barnes,
Wright and Meijer.

In [3] Barnes considered the asymptotic expansion of a number
of G-functions. In the first place he derived algebraic asymptotic
expansions (cf. § 4.6) for a class of G-functions. These expansions
are derived by means of a simple method involving Barnes-
iritegrals and the theorem of residues. In the second place he
derived exponentially small and exponentially infinite asymptotic
expansions (cf. § 4.4 for a définition) for another G-function. The
derivation of these expansions is difficult and complicated. The
G-function is written as a suitable exponential function multiplied
by a contour integral. The integrand in this integral is a series of
which the analytic continuation and the residues in the singular
points are derived by means of an ingenious, complicated method
involving among others zeta-functions and other fumctions con-
sidered previously by Barnes. The contour integral mentioned
before has an algebraic asymptotic expansion which can be
deduced by means of the theorem of residues. The investigation
in [3] yields among others the asymptotic expansions of the
ordinary generalized hypergeometric functions. Barnes also
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obtained the analytic continuation of a special case of the G-
function by means of Barnes-integrals (cf. [4]).

In [22] Meijer has derived all asymptotic expansions and
analytic continuations of the G-function. The method depends
upon the fact that the G-function satisfies a homogeneous linear
differential equation of which the G-functions considered by
Barnes constitute a fundamental system of solutions. So every
G-function can be expresscd linearly in these G-functions of

Barnes and from the asymptotic behaviour of these functions the
asymptotic behaviour of arbitrary G-functions can be derived.

In [31], [32], [34] and [35] Wright considered the asymptotic
expansions of generalizations of Bessel- and hypergeometric
functions. The majority of his results are derived by a method
which is based on the theorem of Cauchy and an adapted and
simplified version of the method of steepest descents. In [33] and
[36] these methods are applied to a class of more general integral
functions. However, these methods do not yield all asymptotic
expansions: any exponentially small asymptotic expansion has
to be established by different methods (cf. [32], [34], [35]). The
results of Wright have as an advantage over the results of the
other authors mentioned before that his asymptotic expansions
hold uniformly on sectors which cover the entire z-plane. Further
the results of Wright - and also those of H. K. Hughes [19] -
contain more information about the coefficients occurring in the
asymptotic expansions.

§ 1.3. A description of the methods which we use to obtain the
asymptotic expansions and analytic continuations of the function
H(z) is given in § 2. The results cannot be derived in the same
manner as in the case of the G-function in [22] because in general
the functions H(z) do not satisfy expansion-formulae which ex-
press H(z) in terms of some special functions H(z) (if this would
be the case then we should have to consider in detail only these
latter functions as in the case of the G-function).
The analytic continuations of H(z) in the case p = 0 can be

found by bending parallel to the imaginary axis the contour
in the integral (1.1) in which from the integrand some suitable
analytie functions have been subtracted. This method is an

extension of the method of Barnes in [4].
This method can be applied also in a number of cases to the

determination of the asymptotic expansion of H(z) for Izi --&#x3E; o0

if p &#x3E; 0. Then algebraic asymptotic expansions are obtained.
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However, in some cases all coefficients in these expansions are
equal to zero ("dummy" expansions) and in these cases H(z) has
an exponentially small asymptotic expansion. This expansion will
be derived by approximating the integrand in (1.1) by means of
lemma 3 in § 3.3. In this way the difficulties in the researches of
Barnes and Wright (cf. [3], [34], [35]) about special cases of these
expansions are avoided. Contrary to their proofs here the deri-
vation of the exponentially small expansions is easier than the
derivation of the exponentially infinite expansions.
The remaining asymptotic expansions of H(z) in the case

,u &#x3E; 0 are derived by splitting in (1.1) the integrand into parts
so that in the integral of some of these parts the contour can be
bended parallel to the imaginary axis while the integrals of the
other parts can be estimated by a method similar to the method
which yields the exponentially small expansions. Some aspects of
this method have been borrowed from Wright [33].

In the derivation of the asymptotic expansions of H(z) the
estimation of the remainder-terms is the most difficult part. The
method used here depends upon the lemmas in § 5 which contain
analytic continuations and estimates for a class of integrals
related to Barnes-integrals. This method is related to the indirect
Abelian asymptotics of Laplace transforms.
The remainder-terms can also be estimated by a direct method

viz. the method of steepest descents. This will be sketched in

§ 10. In the case of the exponentially infinite expansions
of H(z) this method is analogous to the method of Wright
in [33].
The asymptotic expansions of H(z) are given in such a way that

given a certain closed sector in the z-plane this sector can be
divided into a finite number of closed subsectors on each of
which the expansion of H(z) for Izi - oo holds uniformly in arg z.
Moreover it is indicated how the coefficients in the asymptotic
expansions can be found.

§ 1.4. The results concerning H(z) are contained in theorem 1
in § 6.1 (behaviour near z = 0), theorem 2 in § 6.2 (analytic
continuations and behaviour near z = oo in the case fl = 0),
theorem 3 in § 6.3 (algebraic behaviour near z = oo in the case
u &#x3E; 0), theorem 4 in § 7.3 (exponentially small expansions in the
case ,u &#x3E; 0), theorems 5 and 6 in §’9.1 (exponentially infinite
expansions in the case ,u &#x3E; 0) and theorems 7-9 (expansions in
the remaining barrier-regions for ,u &#x3E; 0). In these theorems the
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notations introduced in (1.8), (1.10) and the definitions I-IV in
§ 4 are used. The terminology of asymptotic expansions is given
in § 4.4 and § 4.6. In § 9.3 we have given a survey from which one
may deduce which theorem contains the asymptotic expansion
for Izl -&#x3E; ao of a given function H(z) on a given sector. In § 10.2
and § 10.3 some supplements on the theorems in § 6 and § 9 are
given.

In § Il the results about the function H(z) are applied to the
G-function: see the theorems 10-17. The asymptotic expansions
and analytic continuations given in [22] are derived again. An
advantage is that the asymptotic expansions are formulated in
such a way that they hold uniformly on closed sectors - also in
transitional regions - while moreover the coefficients of the

expansions can be found by means of recurrence formulae. The
notations used in the theorems and a survey of the theorems are

given in § 11.3.
In § 12.1 and § 12.2 the results concerning H(z) are applied to

the generalized hypergeometric functions considered by Wright
(cf. theorems 18-’22). A survey of the theorems and the notations
are given at the end of § 12.1 and in § 12.2. In § 12.3 a general
class of series which possess exponentially small asymptotic
expansions is considered. In § 12.4 the generalized Bessel-function
is considered. The results are formulated in the theorems 24-26.
The notations used in these theorems are given in (12.45).

§ 2. Description of the methods

§ 2.1. In this section we sketch the method by which the
algebraic asymptotic expansions for Izi -&#x3E; oo resp. the analytic
continuation of the function H(z) in case 1 resp. II of § 1 will be
derived. First we consider the simplest cases which are analogous
to the simplest cases considered by Barnes in [3] and [4].
To that end we replace the contour C in (1.1 ) by two other paths

L and Ll. L resp. L, runs from s = w to s = w+il resp. w-il
and then to s = oo +il resp. 00 -il, while both parts of L resp. LI
are rectilinear. Here w and 1 are real numbers so that
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Then we easily deduce from (1.1) and the theorem of residues that

where

Formula (2.4) holds in case 1 and also in case II of § 1. For the
consideration of the integrals in (2.4) we need approximations for
the function h(s). Therefore we write h(s) as a product of two
other functions. Using

we see that

where if

resp.

we define

resp.

For h0(s) resp. h1(s) approximation formulae are formulated in the
lemmas 2 and 2a in § 3.2 resp. 4a in § 4.3. From these formulae
estimates for h(s) can be obtained.
Now define ôo by

Consider the case that

Then we may derive from the estimates for h(s) mentioned above
that the lemmas 6-7a from § 5 can be applied to the integrals in
(2.4) for certain values of z; the path of integration L resp. LI in
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(2.4) may be replaced by the half-line from s = w to s = zv-f-ioo
resp. w-Íoo:

if p = 0, (1.9) and

holds and also if fl is positive and (2.15) is satisfied. The integral
in (2.14) is absolutely convergent if p &#x3E; 0 and (2.15) holds. If
,u = 0 then H(z) can be continued analytically by means of (2.14)
into the domain (2.15). If ,u is positive then

for Izl -&#x3E; oo uniformly on every closed subsector of (2.15) with
the vertex in z = 0. Hence by definition IV in § 4.6

for Izi - oo uniformly on every closed subsector of (2.15) with the
vertex in z = 0, if pis positive. The asymptotic expansion (2.16) is
algebraic.

In the case that p = 0 another application of the lemmas 6
and 6a shows that the integral in (2.14) - and so H(z) - can be
continued analytically for Izi &#x3E; P-1.
Next we drop the assumption (2.13) and we extend the method

used above to obtain the analytic continuation of H(z) if p = 0
and the algebraic asymptotic expansion of H(z) for Izl -&#x3E; oo if

Il &#x3E; 0 in the general case. Therefore we define (cf. (2.10) for h0(s)):
(Pw(Z) == Y residues of ho(s)z8 in those points s for which

(2.17) Re s &#x3E; w as well as s = (a;-1 - v)/a; (j = 1, ..., p;iv = 0, 1, 2, ... ).

Let r be an arbitrary integer and let ô,, K, Ci and Dj be given by
the definitions 1 and II in § 4.2. Then it easily follows from (1.1),
the theorem of residues, the definition of L, Ll, Qw(z) and Pw(z)
(cf. (2.5) and (2.17)) and (2.7) that

in case I and also in case II of § 1. Like in (2.4) we want to stretch
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the path of integration L and LI in (2.18) to the straight line
Re s = w. This is possible if p &#x3E; 0,

and

hold and also if p = 0, (1.9), (2.19) and (2.20) hold. The proof
depends on the lemmas 6-7a from § 5. The assumptions con-
cerning the integrands in these lemmas can be verified with the
help of the estimates in the lemmas 2, 2a and 4a from § 3.2 and
§ 4.3 for the factors of the integrand in (2.18). Moreover the
lemmas 6-7a applied to the integrals in (2.18) furnish the analytic
continuation of H(z) into (2.20), if p = 0 and (2.19) holds, and
the algebraic asymptotic expansion of H(z) on subsectors of (2.20)
if (2.19) is satisfied and p is positive. The results are formulated in
theorem 2 and theorem 3 in § 6 where also the complete proof is
given. The case with (2.13) appears to be contained in theorem 2
(cf. remark 1 after theorem 2) and theorem 3.

§ 2.2. In this section we consider the exponentially small

asymptotic expansions of H(z). A condition for the occurrence
of these expansions is that n = 0. If n = 0 then Qw(z) = 0 by
(2.5) and Q(z) represents a formal series of zeros (cf. (4.26)). So if
n = 0, u &#x3E; 0 and (2.13) are fulfilled then by (2.14)

on (2.15 ) where the integral in (2.21) converges absolutely on
(2.15), and moreover by (2.16) and the definitions in § 4.6 we have
H(z) = 0(z’°) for Izl --&#x3E; oo uniformly on closed subsectors of (2.15)
with the vertex in z = 0 and where w is an arbitrary negative
number. Hence in this case better estimates for H(z) have to be
obtained. It appears that H(z) has an exponentially small asymp-
totic expansion in this case.
To derive this expansion we first treat the special case that

n = 0, m = q, Il &#x3E; 0. Then ô. = fl7t by (1.8) and (2.12). So the
sector (2.15) can be written as

We temporarily denote the function H(z) for which the assump-
tions above are satisfied by Ho(z). Further we denote h(s) by
h2(s) in this case. So by (1.3), if
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then

Hence if (2.22) is satisfied then by (2.21)

where the integral is absolutely convergent.
To the factor h2(s) of the integrand in (2.25) we want to apply

lemma 3 in § 3.3. Therefore we choose an arbitrary non-negative
integer N and next the real number w so that besides (2.1) and
(2.2) also

is satisfied. Then we derive from lemma 3 and (2.25):

on (2.22); all integrals in (2.27) converge absolutely (cf. § 7.1 for
details of the proof). To the first N integrals in (2.27) we apply
(cf. §7.1)

for i = 0, ..., N-1 and (2.22). So the first N terms at the

righthand side of (2.27) vanish exponentially on closed subsectors
of (2.22) with the vertex in z = 0.
Next we have to estimate the last integral in (2.27) which we

denote by a(z). So if (2.22) is fulfilled

(cf. (3.11) for the notation (Â)2). These integrals converge abso-
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lutely as this is also the case with the integrals in (2.27). VTe
estimate o(z) in a crude manner with the method of indirect
Abelian asymptotics (cf. G. Doetsch [13] II p. 41). An alternative
approach will be sketched in § 10.1; there we use the method of
steepest descents.
Here we start with the formula

for Re s = w and (2.22); on account of (2.26) the integral is

absolutely convergent. In the last integrand in (2.29) we replace
the lefthand side of (2.30) by the righthand side of (2.30) and
next we revert the order of integration (justification in § 7.2);
then we obtain

for (2.22) where for t &#x3E; 0:

So a(z#) and p(t) are related to each other by the Laplace trans-
formation. By (3.33)

for 1 s 1 -&#x3E; oo uniformly on Re s  w (cf. § 7.2 for all details of the
proofs of (2.33)-(2.36)). Then it is easy to deduce that

for t &#x3E; 0 and some constant K independent of t. Further it

appears that p(t) = 0 for 0  t  1. From this, (2.34) and (2.31)
we derive

for |z| - oo uniformly on every closed sector with vertex z = 0
which is contained in (2.22). From (2.27), (2.28), (2.29) and (2.35)
we may derive

for Izl --&#x3E; oo uniformly on every closed sector with vertex in z = 0
and which is contained in (2.22). Here N is an arbitrary non-
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negative integer, the lower resp. upper signs belong together and
EN(z) is defined in definition III in § 4.4. From (2.36) we im-
mediately derive the exponentially small asymptotic expansions
of H(z) (or Ho(z)) in the case considered above. This will be
formulated in theorem 4 in § 7.3.
Now we consider the case that p &#x3E; 0, n == 0, 0  m  q and

(2.13) hold. Then by (2.6), (2.24) and (1.3)

if (2.23) is fulfilled. The factor of h2(s) in (2.37) satisfies

where M is a positive integer, roo, ..., wM are real and independent
of s with

(cf. (1.8) and (2.12)) while To,..., ÍM are complex and independent
of s with

By (2.39) we have if (2.15) holds:

for i = 0, ..., M. Since further (2.25) holds for (2.22), now also
(2.25) with z 11 zeifJJ is valid on (2.15) by (2.41). From this, (2.21),
(2.37) and (2.38) we deduce

This implies on account of (2.36) and (2.41)

for Izl --&#x3E; oo uniformly on closed subsectors of (2.15) with vertex
z = 0 and for every non-negative integer N. In (2.43) the upper
resp. lower signs in the products belong together but for different
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values of i the terms may be taken with different signs. With the
help of lemma 5 from § 4.5 we can now derive the asymptotic
expansion of H(z) in the case we consider here. These expansions
which are again exponentially small are given in theorem 4 in
§7.3.

§ 2.3. We have to consider now the methods which can be
used to obtain the asymptotic expansions of H(z) which are not
algebraic and not exponentially small in the case y &#x3E; 0. Therefore
we consider a sector

where r is an integer, ô, is defined in definition 1 in § 4.2 and 80
is a positive number independent of z.

Let N be a non-negative integer and w a real number satisfying
(2.1), (2.2), (2.26) and

while 1 is defined by (2.3). Then we have to approximate the
integrals in (2.4) on the sector (2.44). This will be done by using
(2.7) for h(s) and approximating hl(s). However, in the general
càse it appears that we have to use different approximations for
hl(s) on L and on LI contrary to the case where (2.19) holds and
where we could use the same approximation on L and on Li (cf.
§ 2.1: (2.18»). Here we introduce integers Â and v so that

Here K is given by definition II in § 4.2 and r and so are the same
as in (2.44). Then we may deduce from lemma 7 and lemma 7a
from § 5, (4.8), (4.9) and lemma 2 in § 3.2 that

for Izl -&#x3E; oo uniformly on (2.44).
Now define for z ~ 0 and p &#x3E; 0:
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Then by (2.17) and the definition of L and Ll:

From (2.4) and (2.47)-(2.49) we may deduce

for [z[ ---&#x3E; oo uniformly on (2.44). Hence it is sufficient to derive
estimates for F(z) for then we deduce by means of (2.50) estimates
for H(z).
To derive the estimates for F(z) we choose a constant a such

that 0  e  tfln. Then by (2.48), lemma 7 in § 5.2 and lemma 2
in § 3.2 we have

for Izi -&#x3E; oo uniformly on (5.14). In the same way using (2.49) and
lemma 7a in § 5.3 we obtain

for Izl -&#x3E; oo uniformly on (5.29).
For the consideration of F(z) on the sector

we use the property

(2.54) le=FP1TiBjsin n(fls+oc)1 is bounded for + Im s &#x3E; l,
where the upper resp. lower signs belong together. Using lemma 7
from § 5.2, the property (2.54) and lemma 2 from § 3.2 we may
deduce

for Izl --&#x3E; oo uniformly on (2.53). In view of

the definition of F(z) in (2.48) and (2.55), (2.56) imply
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for Izl --&#x3E; oo uniformly on (2.53). By (3.25) and (2.6) we may
write instead of (2.58)

for Izi --&#x3E; oo uniformly on (2.53) where

Using (2.59) and (7.1) we infer

for Izi -&#x3E; oo uniformly on (2.53). So we have to estimate the
analytic function z(z) on (2.53).
From (2.60), (3.27), (2.54) and the lemmas 7 and 7a from § 5

wé deduce that if arg z = -1 n + e

The last integral is of the same type as that in (2.29); the only
difference is that almost all poles of rN(s) are lying to the left of
Re s = w while all poles of pN(s) are lying to the right of Re s = w.
The integral in (2.62) can be rewritten using (2.30) as a multiple
integral; in this multiple integral we revert the order of integration
like at (2.29) and (2.31). Then we obtain for arg z = ]poe+s

where for t &#x3E; 0
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In view of (3.27) we have

for Isl - co uniformly on Re s &#x3E; w. So the integral in (2.64)
converges absolutely for t &#x3E; 0 and

for t &#x3E; 0; here K is independent of t. From lemma 2 and (2.66)
we derive that for t &#x3E; 1 the function r(t) is equal to the sum of
the residues of the integrand in (2.64) in the poles s with Re s &#x3E; w

multiplied by 2ni( -1 )N+l. The number of these poles is finite and
it follows that the function r(t) for t &#x3E; 1 can be continued analyti-
cally for t # 0. It is easy now to estimate the integral in (2.63)
with the help of the lemmas 6 and 6a from § 5 and the properties
of r(t). The results are formulated in lemma 8 in § 8.
From the properties of F(z) mentioned in lemma 8 and (2.50)

we deduce in § 9 the asymptotic expansions of H(z) for Izl --&#x3E; oo

in the case Il &#x3E; 0 which are not contained in the theorems 3 and 4

(though theorem 3 can also be deduced from lemma 8 and (2.50)
again). In § 8 the details of the proofs of the assertions in § 2.3 are
presented.

