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Two theorems for the n-dimensionality
of metric spaces*

by

Jun-iti Nagata (Osaka, Japan)

The purpose of this note is to establish two theorems that

respectively give necessary and sufficient conditions for metric
spaces to be n-dimensional.

1. We have proved earlier the following theorems [4] 1).

(I) A metric space R has dim  n 2) i f and only i f we can
introduce a topology-preservin.g metric p into R such that the spherical
nbds (= neighborhoods) Sl/i(P), i = 1, 2, ... of any point p of R
have boundaries of dim S n-1 and such that (Sij;(p)[p E R} is
closure preserving 3) for every i.

(II ) A metric space R has dim  n i f and only i f we can intro-
duce a topology-preserving metric p into R such that

foi- every closed set F o f R.4)
Our first problem is to refine these theorems as follows.

THEOREM 1. A metric space R has dim  n i f and only if we can
introduce a topology-preserving metric p into R such that the spherical
nbds Se,(p), E &#x3E; 0 o f any point p o f R have boundaries o f dim  n -1

and such that {S,(p)lp E RI is closure preserving for any e &#x3E; 0.

* The content of this paper is a development in detail of our communication which
was published at the Symposium on general topology and its relations to modern
analysis and algebra, Prague, September 1961.

1) It follows from [8] tbat dim R  n for a separable metric space R if and only if
we can introduce a metric into R such that the boundary B[Ss(p)] of Se,(p) =

{qp(p, q)  e,} has dim  n-1 for almost all s. See, for example, [9].
2) Dim R denotes the covering dimension of R, but it coincides with the strong

inductive dimension Ind R by [2] and [3] if R is metrizable.
3 ) A collection Z of subsets of R is called closure preserving if U {AIA E %l’) =

U {AIA e[’} for any subset 9t’ of 9t.
4) Sl/i (F ) = (p[ p,p q)  1 ji for some q E F). We expressed in [4] this theorem

in a slightly different form, i. e. we proved it for every subset F of R, but there is

no essential difference.
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PROOF. The if part of this theorem is implied by the if part
of our previous Theorem (1). 5)
To show the only if part we let dim :- n; then, as is easily seen,

we can choose a sequence {Uili = 0, 1, 2,...} of open coverings
such that 6)

1) {R} = Uo &#x3E; ll** &#x3E; UI &#x3E; U** &#x3E; U2 &#x3E; U** &#x3E; ...,

2) {Sep, Um)lm = 0,1,2, ... } is an nbd basis of each point p of R,
3) S2(p, U:+I) intersects at most n+l members of Um. Now

we define Sm1 m2...mJ: (U) for integers ml, m2 , ..., mk with 1  ml 
m2  ...  mk and for U e Um, by

Then we define open coverings of R by

to define a non-negative valued function p(x, y) on R x R by

We have shown [6], [7] that this function p(x, y) is a topology-
preserving metric of R.1) We can now prove that p is the desired
metric.
For any countable sequence ml , m2,... of integers with

1 ml  m2  ... we define open sets Smlma"’(U), U e Uml by

and open coverings @Sml ml... by

6) The proof of sufficiency in [4] should be read as follows: First, let us note that

{BSl/2i(P)Ip E A) is closure preserving in B[ U{Sl/2i(P)lp E A}] ... Hence dim
B [ U {Sll21 (P) IP C- A}]  n-1 follows from dim BS,12 i (p) :5,- n-1, p E A by virtue of
a theorem due to Nagami.

8) Let %, A, p be a covering, a set and a point of R respectively. Then S(p, %l ) =
U{Ulp eUe}, S’(A, %l) = U{UI5lC 3 U 4-- R-A}, S-(P, Z) = s(sn-l(p, U), U),
Sft(A, U) = S(sn-l(A, U), 5lC), U* = {S(U, %l) l U E iU}.

7) We proved in [6], [7] p(ae, y ) satisfied another condition which also charac-
terized the dimension of R. That condition was simplified in separable cases by [1 ].
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Suppose

and

then we can assert

For if q 0 S (p, 6mlo..mt)’ k = 1, 2,..., then p(p, q) &#x3E; 1/2n +
+1/2"*’ + ... which means q e S,(p). Hence we get

from

Conversely, if q e sep, 6mlmJ...)’ then there exists U e
such that p, q e SmlmJ...(U). ln view of the définition of Sm1m2".(U)
we get p, q e Sm1...mk,(U) for some k &#x3E; 1. Hence p(p, q)  1/2ffll+
+ ... +1/2m"  e, which means q e Se(P), and hence

Thus we can conclude

To show dim B[