§ 3. Approximations for quotients of gamma-functions

In this paragraph approximation formulae for the functions
ho(s) defined by (2.10) and h2(s) defined by (2.24) will be derived.
Here and in the following paragraphs we use the notation of § 1.1
and § 2.1. Further Log z always denotes the principal value of
log z and I;=k ... is interpreted as zero if k &#x3E; l.

§ 3.1. In this section we derive lemma 1 on which the approxi-
mations for ho(s) and h2(s) will be based. Lemma 1 will be derived
from the formula of Stirling in the following form:

Let a be a complex number, e a constant satisfying 0  e  n

and M a non-negative integer. Then

for isl --&#x3E; oo uniformly on the sector
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Here B,(a) is the value of the j-th Bernoulli polynomial in the
point a. These polynomials are defined by

That (3.1) holds uniformly on the sector (3.2) for Isl -&#x3E; oo means

that there exist positive constants K, and K2 such that for

lsl &#x3E; K and (3.2):

where 0(s-m) is the 0-terin in (3.1).
(3.1) occurs in A. Erdélyi a.o. [15], p. 48 formula (12), however,

without mentioning the uniformity on (3.2). A proof of (3.1)
including the uniformity on (3.2) is contained in a paper by
C. H. Rowe [27]. For a particular case see E. T. Whittaker and
G. N. Watson [30], § 13.6.
From the formula of Stirling we derive

LEMMA 1.

Suppose g and h are positive integers, p, (j = 1, ..., g) and
ai (j = 1, ..., h) are positive constants so that

and Ci (j =1, ..., g), di (j = 1, ..., h), À and c are complex constants
with À # 0. Define P(s) by

for

Further we de f ine

and

Then there exist numbers Eo, El , ... independent o f s but

depending on the other parameters used above, with the following
property:
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1 f N is a non-negative integer and e is a constant with 0  e  n

then

for Isl --&#x3E; oo uniformly on (3.2). Here the definition of (Âs+c);
follow from:

In (3.10 ) the value of Eo is given by

PROOF: From (3.6) and the formula of Stirling (3.1) we derive
that for Isi -&#x3E; oo uniformly on (3.2)

Here log P(s) is not necessarily the principal value and the D,
are numbers only depending on j, p,, , Cv (v = 1, ..., g) and Qv ,
dv (v = 1, ..., h ) but independent of the choice of N, of e and of s.

Regrouping the terms in the righthand side of (3.13) and using
(3.5), (3.8), (3.9) and (3.12) we obtain

where

for 181 --&#x3E; oo uniformly on (3.2)
From the relation

we deduce

where C; (j = 1, 2, ... ) is a number which only depends on those
numbers Dh for which h = 1, ..., N-1 and h  i. Replacing w
by l/s in (3.16) we obtain
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for 1 s 1 -&#x3E; oo uniformly on (3.2). On account of the remark after
(3.13 ), Ci (j = 1, ..., N - 1) only depends on i, Pv, Cv (v = 1, ..., g )
and a," d, (v =1, ..., h ) and is independent of N, of a and of s.

Since ew = 1+0(w) for w --&#x3E; 0 it follows from (3.15) that

for 1.91 -&#x3E; oo uniformly on (3.2). From (3.14), (3.17) and (3.18)
we deduce

and

for Isi -&#x3E; oo uniformly on (3.2). This implies (3.10) for N = 0 and
N = 1.

Next we derive (3.10) from (3.19) for N &#x3E; 2. First we show
that if k is an integer with 2  k  N then

for 1 s 1 -&#x3E; oo uniformly on (3.2 ). Here Ej (i=I,...,N-1) resp.
ek, 1 (k = 2, ..., N -1; i = k, ..., N -1 ) are numbers only depend-
ing on Â, c, C1, ..., Cj, E. resp. k, Â, c, CI, ..., , C;, Eo.
From the expansion of l/(Âs+c)k near s = oo it follows that for
kN-l: :

for Isl - oo uniformly on (3.2). Here the numbers dk,j only
depend on k, i, Â and c. (3.21) implies

for ]s] -&#x3E; oo uniformly on (3.2). From (3.22) with k = 1 we
deduce (3.20) for k = 2. Further if N &#x3E; 2 and (3.20) holds for
some integer k with 2  k  N then from (3.20) and (3.22) we
derive (3.20) with k replaced by k + 1. Hence (3.20) holds generally
for 2  l  N.

Using (3.20) with k = N, (3.19) and



258

for Is! -&#x3E; oo uniformly on (3.2) we obtain (3.10) for 181 - o0
uniformly on (3.2).

REMARK: Lemma 1 also occurs in a more elementary form in
the book of W. B. Ford [16] p. 74 and in H. K. Hughes [20],
p. 458.

§ 3.2. From lemma 1 we deduce approximations for ho(s).

LEMMA 2.

We use the notation of § 1 (cf. (1.8) and (1.10)). ho(s) is defined
by (2.10) i f (2.8) holds. N is an arbitrary non-negative integer and e
is a constant so that 0  e  n. Suppose ju is positive and define

Then there exist numbers A o , , A 1, ... independent o f s, o f N
and of 8 and only depending on p, q, ce, , ai’ P,, bi with the following
property:

Il rN(s) is defined by

if (2.8) and

hold and if (PflP)-S has the principal value then rN(s) is analytic in s
in its domain o f de f inition and

for Isl --&#x3E; oo uni f ormly on (3.2). In particular

PROOF: That TN(S) is analytic in s in the domain where (2.8)
and (3.26) hold will be clear.
To prove (3.27) we apply lemma 1 with Â = U , c = OC,
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Further by (3.9) and (3.24) we have b = 0 while by (3.8), (1.8)
and (1.10): el’ = pp,P. Hence by (3.10)

for s - oo uniformly on (3.2). The numbers A , play the part of
the numbers E, in (3.10). So Aj, depends on j, p, q, (Xy, a, (v =
1, ..., p), py, bY (v = 1, ..., q) only. (3.25) and (3.30) imply (3.2’ï)
for Isl --&#x3E; oo uniformly on (3.2). Finally (3.28) follows from (3.12).
REMARK: Lemma 2 occurs in a slightly different form in

E. M. Wright [32] p. 287 and a special case of lemma 2 occurs in
H. K. Hughes [20] p. 459. For oc, = 1 (j = 1, ..., p) and P, = 1
(j = 1, ..., q) this lemma is contained in papers by a.o. T. D.
Riney [26] p. 245 and p. 246, J. G. van der Corput [11] p. 337 and
E. M. Wright [37] p. 38. There recurrence formulae for the num-
bers Ao, A 1, ... are derived.

The analogue of lemma 2 for the case U = 0 is:

LEMMA 2a.
Let the assumptions of lemma 2 be satis f ied save that now p = 0

instead of u positive. Then

for Isi --&#x3E; ~ uniformly on (3.2). In (3.31) fl8 and sI-ex have the
principal values.

PROOF: On account of (1.4) we have q &#x3E; 1. As the numbers
Pi are positive /À would be positive if p = 0 (cf. (1.8)). Hence
p &#x3E; 1. We now apply lemma 1 with g = p, h = q, Pi = oc, and
Ci = 1-ai for i = 1, ..., g while a, = Pi and df = 1-bi for

i = 1, ..., h. Then (3.5) is fulfilled on account of fl = 0 and (1.8).
Further a = Log P in view of (3.8) and (1.10), while b = 2-a
according to (3.9) and (3.24). By choosing Â = 1, c = 0 and
N = 0 in (3.10) we obtain (3.31).

§ 3.3. The following lemma contains approximations for the
function h2(s) defined by (2.24).
LEMMA 3.
We use the notation o f § 1. h2(s) is defined by (2.24) i f (2.28)

holds and oc, Ao, A1, ... are given by lémma 2. N will be a non-
negative integer and a a constant so that 0  e  n. Suppose fl is
positive.



260

Then zve define

if (2.23) holds. (PuP)-s has the principal value.
Then pN(s) is analytic in s in the domain where (2.23) holds and

further

for Isi --&#x3E; oo uniformly on

(3.32) can be written also as

for (2.23) and

PROOF: From (3.32) and (2.24) we easily derive that pN(s) is
analytic in s in the domain where (2.23) holds.
To prove (3.33) we apply lemma 1 with

g = q, h=p+1, P; = {Ji and Ci = bi (i = l, ..., q), (Ji = a.i and

di = ai (i = 1, ..., p), (Jh, = #, dh, = 1-oc, Â = -,u, c = a and E
the same constant as in lemma 3. Then (3.5) holds by (1.8),
e-a = p#p by (3.8) and (1,lo ), b = 0 by (3.9) and (3.24). So (3.10)
implies

for Isl --&#x3E; oo uniformly on (3.2). The numbers E, are independent
of s.
We easily verify that
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where the last two gamma-functions exist if (3.2) holds and Isi
is sufficiently large. For sufficiently large Isl and (3.2) we sub-
stitute the righthand side of (3.39) for the terms ( -ps+ce); in
(3.38 ) and next we multiply both sides of the resulting formula
by r(flS+ 1- (X). Finally we replace s by -s and obtain

for Isl -&#x3E; co uniformly on (3.34).
For the connection between the numbers E; in (3.40) and the

numbers A , in (3.25) we now consider only values of s with
arg s = n/2, so arg (-s) = -n/2. Using (2.6) we may derive
from (2.10) and (2.24) that

for sufficiently large Isl and arg s = n/2. So by (3.40)

for Isj --&#x3E; oo and arg s = n/2.
To the sine-factors in (3.42) we apply sin z = eiZ(1-e-2iZ)/2i.

Then we obtain in view of (1.8)

if Isi is sufficiently large and arg s = n/2. Now for lsl --&#x3E; oo and

arg s = n/2 we have
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and so as (1 + w)-1 = 1+0(w) for w - 0 and because ce; and Il
are positive:

for Isi -&#x3E; oo and arg s = n/2. We use these relations and (3.24)
in (3.43). Then we obtain for /81 --&#x3E; oo and arg s = xf2:

where k is the minimum of the numbers 2xp, 21(,(Y..;(i = 1,..., p)
and 2nfJ i (j = 1, ..., q). So k is positive.
From (3.42) and (3.44) we derive

for 1.91 -&#x3E; oo and arg s = n/2.
If j = 0, 1, ..., N-1 then for Isl --&#x3E; oo and arg s = n/2

Hence (3.45) may be reduced to

for 1 -s 1 --&#x3E; oo and arg s = xf2. However, for Isl - oo and arg s = n/2
according to lemma 2 also (3.25) and (3.27) hold. A comparison
with (3.46) shows that (2x)?-Q+lE, = A; for i = 0, ..., N-1.
From (3.40) now (3.35) with pN(s)T(i-ps-ce-N) replaced by
O(r(l-fls-rx-N)) follows for Isl --&#x3E; oo uniformly on (3.34).
This is equivalent tq (3.32) and (3.33) for Isi -&#x3E; oo uniformly on
(3.34).
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§ 4. Some lemmas and definitions

§ 4.1. First a lemma will be proved which gives generalized
Fourier expansions for the function hl(s) defined by (2.11) if (2.9)
holds.

LEMMA 4.
We use the notation of § 1.1. hl(s) is defined by (2.11) il (2.9)

holds. l is defined by (2.3).
ASSERTIONS: For lm s &#x3E; l we have

while for lm s  -l

where

A f ter carrying out the multiplications and a regrouping of the
terms in the rtghthand side o f (4.1 ) resp. (4.2 ) these f ormulae may
be written as

f or lm s &#x3E; l resp. lm s  -1 where the series are absolutely
convergent. Here {y;} (i = 0, 1, 2, ... ) is an increasing sequence
o f real numbers independent of s; Ci and d; (j = 0, 1, ... ) are

complex numbers independent of s. yo, co and do are given by (4-3).
The numbers (y;-yo)/271 (i = 1, 2, ... ) are linear combinations
of the numbers oc,,+j ..., oe , P1’ ..., Pm with non-negative integral
coefficients.

PROOF: In (2.11) we apply sin z = eiz(l -e-2iz),/2i. Then we
obtain

if Co and yo are given by (4.3).
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For i = 1, ..., m and lm s &#x3E; 1 we have on account of (2.3) and
because Bj is positive:

Re {2ni (Pjs - bj)l = 2npj Im ( -s+b;ffl; )  2nfJ;{ -l + Im b;ffl; )  0

and so lexp 2ni(p,s-b,)l  1. Hence

for i = 1, ..., m and Im s &#x3E;- 1 where the series in the righthand
side is absolutely convergent. Using this formula with (4.5) we
obtain (4.1) for Im s &#x3E; l.

Next we carry out the multiplications in the righthand side of
(4.1) and then we regroup the terms such that they are finally
written down in order of increasing powers of exp (is). It will be
clear that the first term then becomes co exp (iyos) for oc, and Pi
are positive. Thus we get the first part of (4.4). These operations
on the series in (4.1) are legitimate: for a product of absolutely
convergent series remains absolutely convergent after carrying
out the multiplications; also after a regrouping of the terms in
this series the resulting series is absolutely convergent. So the
series in the first part of (4.4) is absolutely convergent for Im s &#x3E; l.

(4.2) and the second part of (4.4) can be obtained by using
sin z = -e-iz(I-e2iz)/2i in (2.11). Then we get

with do and yo given by (4.3). Next we use

for lm s  - land i = 1, ..., m. Application of this formula in
(4.6) leads to (4.2) for Im s  - l. From (4.2) we may derive the
second part of (4.4) for lm s  -l. The details of the proofs
are omitted as they are similar to those in the preceding case with
(4.1) and the first part of (4.4). That in the second part of (4.4)
terms exp (-iYiS) occur will be clear from a comparison of (4.1)
and (4.2). Further we see that Yi-Yo (j = 1, 2, ...) is a linear

combination of the numbers (Xn+l’ ..., aD, {JI’ ..., (Jm with non-
negative integral coefficients.

§ 4.2. In the formulation of the theorems about H(z) we shall
use numbers which are derived from the Yi’ Ci and dj of lemma 4.
They are given by the following two definitions:
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DEFINITION 1: (à;) (j = 0, +1, +2, ... ) is the monotonie in-

creasing sequence which arises if we write down the set of numbers
Yg and -Yh (g, h = 0, 1, ... ) in order of increasing magnitude such
that if there are contingently two equal numbers in this set zve only
write down this number once, while further bo = yo (cf. (4.3)).
(So in this sequence à;  ôh if j  h).
For an alternative definition see § 10.3.
If r is an arbitrary integer we may distinguish three different

cases for ô,:
a) there exists a non-negative integer g such that ô, = Yg

while 8r # -y; for i = 0, 1, ....
b) there exists a non-negative integer h such that ô, = -Yh

while ôr =1= Yi for i = 0, 1, ....
c) there exist two non-negative integers g and h such that

Ôr == Y,7 == -Yh.
DEFINITION II: With the preceding notation we de f ine the integer

K by aK == - yo = - ô . Further i f r is an arbitrary integer we define
in case a): Cr = Cg, , Dr = 0; in case b): C,. = 0, Dr = - dh; in
case c): Cr = Cg, Dr = - dA.

§ 4.3. Using the preceding definitions and lemmas we derive:

LEMMA 4a.
We use the notation o f § 1, (2.3), (2.11) and the definitions I and II.

r is an integer.
ASSERTIONS : In the first place

(4.7) K&#x3E;-l,K=-l if 5o&#x3E;O’Cr=O if rO,Dr=Oifr&#x3E;K.
Further there exists a positive number K independent of s so

that 1)

f or lm s &#x3E; l while for lm s  -l:

PROOF: Suppose first Yo &#x3E; yo. Then ô,, &#x3E; ao , ôo  0 and
80 K &#x3E; 0. Suppose next -yo  yo. Then -y;  -yo  i’o  Ya
for i, g = 0, 1, ... since {y;} (j = 0, 1, ... ) is monotonic in-

1) In the special case do &#x3E; 0, K = -1, r = 1 the formulae (4.8) and (4.9) are
related to the second amalgamation lemma in C. Fox [18] p. 419. Cf. the beginning
-of § 3 for the notation.
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creasing by lemma 4. From the construction of the ô, it follows
now that ô -i = -ro, ôo &#x3E; 0 and K = -1. Hence in all cases

K ’-&#x3E; -1.

If r  0 then, since ôo = ro, r  yo  1’i(i = 0,1, ... ) and
so Ô,, =A y, (j = 0, 1, ... ). So case a) and case c) of § 4.2 cannot
occur and therefore C, = 0. In the same way one may prove
Dr = 0 for r &#x3E; K. Thus (4.7) follows.
Next we may consider (4.8) and (4.9). From (4.4), definition II

and (4.7) it follows that

for lm s &#x3E; 1 resp. Im s  -l. The first resp. second series in

(4.10) is absolutely convergent for Im s h 1 resp. Im s  - -l. Thus.
in view of (4.10) and (4.7) we have for Im s &#x3E; l:

This shows that there exists a number K independent of s such
that (4.8) holds for Im s &#x3E; l.

In the same way using the second part of (4.10) we may deduce
(4.9) for lm s  -l with a suitable K independent of s. We
choose K so large that in (4.8) and (4.9) the same K can be used.

§ 4.4. In the formulation of theorems about the asymptotic
behaviour of H(z) we use:

DEFINITION III: Suppose N is a non-negative integer and
Il - defined by (1.8) - is positive. Let P resp. a, Ao, Al, ... be
defined by (1.10) resp. in lemma 2 in § 3.2. 03A9 will be a subset of the
Rieinann surface of log z containing some subsector of this surface.
c resp. y will be a complex re.9p. real constant. Finally i f d &#x3E; 0 and

z =1= 0 then.

Then functions which are equal to
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for Izl --&#x3E; oo uniformly on Q will be abbreviated by cEN(ze’y); stated
more precisely:

Il an equality holds f or [z [ - co uni f ormly on Q and this equality
contains the expression (4.12) then by definition this equality in which
the expression (4.12) is replaced by CEN (zeiY ) holds for Izl-&#x3E; oo uni-
f ormly on Q and conversely. 

Further we define E(z) by a f ormal series:

In addition to definition III we say that if q;(z) is an asymptotic
series, h is a non-negative integer, lo , ..., ll resp. so,..., sh are
complex resp. real constants then the assertion

for Izi -&#x3E; oo uniformly on Q means: f(z) is defined for the points
z on Sl with sufficiently large Izl and there exists a function y(z)
also defined for the points z on S2 with sufficiently large Izl so
that y(z) - qJ(z) for Izi -&#x3E; oo uniformly on S2 and so that for
every non-negative integer N

for [zj --&#x3E; oo uniformly on Q. Of course it is sufficient that the last
relation holds for arbitrary large N.
The assertion

for Izi -&#x3E; oo uniformly on S2 means that f(z) is defined for the

points z on Sl with sufficiently large [z[ and that for arbitrary
non-negative integers N

for zl -&#x3E; oo uniformly on S2. Of course it is sufficient that the last
relation holds for sufficiently large integers N. If (4.14) holds for
Izi - oo uniformly on G and moreover arg z+s;1  !,un-e for z
on Q, i = 0, ..., hand sa constant with 0 e 1 nthen we
say that f (z) has an exponentially in f inite asymptotic expansion
for Iz -&#x3E; 00 on Q: The terms in the formal series for E(z exp isi)
(cf. (4.18») contain the factor exp (fJflPzeiBi)l/P which tends to
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infinity for (z( - oo uniformly on S2 because

If (4.14) holds for Izl --&#x3E; oo uniformly on Q and

and e a constant such that 0  e  1 n then we say that f(z ) has
an erponentially small asymptotic expansion for Izl --&#x3E; oo on Q : The
terms of the formal series for E(z exp is,) (cf. (4.13») contain the
factor exp (fJ flPzei8i)1/p which tends to zero for Izl --&#x3E; oo uniformly
on Q.

§ 4.5. Here two lemmas concerning the function EN(z) defined
above will be proved.
LEMMA 5.

N, fl and Q satisfy the assumptions o f de f inition III. e is a constant
such that 0  e  2px, k1 and k2 are complex constants and t1 and
t2 are real constants so that for z on Q:

and

Suppose jinally that

for 1 z 1 -&#x3E; oo uniformly on Q.
Then also for Izl - oo uniformly on il

PROOF: For h = 1, 2 we put 99, = arg z+th. If z belongs to S2,
then on account of (4.15) and (4.16):

From this and

cos (9’2/fl)- cos (9’1/ fl) = -2 sin {( ICJJ21-19’11 )/2fl} sin {( 19’2B + 1q;11 )/2#}
we deduce that for z on D:
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This last formula implies that for i = 0, ..., N; z on 03A9 and

IZI ¿ 1:

The last side of (4.19) tends to zero for Izl 1 --? oo and so the lefthand

side of (4.19) is o(1) for Izi - oo uniformly on S2. Hence for

i = 0, ..., N:

for Izi - oo uniformly on S2. From this and the definition for

EN(z) by means of (4.12) we easily derive

for Izi - oo uniformly on Q. This property, the definition of
EN(z) and (4.17) imply (4.18) for Izi --&#x3E; oo uniformly on Q.

LEMMA 5a.

N, Il and Q satisfy the assumptions o f definition III. w is a real
number satisfying (2.1) and (2.2). Qw(z) and Pw(z) are defined by
(2.5) and (2.17). h is an integer, h &#x3E; -1, t, so, ..., Sh resp. lo, ..., lh
kl, k2, ka are real resp. complex constants, e, ti , t2 are real constants
so that for z on Q:

Suppose

f or Izl - co uni f ormly on Q.
Then also (4.18) holds for Izl - oo uniformly on Q.
1 f in (4.22) the term Ic2 Er, (z exp it2) is omitted and i f the condition

(4.21) is deleted then the assertion (4.18) remains valid.

PROOF: If z belongs to Q then (4.15) and (4.16) are fulfilled
according to (4.20) and (4.21). Hence by lemma 5:
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for Izl --&#x3E; oo uniformly on S2. Further there exists a positive
constant K independent of z such that if z belongs to S2 then

on account of (4.20). From the definitions of Qw(z) and Pw(z) in
(2.5) and (2.17) we easily deduce that there exists a real number k
independent of z such that Qw(z) = 0(zk), Pw(zei’J) = 0(zk) for
[z( -&#x3E; oo uniformly on Sz and for i = 0, ..., h. Hence by (4.24)

for Izi -* oo uniformly on S2. From (4.25), (4.23) and the definition
of EN(z exp itl) (cf. (4.12)) we deduce (4.18) for Izi - oo uniformly
on Q.

If the term k2 EN(z exp it2 ) in (4.22) does not appear and
condition (4.21) is deleted then (4.23) holds for Izi -&#x3E; co uniformly
on Q and (4.18) can be deduced from (4.23) in the same way as
above.

§ 4.6. Finally we use in the theorems about H(z):
DEFINITION IV: Q(z) resp. P(z) is defined by a formal series:

Here ho(s) and h(s) are defined by (2.10) and (1.8).
If Q is a sector on the Riemann surface of log z, h is an integer

with h 2 -1 and lo, ..., 1. resp. so, ..., Sh are complex resp. real
constants then

for Izi -&#x3E; oo uniformly on S2 means that for every real number w
satisfying (2.1) and (2.2)
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for Izi -&#x3E; oo uniformly on Q (cf. (2.5) and (2.17)). It will be clear
that it is sufficient to require (4.30) for a sequence of numbers w
tending to -oo while moreover the term O(z’°) in (4.30) may be
replaced by O(zw+t) where t is a constant independent of z and of w.
The terms in the series in (4.26) and (4.27) are of the form

czk with c and k independent of z save in the case that there are
multiple poles among the points (1.7) or (4.28); then there occur
terms of the form cz" times a polynomial in log z.

An expansion of the type (4.29) is called an algebraic asymptotic
expansion (so also in the case that the formal series in (4.26) and
(4.27) contain logarithmic terms).

§ 5. Estimâtes for some classes of integrals

This paragraph contains some lemmas which give with some
extensions the estimates which Barnes used for the determination
of the analytic continuations and algebraic asymptotic ex-

pansions in the simplest cases of the G-function and the generalized
hypergeometric function (cf. § 2.1 and [3], [4]). The proofs we
give of these lemmas are similar to those of Barnes.

In the following z8 is always defined by (1.2) for z =f=. 0 where
arg z is not necessarily the principal value. If we put any condi-
tion on arg z we always exclude 2=0. We always assume that
the path of integration in integrals of the type J:+ioo, j£°°° and
j§+§§g are rectilinear. Finally we use the notation Il which means
replaced by.

§ 5.1. The first lemma reads

LEMMA 6.

Let w, l and or be real constants with l &#x3E; 0. L will be the contour in
the complex s-plane from s = w to s = w + il and then to s = il+ 00
where the parts o f L between these points are rectilinear. w, 1 and L
are not necessarily the same as in § 2. S is the set o f points s f or which
Re s &#x3E; w as well as Im s &#x3E; 1.

Suppose f(s) is defined and continuous on L and on S, f(s) is
analytic in the interior 01 S and

for Isl - oo uniformly on S.
Then the integral

resp.
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is absolutely convergent and represents an analytic function of z
on the Riemann surface o f log z f or 0  izl  1 resp. arg z &#x3E; 0.

The function in (5.3) resp. (5.2) is the analytic continuations of the
function in (5.2) resp. (5.3) for arg z &#x3E; 0, Izl &#x3E; 1 resp. arg z  0,
0  izl  1.

Corresponding to an arbitrary positive constant e there exists a
positive constant K independent o f z so that 1 )

for

In particular one may choose K = fww+iw 1 t (8) 1 e-1 " » 1 d.,? | (this integral
is convergent).

If a  -1 then the integral (5.2) resp. (5.3) converges absolutely
and is continuous in z for 0  izi  1 resp.

Il a  -1 then corresponding to an arbitrary positive constant ko
there exists a constant Ko independent o f z so that (5.4) with
K[ [Ko holds for (5.6) and so that

PROOF: By (1.2) we have for z e 0

Now let Dl be a simply-connected domain on the Riemann
surface of log z, such that 0  [z[  1 on Dl and Log Izi resp.
l arg zl have negative resp. positive upper bounds on Dl which
we denote by -Ml resp. M2. So by (5.9) we have for z on Dl,
lm s = l and Re s 2 w:

From this and (5.1) it follows that the integral (5.2) converges

1) cf. G. Sansone-J. C. H. Gerretsen [28] p. 53 for this notation.
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uniformly and absolutely in Dl. Consequently 2) this integral is
analytic in z in Di. On account of the choice of Dl the integral (5.1)
also converges absolutely and is analytic in z for 0  Izi  1 on

the Riemann surface of log z.

Suppose now a  -1. Let D2 be a closed. simply-connected
domain on the Riemann surface of log z such that 0  Izi  1
and so Log Izi  0 on D2 and such that arg zl has a finite upper
bound, denoted by M3, on D2. Then by (5.9) for z on Dz, IM 8 = l,
Re s &#x3E; w again (5.10) holds with M1 110, M211M3. From this and
(5.1) with a  -1 it follows that the integral (5.2) is uniformly
and absolutely convergent on D2. Hence the integral (5.2) con-
verges absolutely and is continuous in z for 0  Izi  1 on the
Riemann surface of log z, if or  -1.

Further if (5.8) holds then Log Izi  0 and so by (5.9) formula
(5.10) holds with M1IIO, M21 1 ko n for s on L and (5.8). From this
we deduce that the lefthand side of (5.7) is at most lzlw exp (k,,ln)
JLlf(s)lIdsl for (5.8) and or  -1. Here the last integral is con-
vergent by (5.1) with a  -1. Now (5.7) follows for a suitable
Ko independent of z and for (5.8) and a  -1.

Now we drop the condition a  -1. Choose a positive constant
e and let D3 be a simply-connected domain on the Riemann
surface of log z such that 0  Izl  1 and (5.5) hold on D3 and
such that in D3 Log Izi has a negative upper bound denoted
by -M4. Further suppose lm s &#x3E; 0, Re s 2 w but s =1= w,
6 = arg (s-w) with 0  (J  ln. Then by (5.9) for z in D3:

Since the function M4 cos 0+c sin 6 is positive and continuous for
o  0 : ln this function has a positive lower bound Ms only
depending on M4 and a for 0 :5&#x3E;’ 0  in. So

for z in D3 and Re s &#x3E; w, lm s 2 0 (now 8 = zv is allowed). From
this and (5.1) we may deduce that the integral f 1(s)zsds where the
path of integration is taken along the smallest part of the circle
Is-wl = R(R &#x3E; l) between L and the half line Re s = w,
Im s 2 l, traversed from the right to the left, tends to zero for
R --&#x3E; oo and z in D3. By the theorem of Cauchy and the assump-
tions concerning f (s) this integral is equal to the integral (5.3)
minus the integral (5.2) with the modification that the contours

1) cf. E. T. Copson [10] p. 110.
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in (5.3) and (5.2) are replaced by the parts of these contours
inside the circle Is-wl = R. So the difference between these
modified integrals tends to zero for R -&#x3E; oo and any fixed z in D3.
Because for z in D3 we have 0  Izi  1 and consequently the
complete integral (5.2) converges, it follows that for z in D3 the
complete integral (5.3) converges and is equal to the complete
integral (5.2).
However, if we only require (5.5) for z and Re s = w, Im s &#x3E; 0

then by (5.9)

From this and (5.1) (we do not assume Q  20131) we infer that the
integral (5.3) converges absolutely for (5.5) and the convergence
is uniform on every bounded closed subdomain of (5.5). So (cf.
footnote 2) the integral (5.3) is analytic in z for arg z &#x3E; e and as a
is arbitrary positive also for arg z &#x3E; 0. Because in D3 the integrals
(5.2) and (5.3) are equal to each other and because they are ana-
lytic for 0  Izi  1 resp. arg z &#x3E; 0 (the last two domains contain
D3), the function in (5.2) resp. (5.3) is the analytic continuation
of that in (5.3) resp. (5.2) for 0  Izl  1 resp. arg z &#x3E; 0.

From (5.12) we deduce that the lefthand side of (5.4) is at most
equal to lzlw J:+iOOBf(s)Be-8Im8BdsB for (5.5); the last integral
converges on account of (5.1) (with no extra-condition on a).
From this (5.4) follows for (5.5) and a suitable constant K in-
dependent of z, for example K = J:+iOOBf(s)Be-8ImSBdsB.

Finally suppose a  -1 and (5.6) is satisfied. Then by (5.9)
for Re s = w, Im s &#x3E; 0 formula (5.12) with e = 0 holds. From this
formula and (5.1) we infer that the integral (5.3) converges
unifornily and absolutely on every bounded closed subdomain of
(5.6) for a  -1; so this integral is continuous in z and absolutely
convergent for (5.6) and a  -1. Further from (5.12)with e = 0
we deduce that the lefthand side of (5.4) is at most equal to
fww+"’011(s)lldsllziw for (5.6), where the last integral converges by
(5.1) with Q  -1. This implies (5.4) for (5.6) with K replaced by
a suitable constant Ko independent af z. By choosing Ko large
enough we may take the same Ko in (5.7) and (5.4) with KllKo
in the case Q  -1 and (5.8) resp. (5.6).

§ 5.2. The second lemma of the Barnes’ type is:

LEMMA 7.

Let rv, l, L, S and f(s) be defined as in lemma 6 only (5.1) is
replaced by
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for Isi -&#x3E; co uni f ormly on S. Here Il is a positive constant (u need
not satisfy (1.8)) and c is a complex constant.

Then the integral (5.2) resp. (5.3) converges absolutely and
represents an analytic function o f z on the Riemann surface o f log z
resp. on the part of this surface where arg z &#x3E; tfln. The f unction in
(5.2) is the analytic continuation of the function in (5.3) for
arg z  tfln.

Corresponding to a positive constant e there exists a positive
constant K independent o f z so that (5.4) holds if

and so the function defined originally by (5.2) or (5.3) is O(ZW)
for Izl -&#x3E; oo uniformly on (5.14).

PROOF: Let R be an arbitrary positive constant. We want to
apply lemma 6 with

Here the second f(s) is the function occurring in lemma 7. We
have to verify (5.1) now. For sufficiently large B8B and s on S we
may write

Applying the formula of Stirling (3.1) with M = 0, sll,u(s-w),
allflw+c we obtain for Isi - oo uniformly on S:

If we put 9 = arg (s-w) with 0  (J  ln for s on S and s # w
then 

Using this and (5.17) we deduce that for isl -&#x3E; oo uniformly on S

Using (5.13) and (5.15) we obtain
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for isl - oo uniformly on S. As Log 1,u(s-w)1 -+ oo for Isl --&#x3E; oo

on S and as 0  0  ln on S, the expression {... } in (5.19) is
non-negative if s belongs to S and moreover Isl is sufficiently large.
So in view of (5.19)

for 1,91 --&#x3E; oo uniformly on S. Because Is-wl!lsl a,nd Isi/is-wi are
0(1 ) for 1-sl --&#x3E; oo uniformly on S, (5.20) implies (5.1) with
Q = flw+Re c- 2 for 1 s -. 00 uniformly on S. Herewith the

assumptions of lemma 6 are verified.
By lemma 6 and (5.15) the integral in (5.2) resp. (5.3) (where

f(s) is the function in lemma 7) converges absolutely and re-
presents an analytic function of z on the Riemann surface of
log z for 0  Izl  R resp arg z &#x3E; Ífl7t. As R is arbitrary positive
the integral in (5.2) converges and represents an analytic function
of z on the Riemann surface of log z. The function in (5.2) is the
analytic continuation of the function in (5.3) for arg z  !fl7t.

Finally if Re s = w, Im s &#x3E; 0 and (5.14) holds then by (5.9)

From (5.21) we deduce that if (5.14) holds then

The last integral is convergent because by (5.18) with 6 = !n
and (5.13)

From (5.22) now (5.4) follows for (5.14) and a suitable K in-
dependent of z where in (5.4) f(s) is the function occurring in
lemma 7. ((5.4) also follows from lemma 6 with (5.15)).
§ 5.3. The following lemmas 6a and 7a are similar to the

lemmas 6 and 7. The proofs of these lemmas can be given in the
same way as in § 5.1 and § 5.2. Therefore we omit the proofs. It is
also possible to deduce the lemmas 6a and 7a from the lemmas 6
and 7 using complex conjugates and exercise 5 on p. 42 in L. V.
Ahlfors [1].



277

LEMMA 6a.

Suppose l, w and a are real numbers with l &#x3E; 0. LI will be the
contours in the complex s-plane from s = w to s = w -il and then to
s = -il+ 00 such that the parts of LI between these points are
rectilinear. Ll, w and 1 are not necessarily the same as in § 2. SI is
the set consisting o f the points s with Re s &#x3E; w, Im s  -l.

Suppose f(s) is defined and continuous on SI and on Ll, f(s) is
analytic in the interior o f SI and (5.1) holds for Isi -&#x3E; oo uniformly
on Sl.
Then the integral

resp.

is absolutely convergent and represents an analytic function of z
on the part of the Riemann surface of log z where 0  izl  1 resp.

arg z  0. The function in (5.23) resp. (5.24) is the analytic
continuation of the integral (5.24) resp. (5.23) for 0  Izi  1,
arg z &#x3E; 0 resp. 1 z | 2 1, arg z  0.

Corresponding to an arbitrary positive constant e there exists a
positive number K independent of z so that

/or

One may choose K = f:-iOOlf(s)le8ImSldsl (the last integral con-

verges ).
If a  -1 then the integral (5.23) resp. (5.24) converges absolutely

and is continuous in z for 0  Izi  1 resp.

If a  -1 then to every positive constant ko there exists a number
Ko independent of z so that (5.25) with KllKo holds if (5.2’ï) is
satis f ied and so that i f (5.8) holds then

LEMMA 7a.
Let w, l, Ll, SI and 1(s) satisfy the same assumptions as in

lemma 6a save that instead of (5.1) now (5.13) holds for IsB - 00
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uni f ormly on Sl. Here Il is a positive constant (u need not satisfy
(1.8 )) and c is a complex constant.
Then the integral (5.23) resp. (5.24) is absolutely convergent and

represents an analytic f unction o f z on the Riemann surface of log z
resp. on the part o f this surface where arg z  - §pn. The function
in (5.23) is the analytic continuation of the f unction in (5.24) for
arg z &#x3E; -tP11:. Corresponding to a positive constant e there exists a
positive constant K independent of z so that (5.25) holds for

and so the function defined originally by (5.23) or (5.24) is O(ZW)
for Izi -&#x3E; oo uniformly on (5.29).

§ 6. Existence, analytic continuation and algebraic
asymptotic expansions of H(z)

§ 6.1. First we derive the domain of definition of H(z) by
means of lemma 2 and lemma 2a.

THEOREM 1.

We use the notation of § 1. Then the function H(z) makes sense
and delines an analytic f unction of z in the following two cases:
1. fl &#x3E; 0, z =F 0,
II. p = 0 and (1.9) holds.

In these cases

(6.1) H(z) = -Y residues of h(s)z8 in the points (1.6).

H(z) does not depend on the choice of C. Further H(z) is in general
multiple-valued but one-valued on the Riemann surface of log z.

PROOF: From the definition of C in § 1 it follows that C has a
positive distance to the points (1.6). From this and the periodicity
of the sine-factors in (2.11) we may deduce that hl(s) is bounded
on C.

Suppose first is positive. Then we apply lemma 2: (3.25) and
(3.27) with N = 0. From this, the boundedness of hl(s) on C and
(2.7) we infer to

for Isl - oo and s on C. Using this relation we may deduce that
the integral in (1.1) converges and represents an analytic function
of z for z # 0. The proof of this assertion runs in the same way as
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the proof of the corresponding assertion for the integral (5.2) in
lemma 7 and will be omitted therefore.
Now suppose ,u = 0. Then we apply lemma 2a in § 3.2. (3.31 ),

(2.7) and the boundedness of hl(s) on C imply

for Isl -&#x3E; 00 on C. It now easily follows that the integral in (1.1)
converges and represents an analytic function of z if (1.9) holds.
The proof of this is similar to the corresponding assertion for the
integral (5.2) in lemma 6 and it will be omitted therefore.
From the occurrence of the factor z8 in the integrand in (1.1)

it follows that H(z) is multiple-valued in general but one-valued
on the Riemann surface of log z.
That in case 1 and case II (6.1) holds can be easily derived from

the theorem of residues and the estimates (6.2) resp. (6.3) which
also hold for Isi -&#x3E; oo uniformly on sets which have a positive
distance to the points (1.6) and which do not contain points
to the left of C. We omit the calculations. From (6.1) it also
follows that H(z) is independent of the choice of C.

REMARKS : If

then (6.1) may be written as

m

in case 1 and case II. TI’ means: the product of the factors with
i

i = l, ..., i = m save i = h.
If fl = 0 then in some cases H(z) also makes sense for Izi = P-l.
If only a finite number of the points (1.6) are poleJ of h(s) then

H(z) exists for z 0.

§ 6.2. In the case that p = 0 we derive the analytic continua-
tions of H(z) in the manner indicated in § 2.1. The result is for-
mulated in theorem 2 in which use is made of the notations of § 1
and of the definitions I, II and IV of § 4.
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THEOREM 2.

Suppose IL = 0 and r is an integer. Let D be a contour in the
complex s-plane which runs from s = - ooi+a to s = ooi + a
(a is an arbitrary real number) so that the points (4.28) lie
to the left o f D and so that those points (1.6) which do not occur
among the points (4.28) lie to the right of D. Further let V(z)
be the sum of the residues o f h (,ç)z8 at the points where simultaneously
(1.6) and (4.28) holds. ho(s) resp. h1(s ) are defined in (2.10) resp.
(2.11).
Then H(z) can be continued analytically by

into the sector

V(z) is equal to zero if

Further the function H(z) can be continued analytically from the
sector (6.7 ) into the domain Izl &#x3E; p-l by

Here the formal series for Q(z) and P(z) (cf. (4.26) and (4.27))
are convergent for Izl &#x3E; P-1. 

PROOF: Let w and 1 be real numbers which satisfy (2.1), (2.2)
and (2.3). L and LI are the contours defined in § 2.1. Using (3.31)
we see that the integrals J ho(s)z8ds taken along the contours L
and Li converge for (1.9). Using (2.17) and the theorem of
residues we deduce that if (1.9) holds:

From this and (2.4) we deduce (2.18) if (1.9) holds. To the two
integrals in (2.18) we next apply lemma 6 and lemma 6a of § 5.
First we apply lemma 6 with the same w and 1 as in § 2.1 and with
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The singular points (2.8) and (1.6) of ho(s), ho(s)hl(s) or h(s) (cf.
(2.7)) do not belong to S and L (defined in lemma 6) on account
of (2.1), (2.2) and (2.3). Further from (6.10), (3.31) and (4.8)
we derive (5.1) with a = 2- Re oc for Isl - oo uniformly on
S. Since arg z+c5,. &#x3E; 0 on (6.7), lemma 6 and (6.10) imply that
the first integral in (2.18) can be continued analytically on (6.7)
by replacing the path of integration L by the rectilinear path
from s = w to s = w+ioo.
The second integral in (2.18) can be treated in the same way

as the first integral. Instead of lemma 6 we use lemma 6a with
the same w and 1 as above and with

Further instead of (4.8) we now use (4.9). From lemma 6a and
(6.11) we may deduce that the second integral in (2.18) can be
continued analytically on (6.7) by replacing the path of integration
L 1 in this integral by the rectilinear path from s = w to s = w-ioo.
Hence the righthand side of (2.18) - and so H(z) - can be
continued analytically by

into the sector (6.7). The integral in (6.12) is absolutely con-
vergent for (6.7).
Next we consider (6.6). Suppose temporarily that zv is so small

that Re s &#x3E; w for s on D. Then it follows from (3.31), (4.8) and
(4.9) that the integral in (6.6) is convergent on (6.7) and that it is
equal to the integral in (6.12) increased by 2ni times the sum of
the residues of the integrand in (6.6) in the poles between D and
Re s = ’W. From this, (2.7), (2.10), (2.11), (2.5), (2.17) and
the definition of D and V(z) we now deduce (6.6) if (6.7) holds.
From the definition of V(z) and from (1.5) it followa that V(z) == 0
if (6.8) holds.
Next we consider the integral in (6.12). It may be written as
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if (6.7) holds. The last integrals will be continued analytically
using the lemmas 6 and 6a. Therefore we estimate ho(-s). If

and

hold then we may write (cf. (2.10) and (2.6))

where if (6.15) holds we define

while if (6.14) holds we define

Then h3(s) resp. h4(S) is equal to the function ho(s) resp. hl(s)
(cf. (2.10) resp. (2.11») with

The numbers,u and oc defined by (1.8) and (3.24) then remain the
same as before, so p = 0; the number P given by (1.10) now
changes into (J-l. Consequently we may apply lemma 2a to h3(8)
and so by (3.31)

for Isl -&#x3E; oo uniformly on for example Re s &#x3E; -w.
Further we apply lemma 4a to h4(8). By (2.12) and (6.19) the

new number Eo is equal to (Y’ ocj -.1’7 pi)n == - un = 0 (cf. (1.8)).
From definition II we now derive K = 0. Further 1 satisfies the

new formula (2.3). Hence by (4.8) with r = 0 and (4.9) with r = 1
Ih4(s)1 is bounded on Im si &#x3E; l. This, (6.20) and (6.16) imply that

for Isi --&#x3E; oo uniformly on Re s &#x3E; -w.
Now to the first integral in (6.13) we apply lemma 6a with

wll-w, the same 1 like in (2.3) and with
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From (4.8) for lm s &#x3E; l and (6.21) we easily derive that the
assumptions of lemma 6a are satisfied. So the first integral in
(6.13) can be continued analytically for [z[ &#x3E; fi-’ by replacing
the path of integration by the path from s = - w to s == - w - il
and then to s = oo-il. In an analogous way applying lemma 6
we continue the second integral in (6.13) analytically for Izi &#x3E; p-l
by replacing the path of integration by the path from s = w to
s = -w+il and then to s = oo-E-il.
Combining these properties with (6.13) and (6.12) we see that

H(z) can be continued analytically from the sector (6.7) into the
domain Izi &#x3E; fl-1 by means of

where the path of integration runs from s = 00 -il to s = -wil,
then to s = -w+il and finally to s = oo+il, while the integral
converges for Izi &#x3E; fl-1.
From the behaviour of ho(-s) for Re s &#x3E; -w (cf. (6.21)) and

the behaviour of hl ( -s) for 1 lm si  1 (cf. (2.11 ) we may deduce
that the integral in (6.22) can be calculated by means of the
theorem of residues for [z[ &#x3E; P-l. Then we obtain (6.9) for

Izi &#x3E; fl-1 in view of definition IV of § 4.6 where now the series for
Q(z) and P(z) are convergent for [z[ &#x3E; P-l.
REMARK 1: If y = 0 and c50 is positive then ô-1 - -ô. and

K = -1 by the definitions 1 and II of § 4.2. If moreover r = 0
thèn the expression {...} in (6.6) reduces to hl(s). Hence if

fl = 0, c50 &#x3E; 0 then H(z) = Q(z) resp.

for Izl &#x3E; P-1 resp. 1 arg zl  bo on account of (6.6), (6.7), (6.9),
(2.7) and the definition of D and V(z). Here ôo is given by (2.12)
and G is a contour in the complex s-plane from s = - ooi+a to
s = coi+a (a an arbitrary real number) so that the points (1.6)
resp. (1.7) lie to the right resp. left of G. Moreover if IÀ = r = 0,
Ôo &#x3E; 0 then (2.18) and (6.12) (which have been proved above
for (1.9) resp. (6.7)) reduce to (2.4) and (2.14).
REMARK 2: (6.9) may be rewritten as (cf. definition IV of § 4.6)
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where Go and G, are contours of the same shape as C in § 1 but
with the difference that the points

resp.

lie to the right resp. left of Go and the points

lie to the right of G1. The integrals in (6.24) are special cases
of the function H(z) in § 1 with special values of the parameters p,
q, m, n, ai’ ... that differ from those in § 1. So H(z) can be ex-
pressed as a sum of other functions H(z-le-’&#x26;,) for Izl &#x3E; p-l if
,u=0.

§ 6.3. We next derive the algebraic asymptotic expansions
for Izi - oo in the case that p is positive. The notation of the
definitions I, II and IV of § 4 are used again. The method of proof
has been indicated in § 2.1.

THEOREM 3.

Suppose fl is positive, r is an integer and (2.19) holds. Let e be a
constant satisfying

Then (6.6) holds for (2.20) i f D and V(z ) have the same meaning
as in theorem 2 and ho(s) resp. hl(s) are defined in (2.10) resp. (2.11).
Further the algebraic asymptotic expansion

holds for Izi -&#x3E; oo uniformly on

Il p &#x3E; 0, r = 0 and (2.13) holds then the assertions (6.6) on (2.20)
and (6.26) on (6.27) reduce to (6.23) on (2.15) and (2.16) for
Izl --&#x3E; 00 uniformly on
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Here we assume that 8 is constant satisfying 0  e  ôo - i n.
1 f r = n = 0, fl &#x3E; 0 and (2.13 ) holds then the righthand side of
(2.16) is a formal series of zeros and then better estimates for H(z)
are contained in theorem 4.

PROOF: The proof is similar to the first part of the proof of
theorem 2; only instead of the lemmas 6, 6a and 2a now the
lemmas 7, 7a and 2 are used.

So we start again from (2.18). (2.18) can be proved for z :A 0
in an analogous way as in the proof of theorem 2. We apply
lemma 7 with (6.10) where PIIP/i» to the first integral in (2.18).
On account of (3.25) and (3.27) with N = 0, and (4.8) the con-
dition (5.13) with c = oc and fl given by (1.8) is satisfied on

the set S of lemma 7. Further f (s) is continuous on S and L and
analytic in the interior of S (cf. the proof of theorem 2). So by
lemma 7 and (6.10) with PllPflP we may replace the contour L in
the first integral in (2.18) by the rectilinear path from s = zv to
s = w + roi if (2.20) holds. Moreover

for Izi -&#x3E; oo uniformly on (6.27) because by lemma 7 (5.4) holds on
(5.14) (cf. also (6.10) with PIIPflP). The integral in (6.29) con-
verges absolutely on (2.20).

In the same way using lemma 7a with (6.11) where PIIPflP,
(3.25) and (3.27) with N = 0, and (4.9) we may show that if

(2.20) holds in the second integral in (2.18) we may replace L1
by the rectilinear path from s = w to s = w - ooi, that (6.29)
with w+ aJi[ [w- aJi holds for Izl --&#x3E; oo uniformly on (6.27) and
that the integral in (6.29) with w+ ooillw- ooi is absolutely
convergent on (2.20).
From these properties concerning the integrals in (2.18) we

deduce that (6.12) holds if (2.20) is satisfied and that

for Izi -&#x3E; oo uniformly on (6.27). Further the integral in (6.12)
is absolutely convergent on (2.20). In view of the definitions in
§ 4.6 formula (6.30 ) implies the algebraic asymptotic expansion
(6.26) for Izi -&#x3E; oo uniformly on (6.27). From (6.12) we deduce
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in the same way as in the proof of theorem 2 that (6.6) holds on
(2.20 ).

If (2.13) holds then ô,, is positive and so 8_1 = -o and K = -1
by the definitions 1 and II of § 4.2. So if r = 0 and (2.13) holds
then (6.6) and (2.20) reduce to (6.28) and (2.15) (cf. remark 1
after theorem 2), while (6.26) reduces to (2.16) on (6.28). If more-
over n = 0 then Q(z) represents a formal series of zeros (cf. (4.26)).
REMARK 1: In § 10.2 special cases in which the series in the

righthand side of (6.26) only contain a finite number of non-zero
terms are considered.

REMARK 2: In the course of the proof we have seen that (6.12)
holds on (2.20) and that the integral in (6.12) converges absolutely
on (2.20). If r = 0, p &#x3E; 0 and (2.13) holds this reduces to (2.14)
for (2.15) where the integral in (2.14) converges absolutely on
(2.15).

§ 7. The exponentially small asymptotic expansions of lY(z)

In this paragraph we give the details of the derivation of the
exponentially small asymptotic expansions of H(z) which has
been sketched in § 2.2.

§ 7.1. Here the proofs of the assertions concerning (2.27) and
(2.28) are completed. We assume that u &#x3E; 0, n = 0, m = q
and (2.22) hold.

If Re s  ’W then (2.23) holds on account of (2.2) and so by
lemma 3 pN(s) is defined and analytic in all points s with Re s  w.

If Re s  w and 0, ..., N then by (2.26): Re (1-,us-«-j) &#x3E; 0

and so r(l- flS - rx -j) is defined and analytic in s for Re s  zv.
Consequently the righthand side of (3.35) is defined and analytic
in s for Re s  zv. So by (3.35 ) the change from (2.25) to (2.27)
will be proved if the convergence of the integrals in (2.27) has been
verified for (2.22).

First we consider (2.28). This formula can be derived by means
of the inversion formulae for the Mellin transformation (cf. G.
Doetsch [13], 1 p. 212) from (2.30) with N 11 i + 2 (j = 0, ..., N-1).
Here we deduce (2.28) from (6.5) and (2.25) by choosing for H(z)
in these formulae the function given by (1.1) and (1.3) with
h(s) = F(I-ps-oc-j) (y = 0, ..., N-i). Then m = q = 1,
n = p = 0, bl = 1-oc-j, Pl = y. The numbers ,u resp. oc of this

special function H(z) are equal to U resp. oc+i (cf. (1.8) and (3.24))



287

where the last p and oc are the same as those we always use here. By
(2.26) and (2.3) for the old IÀ and oc the numbers w and 1 satisfy
(2.1), (2.2) and (2.3) for the new fl, oc, bl and Pl. From (6.5) and
(2.4) with (2.5) we derive that this special function H(z) is equal to

for z =A 0 and i = 0, ..., N-1. If moreover (2.22) holds then all
conditions for (2.25) are satisfied and from (2.25) and (7.1) now
(2.28) follows if (2.22) is satisfied and i = 0, ..., N-1. As the
integral in (2.25) converges absolutely for (2.22) this is the case
also with the integrals in (2.28) for j = 0, ..., N-1 and con-
sequently with the first N integrals in (2.27). From this and the
absolute convergence of the integral in (2.25) the absolute con-
vergence of the last integral in (2.27) follows for (2.22). The proof
of (2.27) is complete now.

§ 7.2. In this section the proofs of (2.31), of the properties of
p(t) (cf. (2.32)) and of (2.36) are completed. We assume again
fl &#x3E; 0, n = 0, m = q and (2.22) hold.

First we consider the properties of p(t) defined by (2.32). On
account of (2.26) the zeros of (1-fls-rx-N)2’ i.e. (1-,us-a-N)
. (2-,us-a-N) are lying to the right of the line Re s = w. Further
by §’7.1 pN(s) is defined and analytic in s if Re s  w. Hence the
integrand in (2.32) is defined and analytic in the points s with
Re s  w while by (3.33) the estimate (2.33) holds for isl -&#x3E; o0

uniformly on Re s  w. From this we can deduce the properties of
p(t) using lemma 6 and lemma 6a but here we give a straight-
forward derivation of these properties.
The convergence of the integral in (2.32) and (2.34) for t &#x3E; 0

follows from (2.33). So (2.34) holds with

It is easily seen that the integral in (2.32) is contimuous for t &#x3E; 0.

Further for every positive number R the part between w-iR
and w+iR of the path of integration in (2.32) may be replaced
by the lefthand part of the circle 1 s - té = R between these points.
The integrand in (2.32) is t2-1,w-Re«--,YO(S-,_) for Isl-+ 00 uniformly
on Re s  w for every fixed value of t with 0  t  i on account
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of (2.33). Therefore the contributions of the circular part and of
the rectilinear part of the path of integration of the modified
integral (2.32) are 0(R-1) for R --&#x3E; oo if t is fixed and 0  t  1.
So p(t)=0 for 0  t  1.
Next we prove (2.31) for (2.22). On account of (2.34)

if (2.22) holds, for the last integral - and consequently the
repeated integral 2013 converges as Re zlfp &#x3E; 0 on (2.22) and as
(2.26) holds. Further the integrals in (2.29) resp. (2.30) are

absolutely convergent for (2.22 ) resp. for (2.22) and Re s = w.
A theorem of Bromwich ([8] p. 504) now implies that for (2.22)

From (7.4), (2.30) and (2.29) we infer to (2.31) for (2.22).
Combining (2.31) with (2.34) and the property that p(t) = 0

for 0  t  1 we obtain

if

where q is an arbitrary positive constant. As the last integral in
(7.5) is independent of z, (7.5) implies (2.35) for Izi -&#x3E; co uniformly
on (7.6).

In view of (2.35), (2.27), (2.28) and (2.29) we have

for Izi 2013&#x3E; oo uniformly on (7.6). Here N is an arbitrary non-nega-
tive integer. Next we use that if i = N or j = N +1 then
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for Izi -&#x3E; oo uniformly on (2.22). From this and (7.7) where we
replace N by N + 2 we infer to

for Izi --j oo uniformly on (7.6). This may be written as (2.36) on
account of definition III of § 4.4. It will be clear that (2.36) then
also holds for Izl -&#x3E; oo uniformly on

if e is a constant satisfying 0  e  !fln.

§ 7.3. The exponentially small asymptotic expansions of H(z)
are formulated in the following theorem. The proof depends on
(2.39) and (2.43).

THEOREM 4.

Suppose n = 0, fl &#x3E; 0 and (2.13) holds (cf. (2.12) for ôo).
e and 7î will be positive constants so that

Co and do are defined by (4.3 ) and E(z) is given by de f inition III of
§ 4.4.

ASSERTIONS: Il m = q then

and also

for izl - oo uni f ormly on (7.9). Il m  q then (7.12) holds for
[z[ 1 --&#x3E; oo uni f ormly on

and (7.11) holds for lzi - oo uni f ormly on

Further i f m  q then
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tor Izl --&#x3E; oo uniformly on

The asymptotic expansions formulated above are exponentially small
(cf. § 4.4).

I f m = q then (7.11) and (7.12) also hold f or izl - oo uniformly
on (7.6). If m  q then (7.12) resp. (7.11) also holds for Izl --&#x3E; oo

uniformly on the set

resp.

PROOF: If n = 0 and m = q then ô,, = .tn (cf. (2.12) and (1.8))
and on account of (3.24) and (4.3)

Because further (2.36) has been proved for Izi -&#x3E; oo uniformly on
(7.6) and (7.9) in § 7.2 it now follows from definition III of § 4.4
that (7.11) and (7.12) hold for Izi -&#x3E; oo uniformly on (7.6) and
(7.9) if m == q (if m == q, H(z) has been denoted by H,(z) in § 2.2).
Now suppose m  q. Then ôo  lÀn by (2.12), (1.8) and because

n = 0. First we assume that a satisfies besides (7.10) also

Here we use the notation of (2.38) and (2.39 ).
By (2.41) we have

Hence if

then using (7.19) and (2.39) we obtain for i = 1, ..., M-1:

and for i = 1, ..., M:

1) An estimate for H(z) in the case that p = 0, yn = q and z large positive has
been obtained by Bochner [5] p. 351.
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By (7.21) and (’i.22 ) we may apply lemma 5 of § 4 with t1 = o)o+làn
and t2 = (Dj+,un, kl = ro, k2 = af (j = 1, ..., M-1; cf. (2.38))
and (7.20) for the set Q. Then we obtain using also (2.43) with the
upper sign for i = 0, ..., M-1 and with the lower sign for j = M:

for Izl --&#x3E; oo uniformly on (7.20). In view of (3.24), (2.39), (2.40)
and (4.3) this is equivalent to

for izl -&#x3E; oo uniformly on (7.20). N is alv’ays an arbitrary non-
negative integer.
By (2.41) we have

arg z+roj-flJt = -Iarg z+roj-,unB for i = 0, ..., M.

Hence if

then on account of (7.19) and (2.39):

By (7.26) and (7.27) we may apply lemma 5 of § 4 with t1 = (jJM
-fln, t2 = (jJi-fl’Jl, k1 = rm, k2 = ’ri (j = 1, ..., M-1) and with’
(7.25) for the set S2. From this and (2.43) where we take the lower
sign for i = 1, ..., M and the upper sign for i = 0 we infer to
(7.23) and consequently (7.24) for Izi - oo uniformly on (7.25).
Combining (7.20) and (7.25) we see that in particular (7.24) holds
for Izi -&#x3E; oo uniformly on (6.28). The condition (7.19) for e can be
dropped now because the smaller e the larger the sector (6.28) is.
Further we see that (7.15) holds for Izl --&#x3E; oo uniformly on (6.28)
by definition III of § 4.4 and (7.24). Here (6.28) may be replaced
by the smaller sector (7.16) (cf. (7.10)).
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We now prove (7.12) for Izl -&#x3E; oo uniformly on (7.17) and on
(7.13) and (7.11) for Izl -&#x3E; oo uniformly on (7.18) and on (7.14).
If (7.17) or (7.18) holds then arg z-l5o  0 and arg z+l5o &#x3E; 0

and so

if a satisfies

besides (7.10). If (7.17) is satisfied then

Hence we may apply lemma 5 of § 4 with t1 = -bo, t2 = do,
kl = -do, k2 = c. and with (7.17) for the set Q. We then obtain
from (7.24): H(z) = -doEN(ze-i6o) and consequently (7.12) for
Izi --&#x3E; oo uniformly on (7.17). Here (7.17) may be replaced by
(7.13) because for large Izi the points belonging to (7.13) also
belong to (7.17). The condition (7.29) may be omitted because
the larger e the smaller the sets (7.17) and (7.13) are.

If (7.18) holds then

From this and (7.28) (where temporarily we assume again (7.29))
it follows that we may apply lemma 5 of § 4 with t1 = c5o, t2 = - c5o,
k1 = co, k2 = -do and with (7.18) for the set S2. Then (7.24)
reduces to H(z) = coEv(ze"o), so (7.11), for [z[ --&#x3E; co uniformly on
(7.18). We may replace (7.18) by (7.14) and we may omit the
condition (7.29) for analogous reasons as above at (7.17).
The asymptotic expansions (7.11), (7.12) and (7.15) are ex-

ponentially small on (7.9) if m = q and (7.14) if m  q, resp.
(7.9) if m = q and (7.13) if m  q resp. (7.16) if m  q because
these sectors are subsectors of the sector (6.28) and because for
z on the sector (6.28):

where 2ô,  2,un by (2.12) with n = 0 and (1.8). So the definition
of exponentially small asymptotic expansions in § 4.4 can be
applied.
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§ 8. Estimâtes for some auxiliary functions

In this paragraph the proofs of some approximation-formulae
from § 2.3 will be completed and estimates for the auxiliary-
function F(z) defined by (2.48) will be derived. We assume always
,u &#x3E; 0 and (2.46).

First we prove (2.47). The first part of (2.47) follows from
lemma 7 in § 5 where we choose and 1 like in § 2.3 and

From (8.1), (3.25) and (3.27) with N = 0 and (4.8) with r[ [v+1
it follows that (5.13) is satisfied with c = a and p given by
(1.8). In view of lemma 2 and the choice of zv and 1 also the other
assumptions of lemma 7 are fulfilled. Since arg z +ô,+, &#x3E; -1
on (2.44) by (2.46) we see that lemma 7 implies the first part of
(2.47) for Izl -&#x3E; oo uniformly on (2.44). In an analogous way
using lemma 7a and (4.9) instead of lemma 7 and (4.8) the second
part of (2.47) follows for [z[ -&#x3E; oo uniformly on (2.44). In (2.47)
the sums IK and JÀ-1 may be omitted because v+ 1 &#x3E; K and
Â-1  0 by (2.46).
Next we consider (2.50). From (2.4), (2.7) and (2.47) we deduce

for Izi - oo uniformly on (2.44). Hence by (2.48) and (2.49)

for Izi -&#x3E; oo uniformly on (2.44). Because C; = 0 if Â  i  0

and D; = 0 if K  i  v (cf. (4.7)) formula (8.2) may be written
in the form (2.50).
The property (2.54) can be verified easily using (2.57) and (2.3).

Further the proof of (2.51) resp. (2.55) can be given with lemma 7
where and 1 are the same as above and
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The assumptions of lemma 7 are satisfied now on account of
lemma 2 with (3.25), (3.27) and N = 0, the choice of w and l and
(2.54). The assertions of lemma 7 now imply (2.51) resp. (2.55)
for Izi - co uniformly on (5.14) resp. (2.53). The proof of (2.52)
and (2.56) proceeds in the same way; instead of (2.48) and
lemma 7 here (2.49) and lemma 7a have to be used.
The deduction of (2.62) from (2.60) for arg z = !,un+e is

similar to the proofs given above: again the lemmas 7, 7a and 2
and (2.54) are used.
The proof of (2.63) with (2.64) for arg z = n+e can be given

in exactly the same way as in § 7.2 where (2.31) with (2.32) has
been derived from (2.29) and (2.30).
Next we consider the properties of r(t) (cf. (2.64)) for t &#x3E; 1.

By lemma 2 the integrand in (2.64) has a finite number of poles s
with Re s &#x3E; w. By (2.65) the integral in (2.64) tends to zero for
t &#x3E; 1 and R - co if the path of integration between w-iR and
zey-iR is replaced by the right part of the circle Iz-wl = R
between these points. Hence if t &#x3E; 1 then r(t) = r*(t) where

Here A is a finite contour in the halfplane Re s &#x3E; w which encloses
the poles s with Re s &#x3E; w of the integrand in (8.3) while these
poles are lying to the right of A. We see that r*(t) is analytic in t
for t =t 0, that r*(t) is in general multiple-valued and that

for itl -+ 00 uniformly on 1 arg tl  n.
Now we can deduce estimates for the function -r(z) defined by

(2.60). Put

if arg z = 2,un-E-e. Then by (2.63)

if arg x = -2lun+e. On account of (2.66) and (2.26) the function
t’leZ) can be continued analytically for z # 0 and
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for izl --&#x3E; oo uniformly on (2.53). Because r(z) is analytic for z # 0
(cf. (2.60)), also 1’2(Z) can be continued analytically for z =1= 0.
Now to -C2(Z) we apply lemma 6 (cf. § 5) with

In view of the properties of r*(s) the assumptions of lemma 6 are
satisfied. So if

then Im Zl/p &#x3E; Izl/111 cos (elIÀ) and by lemma 6

Further by (5.4)

for [z[ -&#x3E; oo uniformly on (8.7).
Next we apply lemma 6a to the last integral in (8.8) choosing

Then the integral (5.24) is equal to Í2(Z). The properties of r*(s)
guarantee that the assumptions of lemma 6a are satisfied. So

if

since then exp (-zI/P)1  1. On the vertical part of Li we have
Re s = -2, 0 &#x3E; lm s &#x3E; -ltg(effl). So if (8.12) holds then on
this part of L,

It is now easy to deduce from (8.11) that

for Izi - oo uniformly on (8.12).
Finally we estimate r2(z) on the remaining part of the sector

(2.53). On account of (8.11) we have
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if (8.12) holds. Here L is defined in lemma 6 with (8.10). Ac-
cording to the formula of Hankel for the gamma-function we have

if (8.12) is fulfilled. This combined with (8.14) and (8.3) leads to

The first term in the righthand side can be calculated using the
definition of A, (3.25) and (2.17). The second integral can be
estimated using lemma 6 with (8.10) in the same way as has been
done above. Using (5.4) on

we obtain

for Izl -&#x3E; oo uniformly on (8.15).
Using the properties derived above we prove

LEMMA 8.

Suppose the number ,u defined by (1.8) is positive. Let e be a
constant so that 0  e  IflJl: and let N be a non-negative integer
and w be a real number so that (2.1) holds and

F(z) and Pw(z) are defined by (2.48) and (2.17). Further we use
definition III (c f . § 4.4). Then

for Izi - oo uniformly on (8.12),

f or [z[ --&#x3E; oo uni f ormly on (8.7),
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for Izl -&#x3E; oo uni f ormly on (8.15), and (2.51) resp. (2.52) holds for
Izi -&#x3E; oo uniformly on (5.14) resp. (5.29).

PROOF: According to (2.61), (8.5), (8:6), (8.9) and (8.13) we
have

for Izi -&#x3E; oo uniformly on (8.7) and on (8.12). Here w has to
satisfy only (2.1), (2.2), (2.26) and (2.45) while further N is an
arbitrary non-negative integer. Now we replace N by N-E-2 in
(8.21) and we assume that w and N satisfy (2.1) and (8.17). Then
(2.2), (2.45) and (2.26) with NIIN +2 are fulfilled. Further we
apply (7.8) with i = N and i = N + 1; this formula of course holds
also on (2.53). Then we obtain from (8.21)

for Izi --&#x3E; oo uniformly on (8.7) and on (8.12). In view of definition
III this can be written as (8.19) for Izi -&#x3E; oo uniformly on (8.7)
and on (8.12). If (8.12) holds then it is easy to see with lemma 5a
from § 4.5 that instead of (8.19) also (8.18) holds for Izi -&#x3E; o0

uniformly on (8.12).
, In an analogous way as above we deduce from (2.61), (8.5),
(8.6) and (8.16) that for Izi -&#x3E; oo uniformly on (8.15) we have
{8.20). The proofs of (2.51) and (2.52) have been given above.

§ 9. The exponentially infinité asymptotic expansions
and the asymptotic expansions
in the transitional régions for I-I(z)

§ 9.1. In this section the exponentially infinite asymptotic
expansions of H(z) will be deduced from (2.50) and lemma 8 in
§ 8. We assume that the conditions for fl, N and w in § 8 are
satisfied. Further in the proofs of the theorems we apply (2.50)
on (2.44) where r is an integer, eo is a positive constant such that
the sectors referred to in the theorem are subsectors of (2.44), and
.Â and v are constant integers satisfying (2.46).
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We always use the notation of the definitions I-IV in § 4.

THEOREM 5.

1 f p is positive and a is a constant so that

then the exponentially infinite asymptotic expansion

holds for Izi --&#x3E; oo uni f ormly on 1 )

PROOF: Since ô,  bn if j  h (cf. definition 1 in § 4.2) the last
side of (9.1) is positive and consequently (9.1) can be fulfilled.
Further by (9.3)

Let i be an integer such that Â  i  ’V, i =1= r. Then we show
first that

If jr and arg z+5,.  0 then by (9.1)

arg z+5  arg Z+5r-l  arg z+5r-2e = --Barg z+5rl - 2s

and (9.5) follows. If i  rand arg z+5r &#x3E; 0, then arg z+5,.1
= .arg z+5,. and 2 (arg z+5r)  -2e+r-5"-l (this is a con-

sequence of (9.3)), therefore

arg z+5;  arg z + ô,.-,  ô,,-, - ô,, + 2 (arg z + ô,,) - (arg z + ô,.)
 -2e-larg z+5,.1 

and (9.5) follows. So (9.5) is proved for i  r. For i &#x3E; r the proof
runs in the same manner.
A corollary of (9.5) is that [arg z+5;B &#x3E; 2e for r. So if j

is an integer the sector (9.3) can be divided into subsectors
Q1, ..., Q4 with vertex z = 0, which are independent of z but
dependent of j and which cover (9.3) while on QI:

on Q2 :

1) For convenience we use notations like (9.3) to indicate a sector in the z-plane.
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on 03A93:

while on Q4:

However, it is possible that for example Q4 does not occur and that
’Ql , D2 and S23 already cover the sector (9.3). Now we apply
lemma 8 with ell-21pn-2s to

on Ql, Q2’ {Ja, S24 we use (8.19), (2.51), (8.20), (2.52) while if
illr we have (8.18) on (9.3). So

for Izi - oo uniformly on Q1,

for Izi - oo uniformly on Q2,

for izi -&#x3E; oo uniformly on Q3 and

for Izl -&#x3E; oo uniformly on Q4. From the last four formulae, (9.4)
and (9.5) we easily deduce with lemma 5a in § 4.5 that

for 1 z 1 -&#x3E; oo uniformly on QI’ ..., Q4 and henceforth on (9.3).
Combining this with (2.50) on (2.44), eo = e we see that

for Izl --&#x3E; ao uniformly on (9.3). Since (9.4) holds we may apply
lemma 5a in § 4.5 to (9.15). Then we obtain
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for izl - oo uniformly on (9.3). As N is an arbitrary large integer
this implies (9.2) (cf. definition III in § 4.4). Further from (9.4) it
follows that the asymptotic expansion (9.2) is exponentially
infinite on (9.3) (cf. § 4.4).

THEOREM 6.

Suppose u is positive, ô- ô_i  ,un and a is a constant so that

(9.16) 0  8  1 min (ô,-, - Ô,-21 ôr ôr-1 ’ ôr+l ôr ’ iun - ô, + ô,-, ) -
Then the exponentially in f inite asymptotic expansion

holds for Izi -&#x3E; oo uniformly on

PROOF: In (2.44) we take eo = a. Then (9.18) implies (2.44).
From (9.16), (9.18) and  lÀn we deduce

and

So if i = r or j = r-1 then by lemma 8, especially (8.18),

for Izl -&#x3E; oo uniformly on (9.18).
Suppose there exists an integer j such that Â  i  ’JI, j =A r,

i # r-1. Then we prove (9.5) for such a number j. If i  r-2

then by (9.16) and (9.20)

so by (9.18) and (9.19)

and (9.5) follows. If i &#x3E; r+l then by (9.16) and (9.19)

arg z+ ô, &#x3E; arg z+ ô,,, &#x3E; arg z+ Ô,.+4e = larg z+ 6,,l +4e

and (9.5) follows.
As (9.4) holds (cf. (9.19») and (9.5) is satisfied for the value of

i we consider we may derive in the same way as in the proof of
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theorem 5 that (9.14) holds for Izi --&#x3E; oo uniformly on (9.18) by
constructing subsectors QI’ ..., Q4 of (9.18) and using lemma 8 of
§ 8 and lemma 5a of § 4.5 (cf. (9.6)-(9.13)). Application of (9.14)
for all values of i with Â  i  ’V, i =1= r, i =1= r-1 and (2.50)
shows that

for Izi -&#x3E; oo uniformly on (9.18). If there do not exist integers i
such that Â j v, i =Ar, i=Ar-1 then A = r-1 and v = r
(cf. (2.46)) and in this case (9.22) follows from (2.50) and (9.21).
So (9.22) holds in all cases.

Like at (9.15) we can deduce from lemma 5a and (9.19) that

for Izi -&#x3E; oo uniformly on (9.18). Combining this with (9.21) and
definition III in § 4.4 we obtain (9.17) for Izl -&#x3E; oo uniformly on
(9.18). By (9.19) and (9.20) the asymptotic expansion (9.17) is
exponentially infinite on (9.18) (cf. § 4.4).

§ 9.2. We now consider the asymptotic expansions in the

remaining sectors. In most cases these sectors are transitional
regions: the righthand side of the asymptotic expansion contains
two asymptotic series, each of which represents the function
asymptotically in a part of the region like in (9.17).

In the following Yt = 0 if s &#x3E; t.

THEOREM 7.

Il p is positive, c5r-c5r-l = fl1’&#x26; and e is a constant so that

then

f or Izi --&#x3E; oo xcni f ormly on

Here K is determined in definition II in § 4.2. .2)

1) Special cases with ô,, &#x3E; 0, âo = Ô-, = !..tn have been considered by Fox and
Chandrasekharan and Narasimhan (cf. [18] p. 417 and [9] p. 100 and p. 117). They
determine the behaviour of H(z) for z &#x3E; 0 and z - oo.
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PROOF: We take a. = e in (2.44). Then (9.25) implies (2.44) and
so (2.50) may be applied. Since 5,.- 5"-1 = pTt and (9.25) holds
we have

Suppose now i  r-2. Then by (9.23) and (9.26)

and so by lemma 8, especially (2.52),

for Izl -&#x3E; oo uniformly on (9.25) if j S r-2. If j h y+1 then

8rg Z+i &#x3E; arg Z+"+l &#x3E; arg Z+,.+2B  l,un+B
in view of (9.23) and (9.25). Hence by lemma 8, (2.51):

for izi -&#x3E; oo uniformly on (9.25). To F(ze",) resp. F(ze‘d·-1) we
may apply lemma 8: (8.19) and (8.20) on account of (9.25) and
(9.26). From this, (9.27), (9.28) and (2.50) we obtain

for Izl --&#x3E; oo uniformly on (9.25). Using (4.7) and (2.46) we see
that (9.29) may be written in the form

for izl --&#x3E; oo uniformly on (9.25). In view of the definitions III
and IV in § 4 this implies (9.24).
REMARK 1. If arg z +ô,, = tfln then the modules of the terms

in the formal series in (9.24) can be written like IEz’1(log z)"l where
E and q are complex constants and k is a non-negative integer.
This follows from the definitions III and IV in § 4 and from

An analogous remark can be made at theorem 8 and theorem 9.
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REMARK 2. If in (9.24)

is a formal series of zeros then in theorem 7 we may replace (9.24)
by(9.17).
PROOF: By (9.30), (9.31), definition IV in § 4.6, (2.5) and (2.17)

we have

for [z[ -&#x3E; oo uniformly on (9.25). From (8.17) and definition III
in § 4.4 we deduce that if N &#x3E; 2

for 1 z [ - oo uniformly on !,un - B  arg z + §  !,un and the
same formula with rllr-l for Izi -&#x3E; oo uniformly on -!,un 
arg z + lJr-l  -!,un +e or !,un  arg z + §  ) pJc + e (since
lJr-lJr-l = ,un). From the preceding formulae we deduce

for Izl -&#x3E; co uniformly on (9.25). Consequently (9.17) holds for
izl --&#x3E; oo uniformly on (9.25).
THEOREM 8.

If,u is positive, ô-ô_i &#x3E; pn and e is a’ constant so that

then

lor Izl - oo uniformly on (9.25).
PROOF: In (2.44) we choose eo = e. Then (9.25) implies (2.44)

and (2.50) may be applied on (9.25). From (9.32), (9.25) and
b,-b,._1 &#x3E; ,uc we deduce that if i  r then

arg Z+i  arg z + ô,,-,  arg z+r-,un-28  ’-t,un-e
and so by lemma 8: (2.52) we have (9.27) for Izi  oo uniformly
on (9.25). If i &#x3E; r, then by (9.32), (9.25): arg z + ôj -fflin + e
and consequently (9.28) holds for .lzl --&#x3E; oo uniformly on (9.25)
(cf. (2.51)). By (9.25) we may apply (8.19) to F(zei8r). So by
(2.50)
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for (zl -&#x3E; co uniformly on (9.25). On account of (4.7) and (2.46)
this is equivalent to

for [z[ -&#x3E; oo uniformly on (9.25) and this implies the assertion of
the theorem in view of the definitions in § 4.

REMARK: If r = n = 0, do &#x3E; 0 then (9.33) may be replaced by
(7.11 ).

PROOF: By the definition II in § 4.2 and (4.7) the datum
c50 &#x3E; 0 implies K = -1, Do = 0, Co = co. So the righthand side of
(9.33) becomes

Therefore

for Izi - oo uniformly on (9.25) and for arbitrary integers N &#x3E; 0
(cf. definitions III and IV in § 4 and use n = 0). On the part of
(9.25) where

we have uniformly for Izi - oo

(cf. (4.12)). Now (9.84) and (9.36) imply (7.11) for Izi - oo
uniformly on the part of (9.25) where (9.35) holds. On the part of
(9.25) where

we also have (7.11) uniformly for [z[ - oo according to theorem 4
(cf. (7.6) and (7.18)). Hence (7.11) holds for izl --&#x3E; oo uniformly on
(9.25).

THEOREM 9.

If p is positive, ô, - ô,-, &#x3E; jun and e is a constant so that
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then

for izl --&#x3E; oo uni f ormly on

PROOF: We choose eo = e+!(t5r-t5r-l-fln) in (2.44). Then
(9.39) implies (2.44) and so (2.50) may be applied.

If i  r-2 then on account of (9.37) and (9.89)

and so (9.27) holds for [z[ --&#x3E; oo uniformly on (9.39) by lemma 8:
(2.52). If i &#x3E; r then according to (9.37) and (9.39)

and so (9.28) holds for [z[ -&#x3E; oo uniformly on (9.39) by lemma 8:
(2.51). Finally to F(zei6r-l) we may apply lemma 8, especially
(8.20), on (9.39). Combining these formulae with (2.50) we get

and so by (4.7) and (2.46)

for [z[ --&#x3E; oo uniformly on (9.39). This implies (9.38) for Izi - oo
uniformly on (9.39).
REMARK: If r = n = 0, ôo &#x3E; 0 then (9.38) may be replaced by

(7.12). The proof of this assertion runs in the same way as the
proof of the remark after theorem 8.

§ 9.3. We now give a survey showing the theorems which have
to be applied in order to obtain the asymptotic expansions of
H(z) in the case il &#x3E; 0 on a given general sector. On
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the asymptotic behaviour of H(z) in the case p &#x3E; 0 is contained in

i) theorems 5 and 6 if ô, - ô,-,  .tn,

ii) theorems 5 and 7 if ô, - ô,-, = un,
iii) theorems 5, 8 and 3 if ô, - ô,-, &#x3E; tn.

On

we have to use

iv) theorem 5 if ô,+, -ô,,  pz,
v) theorem 5 and the theorems 9 and 3 if ô,+, -ô, &#x3E; ,un.

Here in the last two theorems we have to replace r by r-f-1.
Sometimes in the cases iii) and v) theorem 3 has to be replaced by
theorem 4. These special cases are mentioned in the assertion of
theorem 3.

In (9.40) and (9.41) a is a positive constant independent of z
while a is smaller than a positive number depending only on r but
not on z. By varying r in (9.40) and (9.41) we see that the behavi-
our of H(z) for Izl - oo can be written down in any sector of the
z-plane if p, &#x3E; 0 (for ô-, - - oe and t5.. -+ 00 if r -+ 00 by definition
I of § 4.2).

If p = 0 then the analytic continuations and the behaviour
near z = o0 of H(z) can be read off from theorem 2. Finally we
remark that all values of m, n, p and q satisfying (1.4) have been
considered. The numbers t5r, however, depend on the choice of
m, n, p and q.

§ 10. Another method to obtain the asymptotic expansions
of H(z) and some spécial cases of the theorems

of § 9 and of § 6

§ 10.1. The most difficult part in the derivation of the asymp-
totic expansions in the theorems 4-9 is the estimation of the
remainder terms, especially of the last integral in (2.27) and the
function r(z) in (2.60). These functions have been estimated with
the help of the lemmas in § 5. This method is related to the method
of indirect Abelian asymptotics (cf. G. Doetsch [13] II p. 41).
The estimation of the functions mentioned above can be done

also by means of the method of steepest descents. In the following
we give a sketch of the estimation of the last integral in (2.27) -
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that is the function a(z) defined by the first equality in (2.29) -

by means of this method.
We remind of the assumptions made at (2.27): Il &#x3E; 0, n = 0,

m = q and (2.22). So we treat again the exponentially small
asymptotic expansions of H(z) in the case Il &#x3E; 0, n = 0, m = q.
We consider again (2.25), (2.27), (2.28) and (2.29). In (2.25)
H0(z) is the special case of H(z) with y &#x3E; 0, n = 0, m = q.
Further the function h2(s) occurring in (2.25) is defined by (2.24).
For w and N we choose conditions different from those in § 2.2.
N will be a non-negative integer such that (cf. (3.24)) :

while satisfies (2.2) with m = q and (2.26). The function
pN(s) occurring in (2.27) and (2.29) is defined in lemma 3 in § 8.3.
It can be verified that (2.25), (2.27) and (2.28) remain valid for
(2.22). From (2.27) and (2.28) it follows that in order to estimate
Ho(z) we have to estimate a(z) defined by the first equality in
(2.29). This will be done here on (7.9) where e is a constant such
that 0  e  tfln.

First we remark that there exists a positive constant Ko
independent of Izl and of arg z such that

for Izi &#x3E; Ko and (7.9). Next we choose

in the case Izl &#x3E; Ko and (7.9) hold. This is allowed since in view
of (10.2) now (2.2) and (2.26) are fulfilled. Now w is negative on
account of (7.9) and (10.3).
From lemma 3 in § 3.3 and the formula of Stirling (3.1) we

easily deduce that there exist positive constants Kl and K2
independent of s such that if Isl &#x3E; Kl and arg (-s)1  ln then

There exists a positive constant K3 independent of Izi and arg z
such that Re Zl//I &#x3E; ,uKl if izi &#x3E; K3 and (7.9) hold, and such that
Ka &#x3E; Ko. Hence if Izi &#x3E; Ka, (7.9) is fulfilled ând Re s = w
(cf. (10.8»), then Isi &#x3E; -fi) &#x3E; KI and arg (-s)1  in, and
consequently (10.4) holds.
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So if Izl &#x3E; Ka and (7.9 ) are satisfied then by (2.29) and (10.4):

(10.5) la(z)1  K2JtD+oo Isl!-Rea,-N2 
w-ioo

· IzltD exp {-.tW Log l.tsl +flW+fl Ims( arg (-s)- arg zIf")}. Idsl.
If Re s = W then IsB!-Rea,-N  (_w)!-Rea,-N by (10.1). Further
we substitute in the integral in (10.5): s = w+i(v+w0153) where
(cf. (103)):

Then we may deduce from (10.5)

if Izl &#x3E; K3 and (7.9) hold, where

The function f(v, x ) also depends on w. From (10.8) we derive
1(v, 0) = 1 and

With this information about f(v, x) we can attack the intégral in
(10.7) in an analogous way as in section 2.4 of A. Erdélyi [14].
We suppose further always Izi &#x3E; K3 and (7.9). Let q = e//À.

Then according to (7.9) and (10.6)

So if lael  1 then by (10.10) and (10.11)

where k is a positive constant independent of z and of x. From
(10.8), (10.9) and (10.12) we easily derive f(v, x) &#x3E; 1+kx2 for
Ixl  1. Consequently
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for [z[ &#x3E; K3 and (7.9).
Using (10.9) and (10.11) we may infer that if x è-&#x3E; 1

and that if x  -1

From these formulae and f(v, 0) = 1 we may deduce

for Izl &#x3E; K3 and (7.9) where K4 is a positive constant independent
of w and of z.
The estimates (10.7), (10.13) and (10.14) imply

for Izi -&#x3E; oo uniformly on (7.9). On account of (10.3) and (7.9)
this can be written as

for Izl -&#x3E; oo uniformly on (7.9). This estimate is sharper than the
estimate in (2.35). Now (2.36) and the assertions in theorem 4 on
(7.9), (7.13), (7.14) and (7.16) follow like in § 2.2 and § 7.

In an analogous way we may apply the method of steepest
descents to estimate the function z(z) in (2.60) on (8.12). In view
of (2.59) this function plays the rôle of a part of the remainder
term in the asymptotic expansion of F(z), the auxiliary function
defined by (2.48). The function F(z) has been introduced because
from the behaviour of F(z) near z = 00 we may deduce the
behaviour of H(z) near z = oo in most cases with p positive by
means of (2.50). The estimation of i(z) by means of the method
of steepest descents very much resembles the method used in the
lemmas 5, 7, 8, 9 and 10 of Wright [33]. Therefore we do not
sketch this method and we refer to the work of Wright.

§ 10.2. Here we consider more closely a special case of the
theorems 3, 8 and 9 in § 6.3 and § 9.2. It may occur in these
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theorems that the formal series (9.31) only contains a finite
number of non-zero terms. One of these cases is mentioned in

theorem 3 and in the remarks after theorem 8 and theorem 9,
viz. the case that ,u &#x3E; 0, do &#x3E; 0 and r = n = 0.

Here we treat the general case in which the formal series (9.31 )
only contains a finite number of non-zero terms, that y &#x3E; 0

and 2013_i &#x3E; yn. We give a sketch how to obtain more in-
formation about the behaviour of H(z) for Izi --&#x3E; oo than the

information contained in the theorems 3, 8 and 9.

From definition IV in § 4.6 and (2.7) it follows that

In view of the supposition about (9.31 ) there is only a finite num-
ber of non-zero terms on éither side of (10.16). Let the sum of
these terms be denoted by T(z) and let these terms be the residues
in the points s = so, ..., SA of the sequence (4.28).

It can be verified easily using (1.1), (2.7) and (2.10) that

for z =A 0, where Cl is a contour in the complex s-plane from
s = oo L-ik to s = oo+ik (k is a suitable positive constant) such
that the points s = so, ..., s and

are lying to the right of Cl.
From the fact that the righthand side of (10.16) only contains

a finite number of non-zero terms we may deduce further

where h2(g) is defined by (2.24) and where h5(s) is either identically
equal to zero or

Here ro is a non-negative integer, ko, ..., kw are complex numbers
independent of s and {l;} (j - 0, ..., û)) is an increasing sequence
of real numbers independent of s. In the case h5(s) ~ 0 then
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H(z) = T(z) by (10.17) and (10.19) and the asymptotic behaviour
is known.
We now consider the case h5(s) ~ 0. Then it appears that

ô,, -ô,-,  2IÀn and

We omit the proof of these assertions. From (10.17), (10.1J) and
(10.20) we deduce if z # 0:

The coefficient of k, in (10.22) is a special case of the function
H(z exp ili) with q = m, n = 0 (cf. (1.1), (1.3) and (2.24)). To
these functions we apply theorem 4 in § 7.3 on the sector (6.27)
where e satisfies (6.25). Then we obtain for H(z)-T(z) an ex-
ponentially small asymptotic expansion on (6.27). In particular if
f’-f’-1 =f=. 2,un we may deduce from (10.22), (10.21), theorem 4
and lemma 5 in § 4.5:

for Izl --j oo uniformly on (6.27) or more generally on

where a, is an arbitrary positive constant. Further we may deduce
that if 5r- 5r-l  2px:

for Izl -&#x3E; oo uniformly on

and

for Izl -&#x3E; oo uniformly on
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If 8,-8r_1 = 2fl7t we may deduce from (10.22) and theorem 4 that
(10.25) and (10.27) hold for [z[ - oo uniformly on (10.24). These
assertions supplement the assertions of theorem 3 in the case that
(9.31) only contains a finite number of non-zero terms and

Hz) # T(z).
From (10.25) and (10.27) and the theorems 8 and 9 of § 9.2

we may deduce that (10.27) resp. (10.25) also holds for Izl -&#x3E; co

uniformly on (9.25) resp. (9.39) if (9.31) only contains a finite
number of non-zero terms and H (z) =1= T(z). This supplements the
assertions of the theorems 8 and 9.

Analogous remarks can be made in § 11 and § 12 at the applica-
tions of the theorems on H(z).

§ 10.3. The last special case we consider is the case that one or
more of the coefficients C,+D, occurring in the asymptotic
expansions in the theorems 5-9 in § 9 are equal to zero. In these
cases better approximations for H(z) can be obtained by modifying
the definition of ô and so of C; and Di.
Assume Co+Do =1= 0 and CK+DK =1= 0 but some of the other

coefficients Ci+D; are equal to zero. Then we change the definition
of ô, and so of K, Ci and D, as follows:

Let JI;, Ci and d; be defined in lemma 4. Consider the formal series

and rearrange the terms in this series such that we obtain a series
of increasing powers of exp is:

where bo = yo, âj resp. e, are real resp. complex constants and
none of the numbers ei is equal to zero. Using these numbers bi we
may construct the numbers K, Ci and D, with definition II. Then
we see that now Ci+Di = ei =F 0. Further again lemma 4a can
be derived: the proof needs only slight alterations. In our consid-
erations in § 2, §§ 6 -9 we only used the properties in lemma 4a
of the numbers Ô i, K, Ci and D,. So the theorems about H(z)
remain valid if we use the definitions given above for ô, etc.
instead of the definitions in § 4.2. Now the coefficients Ci+Di in
the asymptotic expansions are not equal to zero and so better
approximations for H(z) are obtained.

In the case that Co+Do = 0 or C"+D,, = 0 in the original
definition the new definition has to be changed slightly.
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§ 11. Applications to the G-function

§ 11.1. We consider the function H(z) from § 1 in the case that

The conditions I resp. II of § 1 for the existence of H(z) now read :
q &#x3E; p, z =1= 0 resp. q = p, 0  izl  1, since by (1.8) and (1.10):
p = q-p and P = 1. In these cases H(z) coincides with the
G-function. So:

Suppose m, n, p and q are integers such that 0 ::;;: n  p  q,
1  m  q and suppose z =1= 0 if q &#x3E; p and 0  Izl  1 if q = p.
Assume further: al , ..., a’P’ bl , ..., bq are complex constants such
that

Then the G-function is defined by (cf. C. S. Meijer [22], p. 229)

where zs is defined by (1.2) and C is a contour in the complex
s-plane which runs from oo -iz to oo+i7:(7: is a suitable positive
number) and which encloses the poles b; , bj+1, ... (i =1, ..., m )
but none of the poles ai-l, ai-2,... (i = 1, ..., n ) of the
integrand (such contours exist because of (11.2)). The suppositions
madè above will be assumed tacitly in the rest of § 11.

If p and q are integers with 0  p  q+1, if al , .’ .., a1J’
b1, ..., bq are complex numbers and if Izl  1 in the case that

p = q+ 1 we define the generalized hypergeometric function

1JqJq(z) by

If (11.2) and

hold and if 0  Izl  1 when p = q resp. z =1=- 0 when p  q then
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the asterisk denotes that the number 1 +bh -b", has to be omitted
in the sequence l+b",-b1,..., 1+b",-bq (cf. [22J, p. 230).
(11.6) can be proved by means of the theorem of residues; it is a
special case of (6.5).

§ 11.2. Before we specialize the theorems 2 up to 9 for the
G-function we prove some properties of the quantities occurring
in the definitions in § 4 in the case (11.1).

LEMMA 9.

(cf. definition I, § 4.2). If p  m+n-l then (11.7) also holds for
i &#x3E; 0 while for j  0:

If k is an integer, arbitrary in the case p &#x3E; m+n-l and satisfying
k &#x3E; 0 or k  p-m-n in the case p  m+n-i then

where r is determined by

Finally

save in the case i = 0, p  m+n-1 for in this case

PROOF: By lemma 4 in § 4 and (11.1) we have

and so



315

Suppose first p &#x3E; m + n - 1. Then any intçger i satisfies i &#x3E; 0

or/and j  p-m-n. So by (11.13) every number (m + n - p + 2h)n
where h is an arbitrary integer is equal to a number y. or/and
-yo for an appropriate g. So if we write down the numbers

y, and -y;(j = 0, 1, 2, ...) in an ascending sequence we obtain
the sequence

From this, definition I in § 4.2 and yo = (m+n-p)n (cf. (11.13»)
we deduce (11.7).

Suppose next p  m+n-1. By (11.13) the number

(m+n-p+2h)n is only equal to a number yf or -yi if h &#x3E; 0 or
h  p-m-n. So if we write down the numbers y, and -y;
(.j = 0, 1, 2, ... ) in an ascending sequence we obtain the sequence

From this, definition 1 in § 4.2 and yo = (m+n-p)n (cf. (11.18))
we deduce (11.7) for i &#x3E; 0 and (11.8) for i  0.

From (11.7) and (11.8) we infer (11.9) with (11.10) in both
cases p &#x3E; m+n-l and p  m+n-1. Now also (11.11) and
(11.12) are easily verified.
Before proving other properties for the quantities in the

definitions I-IV we give
DEFINITION V. If 1  h  m and (11.5) holds then

In the second place

(11.15) S(z) = z residues of h(s)z8 in the points s satisfying
simultaneously s = bj+ v (j = 1, ..., m; v = 0, 1, ...)
and s = ar-1-p (r = n+l, ..., p; p = 0, l, ...) (cf.
(1.3) with (11.1)).

Thirdly if g is an integer and (11.5) holds then we de f ine the formal
series R(g; z) by
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Finally i f p  m+n then

while if g is an integer, g =1= 0 and g =1= p-m-n in the case
p  m+n, if g is an arbitrary integer in the case p &#x3E; m+n, and if
(11.5) holds then

In the case that (11.5) does not hold we also use (11.16) and (11.18)
as de f initions but then we replace the righthand side in (11.16) and
(11.18) by the corresponding limit.

REMARKS: It can be verified that the limits just mentioned
exist.

If

and (11.5) are fulfilled then

where for r = 1, ..., p:

(11.20) can be verified by calculating the residues in (11.16). The
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function S(z) in (11.16) is equal to zero if (11.19) is fulfilled.

Using definition V we now prove

LEMMA 10.

Suppose (11.1) and (11.2) are satisfied. Let k be an integer such
that k 2 0 or k  p-m-n (so if p 2 m+n-1 then k is an

arbitrary integer). Let r be determined by (11.10). We use the

definitions in § 4 and (2.11).
Then if 8-bh is not an integer for h = 1, ..., m and if (11.5)

holds:

Further

This is an equality between formal series. Il 0  p  m+n
and k = 0 then r = 0 and the lefthand side of (11.23) reduces to
Q(z). Finally

while if p  m+n

and for the values of k mentioned above save f or k = 0 with p  m + n

PROOF: In order to prove (11.22) we show that if (11.5) holds

is a bounded integral function which tends to zero for Im s --&#x3E; - oo.
For then it follows that the function (11.27) is identically equal
to zero and with (11.9) now (11.22) follows.

In view of (2.11), (11.1), (11.9) and (11.14) the singularities
of the function (11.27) in the points s = b;+v (j = 1,..., m ; v
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integral) are removable and so that function can be considered
as an integral function. Since the function has period 2 it is
bounded for Ilm si  l (cf. (2.3) and (11.1»). Further from (4.8),
(4.9) and an analogue of (2.54) (the latter applied to the last sum
in (11.27)) we deduce that the function (11.27) is bounded for
lm s &#x3E; l while its modulus is at most

for Im s  -l. Here K and K, are constants independent of s.
Hence the function (11.27) is bounded for Im s  2013l and tends
to zero for Im s oo. The assertions concerning (11.27) now
follow.

Using the definitions IV and V in § 4.6 and § 11.2, (11.22) and
(2.7) we deduce (11.23) if (11.5) is fulfilled. By taking limits we
see that condition (11.5) is superfluous. If p  m-f-n then bo &#x3E; 0

and K = -1 (cf. (11.7) and (4.7)). So if p m+n and k = 0 then
r = 0 by (11.10) and the lefthand side of (11.23) reduces to Q(z).

Further if p  m-f-n then because of K = -1, (4.7) and
definition II in § 4.2: Co = co, D-1 = -do and C-1 = Do = 0.
From this, (4.3), (11.10) and (11.17) we deduce (11.24) in the case
that Pm+n and k=0 or k=p-m-n (then r=0 or r=-1).
With (11.9) this leads to (11.25) in the case that p  m+n.
Next suppose k is an integer which is arbitrary if p &#x3E; m+n and

which satisfies k &#x3E; 0 or k  p-m-n if p  m + n. The dependence
of r on k will be denoted temporarily by r(k). Then r(k+1)
= r(k)+1 for the values of k we consider, in view of (11.10). Now
we subtract the corresponding sides of (11.22) for kllk and kllk+1.
Then using (11.9), (4.7) and (11.18) we easily derive (11.24) for the
numbers k we consider here. Hence (11.24) holds for the values of
k mentioned in lemma 10.

If k &#x3E; 0 or k  p-m-n then r(k-1) = r(k) -1 by (11.10).
Using (11.24) and (11.9) we now infer (11.26) for k &#x3E; 0 or
k  p-m-n except for k = 0, p  m+n.

§ 11.3. Before formulating the theorems on the G-function we
make some preliminary remarks and we give a survey of these
theorems.

In the theorems on the G-function we assume

1) (11.1), (11.2), lmq, 0np, 0  e  n/4 with a

constant.

2) If q &#x3E; p then in definition III in § 4.4 we put

(11.28) fl = q-p, fJ = l, Ao = (2n)(P-l+I&#x3E;/2(q_p)0153-!
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(cf. (1.8), (1.10), (3.24), (3.28)) and so

For the numbers A1, A2, ... in (11.29) recurrence relations have
been given by T. D. Riney, J. G. van der Corput and E. M.
Wright (cf. the remark after lemma 2 in § 3).

3) Q(z), Âk, , ah and R(k ; z) are given by the definitions IV
(cf. § 4.6) and V (cf. § 11.2). So in view of (11.1), (1.3) and
(4.26) 

4) The lefthand side of (11.3) will be abbreviated by G’;,’:(z) if
there is no reason for confusion.

The contents of tlie following theorems can be summed up as
follows: If q = p theorem 10 contains the analytic continuations
and the behaviour near z = 00 of the G-functions. If q &#x3E; p then in

the majority of the cases the asymptotic expansion of the G-
function is given by theorem 13. These expansions are exponenti-
ally infinite. Theorem 13 does not include the asymptotic ex-
pansions in the following cases (we assume q &#x3E; p):

i) ’p  q, p +q  2(m+n) and (11.40) holds,
ii) q = p+1 and (11.42) holds where k is arbitrary if p &#x3E; m+n

and k &#x3E; 0 or k  p-m-n if p  m+n (k is always an
integer),

iii) arg z belongs to a transitional region like (11.49), (11.56),
(11.61), (11.63), (11.66) and (11.68).

In case i) theorem 11 and theorem 12 may be applied. They
include the algebraic and exponentially small asymptotic ex-
pansions. In case ii) again theorem 11 may be applied giving
algebraic expansions. Case iii) is covered by the theorems in
§ 11.6 and theorem 14.
The following theorems may be compared with the theorems

A, B, C, D, E* and 16-22 of C. S. Meijer [22]. These results
include those of T. M. MacRobert [21]. In this paper MacRobert
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considers the asymptotic expansion of the E-function which is a
special case of the G-function.

§ 11.4. In this section we deduce the analytic continuations
and algebraic asymptotic expansions of the G-function.

THEOREM 10.

ASSERTION 1. In the case 1  p  m+n the function G§$&#x3E;§(z)
can be continued from 0  Izi  1 into the sector 

(11.31) 1 arg zl  (m+n-p)n

by means o f

where D is a contour which runs from s = a-iaJ to s = a+ioo
(a is an arbitrary real constant) so that the points s = b, + g
(j = 1,..., m; g = 0, 1, ...) resp. s = a;-I-h (j = i, ..., n;
h = 0, 1, ... ) lie to the right resp. le f t of D. The f unction in (11.32)
can be continued analytically into the domain izl &#x3E; 1 by means of

if 1  p  m+n. Q(z) now represents a convergent series for
Izi &#x3E; 1 (el. (11.30)).
ASSERTION 2. Suppose (11.5) holds, p &#x3E; 1, k is an integer

which is arbitrary if m+n  p while k &#x3E; 0 or k  p-m-n if
m+n &#x3E; p. Then G§§&#x3E;§(z) can be continued analytically into the
domain 

by means o f

where ah and S(z) are given by de f inition V in § 11.2, ho(s) is given by
(2.10) with (11.1) and D’ is a contour which runs from a-ioo
to a + i oo (a arbitrary real) so that the points s = a, - 1 - y
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(r = 1, ..., p; v = 0, 1, ... ) lie to the left of D’ while those

points s = bj+g (j = 1, ..., m; g = 0, 1, ...) which differ from
the points first mentioned lie to the right o f D’. The function in
(11.35) can be continued analytically into Izl &#x3E; 1 by means of

where now R(k; z) (cf. (11.16») is a convergent series for 1 z &#x3E; 1.

PROOF: Assertion 1 follows from remark 1 after theorem 2,
especially (6.23), and u == 0, 80 &#x3E; 0 (cf. (1.8), (11.1), (11.7)).
Assertion 2 follows from theorem 2, lemma 10, (11.9) with (11.10)
and (11.11) with i = r.

REMARK. If m = 1, n = p then (11.32) can be written in the
form

for 1 arg zl  n. If moreover bi = 0 the G-function in (11.37) is
equal to a constant times a function 2)Q;J)-I(Z) (cf. (11.6)).
From (11.35) and (11.37) it follows that if the assertions for

(11.35) are satisfied then

where the asterisk denotes that b. is omitted in the sequence
bl, ..., bD. (11.38) can be deduced also from (11.4), (11.6) and
(11.14). From (11.37) and (11.38) we can deduce (11.35).

THEoREM 11.

Il p  q, p+q  2(m+n) then the algebraic asymptotic ex-

pansion

holds f or Izl - oo uni f ormly on

I f n = 0, p  q and p + q  2m then better estimates are given in
theorem 12. Further i f p &#x3E; 1 then the algebraic asymptotic expansion

holds for Izi -&#x3E; oo uniformly on
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where k is an integer which is arbitrary if p &#x3E; m+n while k &#x3E; 0

PROOF: Suppose first p  q, p+q  2(m+n). Then (2.13) is

fulfilled in view of (11.7) and (11.28). From (11.7), (11.28) and
the assertion in theorem 3 in § 6 concerning the case fl &#x3E; 0, r = 0
and (2.13) we infer (11.39) om (11.40). If moreover n = 0, then
Q(z) represents a formal series of zeros by (11.30) and then
theorem 12 gives the exponentially small asymptotic expansions
instead of (11.39).
Next suppose the conditions concerning (11.41) are fulfilled.

Then (2.19) holds in view of (11.11) and (11.28). So we may apply
theorem 3: (6.26), (6.27). Using (11.28), (11.9), (11.11) with
j = r and (11.23) we obtain (11.41) on (11.42).

§ 11.5. This section contains the exponentially small resp.
infinite asymptotic expansions.
THEOREM 12.

Suppose 0  p  q  2m-p. Then the following exponentially
small asymptotic expansions hold: In the first place

for Izl -&#x3E; oo uniformly on

i f m = q, and uni f ormly on

il m  q. In the second place

for izl -&#x3E; oo uniformly on (11.44) il m = q, and on

il m  q. Finally i f m  q then

for [z[ - oo uni f ormly on

PROOF: By (11.28) and (11.7) we have li = q-p, ôo =

(m+n-p )n. Since n = 0 and p  q  2m-p in theorem 12
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the conditions n = 0, fl &#x3E; 0 and (2.13) in theorem 4 in § 7 are
fulfilled. Using (4.3) and (11.17) we may translate the assertions of
theorem 4 into those of theorem 12.

THEOREM 13.

Suppose k is an integer which is arbitrary if p &#x3E; m-f-n-1 while

k &#x3E; 0 or k  p-m-n if p  m+n-1. Then

f or Izl -&#x3E; oo unilormly on

if q &#x3E; p+2 and uni f ormly on

if q = p+1. If p  m+n-1 and p+3  q then (11.50) with
k = 0 also holds for Izl -&#x3E; oo uni f ormly on

and (11.50) zvith k = p-m-n also holds for 1 z 1 --&#x3E; co uniformly on

The asymptotic expansions in this theorem are exponentially infinite.
PROOF: According to (11.11), (11.12) and (11.28) we have

min (An, à;- à;_1) &#x3E; 2Tl if q &#x3E; p+2 resp. = n if q = p+1.

Hence theorem 5 in § 9, (11.24) and (11.9) imply (11.50) on
(11.51 ) if q &#x3E; p+2 and (11.50) on (11.52) if q = p+l. If, however,
q &#x3E; p+3, p  m+n-1 and k = 0 resp. k = p-m-n then
r = 0 resp. r = -1 by (11.10) and min(do-d_1, px) &#x3E; 2n by
(11.12) and (11.28). So in these cases (11.50) with k = 0 resp.
k = p-m-n not only holds on (11.51) with = 0 resp. k =

p-m-n but more generally on (11.53) resp. (11.54) (cf. (9.3)).
THEOREM 14.

Suppose k is an integer which is arbitrary if m+n  p+l while
k &#x3E; 0 or k  p-m-n if m+n &#x3E; p+1. Then if q &#x3E; p+3

(11.55) C;:,:(z) 1’-1 Âk E(ze(m+n-p+2k)1Ti)+Â.k-l E(ze(m+n-p+2k-2)1Ti)p, q k 

for 1 z 1oo uni f ormly on
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(11.56) n-e : arg z+(m+n-p+2k)n  n+e.

Further if 0  p  q, p + 1  m+n  j(p+q) then

(11.57) G’,"(z),ÂOE(ze(fn+n--v)ffi )+Â E(ze (p---n)ni
for Izl --&#x3E; oo uniformly on (11.49). The expansions in this theore1n
are exponentially infinite.

PROOF: If k satisfies the assumptions for (11.55) then by (11.10)
and (11.11): Ô, - Ô,.-, = 2n. So ifq &#x3E;p+3 then 8r-br_1 flnand
theorem 6 in § 9 may be applied. Combining (9.17) and (9.18) with
(11.26) and (11.25) (the latter in the case k = 0, p+1 = m+n),
(11.9) and ô-ô_1 = 2n we obtain (11.55) on (11.56).

If p+1  m+n  !(p+q) then using (11.12) and (11.28) we
see that ôo-ô-,  p,n. So the assertion in theorem 6 concerning
the case r = 0 may be applied. In view of (11.7), (11.12) and
(11.25) we obtain (11.57) on (11.49).

§ 11.6. In this section we consider the asymptotic expansions
in the remaining transitional regions.
THEOREM 15.

Suppose k is an integer which is arbitrary if p &#x3E; m+n while
k &#x3E; 0 or k S p-m-n il p  m+n. Then i f p &#x3E; 1

(11.58) Gm,n 91 P+2(Z) ’ R(k; Z) + Ak E (ze(m+n -P+2k)ffi)
+ Âk-l E (ze(m+n-p+2k-2)1Ti)

for Izl --&#x3E; oo uniformly on (11.56). I f, however, p = n = 0 and q = 2
then (11.55) holds for ]z[ -&#x3E; oo uniformly on (11.56).

1 f 0  n  p  m+n = !(p+q) then

(11.59) G’;,’;(z)  Q(z)+Âo E(ze(m+n-p)lIi)+ÂJ)-m-n E(ze(p-m-n)1Ti)
for [z[ --&#x3E; oo uniformly on (11.49). I f n = 0, m = !(p+q), p q
then (11.57) holds for [z[ --&#x3E; oo uniformly on (11.49).

PROOF: If the assumptions for (11.58) are satisfied then it

follows from (11.11) and (11.28) that "-"-l = p,n. So by
theorem 7 in § 9, (9.24), (9.25), (11.28), (11.9), (11.23) and (11.26)
we have (11.58) on (11.56). Next if p = n = 0 and q = 2 then
again §- ô_i = fln. Further now (9.31 ) represents a formal series
of zeros and so by theorem 7 and remark 2 after theorem 7
(cf. § 9), (11.9), (11.28) and (11.26) we have (11.55) on (11.56).

If 0 S n s p  m+n = !(p+q) and k = 0 then r = 0 and
ôo-à_i = p,n by (11.10), (11.11), (11,12) and (11.28). From
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theorem 7, lemma 10, (11.7) and (11.28) we deduce (11.59) on
(11.49). If moreover n = 0 we may apply remark 2 after theorem
7 and (11.25) to obtain (11.57) on (11.49).

THEOREM 16.

for Izl -&#x3E; oo uniformly on

Il moreover n = 0 we may delete Q(z) in (11.60).
If p &#x3E; 1 and k is an integer which is arbitrary if p &#x3E; m+n and

which satisfies k &#x3E; 0 or k  p-m-n if p  m + n then

for Izl -&#x3E; oo uniformly on

Further

PROOF: If q &#x3E; p, p+q  2(m+n) then p  m+n and so by
(11.11) and (11.12): ôo-ô-l = 2(m+n-p)n &#x3E; (q-p )à = lin.
Now using theorem 8 in the case r = 0 (cf. § 9), (11.9) and (11.10)
with k = 0 and lemma 10 in the case k = 0, p  m+n we obtain

(11.60) on (11.61) for q &#x3E; p, p +q  2(m+n). If n = 0, q &#x3E; p,

p + q  2m then Q(z) represents a formal series of zeros and we use
the remark after theorem 8, (4.3) and (11.17). Then we get (11.60)
with Q(z) omitted on (11.61).

In the case that the assumptions of (11.62) are satisfied and
q = p+1 then by (11.10), (11.11) and (11.28): 5,.-5"-1 &#x3E; ,un.
From theorem 8, (11.9) and lemma 10 we now derive (11.62) on
(11.63). Finally (11.64) is a consequence of (11.4) and (11.6).
THEOREM 17.

f or Izi -&#x3E; oo uni f ormly on

If moreover n = 0 then the term Q(z) in (11.65) may be omitted.
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1 f p &#x3E; 1 and k is an integer which is arbitrary il m+n  p
while k &#x3E; 0 or k  p-m-n if p  m+n then

for Izi -&#x3E; oo uniformly on

PROOF: The proof is analogous to the proof of theorem 16; only
instead of theorem 8 we apply theorem 9 and instead of (11.9)
and (11.10) with k = 0 we use these formulae for k = p-m-n.

§ 12. Generalizations of the hypergeometric series

In this paragraph we consider some classes of series containing
the hypergeometric series and the Bessel function as special cases.
In § 12.1 and § 12.2 we treat the generalized hypergeometric
function considered by E. M. Wright [32J, [34]. In § 12.3 the
exponentially small asymptotic expansions of another class of
generalized hypergeometric series will be given. In § 12.4 we
consider the generalized Bessel function introduced by E. M.
Wright in [31] and [35].

§ 12.1. In this and the following section the function

will be investigated. Here we assume that p and q are non-
negative integers, al , ..., MP , Pl, ..., P q are positive constants,
al , ..., ap , bl, ..., bq are complex constants such that

In § 12.1 and § 12.2 we use the number Il defined by

instead of by (1.8), and the number P defined by (1.10) with the
same p, q, oc, and Pi as in (12.1). Then if p is positive the series in
(12.1) is convergent for all values of z and it defines an integral
function of z. If y = 0 then the series in (12.1) is convergent for
[z[  p-l and it defines an analytic function of z for Izi  P-1.
This may be shown by means of theorem 1 (cf. § 6): Consider
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the special case of the function H(z) in § 1 with the same p and
oci(j = 1, ..., p) as in (12.1) and with

The number y defined by (1.8) assumes the value given by (12.3)
if we make the substitution (12.4) in (1.8). Further the value of fl
defined by (1.10) does not alter if we substitute (12.4). Finally
the conditions (1.4) and (1.5) are satisfied (cf. (12.2)).
From theorem 1 especially (6.1) and (6.5) we deduce that

if we substitute (12.4) in the function H(z) of § 1 then

for fl &#x3E; 0 and z =A 0 and for fl = 0 and 0  Izi  P-1. The func-
tion H(z) in (12.5) does not depend upon the value of arg z
because 1J1pq(z) is one-valued (cf. (12.1)). Further it is easily seen
that 1J1pq(z) is analytic in z = 0 and that if ,u = 0 and Izi &#x3E; fl-1
then the series in (12.1) is divergent except in the case of a
terminating series.

Special cases of the function 1J1pq(z) have been considered among
others by G. Mittag-Leffler (cf. G. Sansone and J. C. H. Gerretsen
[28] p. 345), E. W. Barnes [3], [4], D. Wrinch [38], [39], [40],
C. Fox [17], C. V. Newsom [24], H. K. Hughes [20], C. S. Meijer
[22], S. Bochner [5a], [6] and J. Boersma [7] while the general
case of f’1pq(z) with p &#x3E; 0 has been considered by E. M. Wright
[32] and [34].
The function of Mittag-Leffler is the special case 11pI(Z) with

a, = ui = bl = 1. Barnes and Meijer have considered the or-

dinary generalized hypergeometric function which is the special
case of 1J1pq(z) with al =... = aD = fli = ... = pq = 1.
Then 1J1pq(z) is a special case of the G-function and the asymptotic

expansions and analytic continuations of this function (derived
by Barnes and Meijer, cf. § 1.2) can be applied. Also a special case
of the G-function and of 1J1pq(z) is the function considered by
Boersma viz. the function in (12.1) with al, ..., aD, Pl’ ..., pq
positive rational. The properties of the G-function can be applied
again in this case.
Fox has considered the more general special case of f’1pq(z) that U

is positive rational. The method of Fox resembles in some aspects
the method used by Barnes to obtain the exponential asymptotic
expansions. However, in some of the expansions of Fox each
coefficient is equal to zero (so-called "dummy" expansions).
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Before Fox, Miss Wrinch considered the special case of 1J1pq(z)
with p = 0 and Pl = ... = pq = 1 resp. p = 1, q = 4, tXI = Pl =
... = P4 = 1. She used results of Barnes and Kelvin’s method
of critical points. Newsom resp. Hughes has considered the

special case of o1pq(z) with Pl = ... = pq = 1 resp. arbitrary
positive Pl’ ..., pq. They use results derived in [23] and [19] for a
more general class of functions (cf. below). In some cases Hughes
does not obtain the exponentially small asymptotic expansions.
Bochner has considered the special case of 1J1po(z) with p = 0.

His method is related to the Laplace-Borel transformation.
More general series than the series in (12.1) have been con-

sidered by E. W. Barnes [2], G. N. Watson [29], W. B. Ford [16],
C. V. Newsom [23], H. K. Hughes [19] and E. M. Wright [33] and
[36]. However, in certain cases the asymptotic expansions ob-
tained are "dummy" expansions.
Watson used his theory of asymptotic series and his results

about the transformation of asymptotic series into convergent
factorial series. Wright simplified and extended these methods of
Watson (cf. the description of Wright’s method in § 1.2).

Barnes used approximations by functions of which he pre-
viously derived a large number of properties by means of contour-
integration.
Ford continued and extended the research of Barnes [2] in his

book [16]. He used approximations by means of integrals which
can be estimated by means of a method related to the method of
steepest descents. Newson and Hughes again extended the re-
search of Ford.
The results of the authors mentioned above concerning asymp-

totic expansions of the function f)1pq(z) and its specializations in
the case il &#x3E; 0 are contained in the results of Wright in [32] and
[34]. His results have the advantage that the asymptotic ex-
pansions hold uniformly on sectors a finite number of which
cover the entire z-plane. Wright also deduces the exponentially
small asymptotic expansions and moreover he gives relations for
the coefficients in the asymptotic expansions.

In § 12.2 we deduce the analytic continuations and asymptotic
expansions of the function 1J1pq(z) by specializing the theorems
2-9 with (12.4) and using (12.5).
The analytic continuations in the case il = 0 are contained in

theorem 18. The asymptotic expansions of 1J1pq(z) in the case
0  p  2 are given in the theorems 19, 21 and 22 except in the
case that p = 0 for then the algebraic expansion in theorem 19



329

has to be replaced by the exponentially small expansion in

theorem 20. In the case Il &#x3E; 2 the theorems 21 and 22 yield the
asymptotic expansions.

§ 12.2. For the specialization of the theorems 2-9 to theorems
about the function 1p(l(z) defined by (12.1) we first transform
some of the numbers and functions used in those theorems by
means of (12.4). First by (3.24) and (12.4)

Next according to (2.11) and (12.4) we have h1(s) = 2013n/sin ns,
so

for lm s &#x3E; 0 resp. Im s  0. Comparing this with lemma 4 and
the definitions I and II in § 4 we see that

In definition III in § 4.4 the numbers A o , A 1, ... are determined
by lemma 2 in § 3.2. So by (12.4) they are defined as follows in the
case fl &#x3E; 0: Ao, Al, ... are the numbers independent of s so
that if e is a constant with 0  e  yr and N is an arbitrary non-
negative integer then

for Isi -&#x3E; oo uniformly on (3.2). Especially

Here li, P and oc are given by (12.3), (1.10) and (12.6).
Finally

in the points

(cf. definition IV in § 4.6).
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We now use the definitions (12.3), (1.10), (12.6), (12.10) and
definition III in § 4.4 with Ao, Al, ... given by (12.8) and (12.9)
in the following theorems.

THEOREM 18.

Il p, = 0 then ,,1pq(z) can be continued analytically into the sector
larg (-z)1  jf; by means of

where D is a contour in the complex s-plane which runs from s = a
-i oo to s = «+i oJ (a is an arbitrary real number) so that the

points s = 0, 1, 2, ... resp. (12.11) lie to the right resp. left of D.
From the sector arg (-z)1  a the f unction f)1pq(z) can be con-

tinued analytically into the domain izi &#x3E; p-l by means of

Here Q(-z) is a convergent series for Izi &#x3E; p-1.

PROOF: Use theorem 2 in § 6.2 with r = 0, (12.7) and (12.5).

THEOREM 19.

Suppose 0  Il  2, p &#x3E; 0 and e is a constant so that

0  e  !(2 - fl )n. Then the algebraic asymptotic expansion

holds for Izl - oo uni f ormly on

PROOF: Use theorem 3 in § 6.3 with r = 0, (12.7) and (12.5).

THEOREM 20.

Suppose p = 0, q &#x3E; 0, u  2 and e is a constant so that

0  a  1{2-#)11:. Then the following exponentially small asymp-
totic expansions hold:

for ¡zl - oo uniformly on
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Further

f or 1 z 1 --&#x3E; oo uniformly on

Here in (12.18) and (12.19) the upper resp. lower signs belong
together.

PROOF: Since p = 0, q &#x3E; 0 and p  2 we have fl &#x3E; 1 and

ôo &#x3E; -2lun (cf. (12.3) and (12.7». So the assumptions of theorem 4
in § 7.3 are fulfilled. We apply this theorem with (12.7) and
zllze:i:7Ti. Because q &#x3E; 0 in theorem 20 we have to consider the

case q &#x3E; m in theorem 4 (cf. (12.4)). Using (12.7) and (12.5) we
now easily obtain (12.16) on (12.17) from (7.11) and (7.12) while
(12.18) on (12.19) is a consequence of (7.15).

THEOREM 21.

Suppose fl is positive and a is a constant so that 0  e

 !7t min (,u, 2). Then the exponentially infinite asymptotic expansion

holds for Izl - oo uni f ormly on

PROOF: Apply theorem 5 in § 9.1 with r = 0, zllze-1Ti, (12.7)
and (12.5).

THEOREM 22.

In the transitional regions the following asymptotic expansions
hold: If p, &#x3E; 2 and E is a constant so that 0  e  4 min (2, ,u-2)
then

for Izl - oo uniformly on (12.19). This expansion is exponentially
infinite.

If u = 2, p &#x3E; 0 and a is a constant so that 0  e  n/2 then

lor IZI --&#x3E; 00 uni f ormly on (12.19). Il fl = 2, p = 0 and a is a
constant so that 0  a  n/2 then (12.22) holds for 1 z 1 -&#x3E; oo
uniformly on (12.19).
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Il 0  Il  2, P &#x3E; 0 and e is a constant so that 0  e

 1(2 - Il)n then

(12.24) f)1pq(z) - Q(zif1Ti)+2niE(z)

for Izi -&#x3E; oo uniformly on

1 f 0 G ,u  2 and p = 0 and e is a constant so that
0  a  )(2 -p)x then (12.20) holds for Izl -j oo uniformly on
(12.25).
In (12.22) and (12.19), (12.23) and (12.19), and (12.24) resp.

(12.20) and (12.25) the upper resp. lower signs belong together.

PROOF: Suppose first p &#x3E; 2. Then in view of (12.7) we have
80-8_1  px and so we apply theorem 6 in § 9.1 with r = 0 and
zllzif1Ti. Using (12.5) and (12.7) we infer (12.22) on (12.19).
Next suppose ,u = 2. Then ôo-ô-l = p,n: by (12.7). Hence we

may apply theorem 7 in § 9.2 with zllze=F1Ti and r = 0. Using (12.5)
and (12.7) we obtain (12.23) on (12.19). If moreover p = 0 we
use remark 2 after theorem 7. Then we see that (12.23) may be
replaced by (12.22) on (12.19).

Finally suppose 0  ,u  2. Then ôo - ô-, &#x3E;,un by (12.7). In this
case we use theorem 8 resp. 9 in § 9.2 with zllze-1Ti resp. zelli and
r = 0. On account of (12.5) and (12.7) we may write the result
as (12.24) on (12.25). If moreover p = 0 then (12.24) may be
replaced by (12.20) in view of the remarks after the theorems 8
and 9.

§ 12.3. Here we consider another generalization of the hyper-
geometric function, which also contains the function f)1J’q(z) as a
special case:

where n, p and q are integers, 0  n  p, q &#x3E; 0 and ocj, ..., ocp ,
al, ..., afJ’ Pl, ..., pq, bl, ..., b. satisfy the same assumptions as
at (12.1) except that in (12.2) we replace p by n.

x( -z) is the special case of H(z) in § 1 with the same n, p and ai
as in (12.26) and with
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(cf. (6.5)). Then the numbers ,u and P defined in (1.8) and (1.10)
attain the values given by (12.3) and (1.10) (in (12.3) and (1.10)
the parameters ce; etc. are those occurring in (12.26)). In the
following fl deno’tes the number defined by (12.3).
From theorem 1 in § 6 it follows that x(z)’is defined, one-valued

and analytic in z for Il = 0, Izi  fl-1 resp. p &#x3E; 0 and arbitrary z.
If n = p we have Z(z) = 2)1pq(z) (cf. (12.1)). If p &#x3E; n and (12.2)

holds, then Z(z) can be expressed in functions j)1f’q(z): Using (2.6)
and an analogue of (2.38) we see that

and

Here N is a positive integer, ro, ..., rN resp. po , ..., pN are real
resp. complex numbers independent of v.
The analytic continuations resp. asymptotic expansions can be

deduced from the theorems about H (z). If n  p and (12.2) holds,
then in most cases these properties can also be deduced from
(12.29) and the theorems in § 12.2 about J)1pq(z). Only in the case
that n = 0, p &#x3E; 0 and

whère e is a constant so that

theorem 19 and (12.29) lead to an algebraic asymptotic expansion
of Z(z) in which each coefficient is zero, while an application of
theorem 4 in § 7 shows that in this case y(z) has an exponentially
small asymptotic expansion. Therefore we give only the exponenti-
ally small expansions of Z(z) because the other expansions can be
derived from the theorems 18-22 and (12.29).

THEOREM 23.

Suppose n = 0, (12.30) holds and e is a constant satisfying
(12.32). E(z) will be defined by (4.13) where ju, P, « and Ao are given
by (12.3), (1.10), (12.6) and (12.9), and A1, A2, ... are determined



334

by (12.8). In the following f ormulae the upper resp. lower signs
belong together.

Il q = 0, then

f or Izl --&#x3E; oo uni f ormly on

If q &#x3E; 0 then (12.33) holds for Izi --&#x3E; oo uniformly on

If q &#x3E; 0 then

for 1 z 1 -&#x3E; oo uni f ormly on

The asymptotic expansions (12.33) and (12.36) are exponentially
small.

PROOF: Substituting (12.27) in (2.12) and (4.3) we obtain

In view of (12.3) and (12.30) the number a is positive and
(2.13) holds. From theorem 4: (7.11) with zllze-1Ti, (12-3), (12.38)
and Z(z) = H(-z) with (12.27) we deduce that (12.33) with the
upper sign holds for Izi -&#x3E; oo uniformly on

if q = 0 and on
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if q &#x3E; 0. This implies the assertion concerning (12.33) with the
upper sign. In the same way the assertion concerning (12.33) with
the lower sign follows from (7.12) with z[ [ze"’. Finally using (7.15)
with z((ze=F1Ti in the case Il &#x3E; 0 we obtain (12.36) on (12.37).

§ 12.4. A special case of the function y(z) in § 12.3 has been
considered by E. M. Wright. In [35] he investigated the asymp-
totic behaviour for (zl -&#x3E; 00 of the generalized Bessel function
p(z):

00 Hv

where a is a real number such that 0  a  1 and b is a complex
number. This function is the special case of Z(z) (cf. (12.26)) with

Previously in [31] Wright investigated the function qJ(z) with
a  0 but this function is a special case of ,,1pq(z) (cf. (12.1)).
Here we derive again the asymptotic expansion for [z[ -&#x3E; co of

qJ(z) in the case 0  or  1. These expansions will be derived from
the theorems 3-9 and 23. We do not use (12.29) and the theorems
of § 12.2 because then the case 1-b+GV = 0, -1, -2, ... for
v = 0, 1, ... has to be excluded.

In view of (12.39) and (6.5) we have

with

So by (2.11) now hl(s) = -sin n(b-as)lsin ns and

In view of (4.4) and because 0  6  1 this implies yo = n (1 - cr),
Vl = n(l+a), y2 = x(3 -«). Combining this with (12.43) and the
definitions 1 and II in § 4 we obtain
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Further by (12.42), (1.8), (3.24) and the definitions III and IV in
§4:

where A1, A2 , ... are determined by

for (s[ -&#x3E; 00 on larg si  n/2.
Using the definitions (12.45) and (12.46) we prove
THEOREM 24.

Suppose 1/3  Q  1 and e Ís a constant so that

Then the algebraic asymptotic expansion

holds f or [z] - oo uniformly on

PROOF: Because t  a  1 and because of (12.44) and (12.45)
we have ô, - ôo &#x3E; fln. Hence we may apply theorem 3 in § 6.3
with r = 1 and zllze-1Ti. Using further (12.41), (12.44) and (12.45)
we obtain the assertions of theorem 24.

THEOREM 25.

Suppose 0  a  1 and e is a constant so that

0  e  1/4n min (1 -a, 20).
Then 99(z) possesses the exponentially small asymptotic expansion

for |z| -&#x3E; oo uniformly on
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(12.50) also holds f or Izl - oo uni f ormly on

(12.52) ln(30’-1)+e  ::l: arg z  n resp. e  ::f: arg z  n

if 1  a  1 resp. 0  0’ 1. This expansion is ex onentially
in f inite on the sector

if i (J  1 resp. 0  cr  1. In the formulae above the upper resp.
lower signs belong together.
PROOF: The exponentially small expansion (12.50) on (12.51)

is an immediate consequence of theorem 23 and (12.40).
Next we apply theorem 5 in § 9 with r = 0 and zllze-1Ti. Using

also (12.41), (12.44) and (12.45) we obtain the exponentially
infinite expansion (12.50) with the upper sign for Izl -&#x3E; oo uni-

formly on

In the same way using do -ô-, &#x3E; lÀn we derive from the remark
after theorem 8 in § 9.2 that (12.50) with the upper sign holds
for Izl -&#x3E; oo uniformly on

Combining (12.51), (12.54) and (12.55) we obtain the assertions
concerning (12.50) with the upper sign.

Using theorem 5 in § 9 with r = -1, zllze1Ti and the remark
after theorem 9 in § 9.2 with zllze1Ti we obtain the assertions
concerning (12.50) with the lower sign.
THEOREM 26.

I f 0  G  1/3 and s is a constant so that

0  e  1/4n min (1-30, 2(y)
then

for Izl -&#x3E; oo uniformly on

Il a = land e is a constant so that 0  e  In then

,for Izi - oo uniformly on (12.57).



338

1 f l  a  1 and e is a constant satis f ying
0  e  ln min (2-2a, 303C3-1),

then

f or Izi --&#x3E; oo uni f ormly on

where the upper resp. lower signs belong together.

PROOF: If 0  or  1/3 then c51 - c50  un by (12.44) and (12.45).
Now apply theorem 6 in § 9 with r = 1, zl tze-1Ti. Using also (12.41 ),
(12.44) and (12.45) we deduce (12.56) on (12.57).

If or = i then ô,-ô. =,un by (12.44) and (12.45) and so
theorem 7 in § 9 with r = 1 can be applied. This leads to (12.58)
on (12.57).
If i  a  1 then ôl - ôo &#x3E; px according to (12.44) and

(12.45) and consequently theorem 8 resp. 9 with r = 1 can be
applied. Replacing z by ze-1Ti in these theorems and using (12.41),
(12.44) and (12.45) we arrive at (12.59) on (12.60).
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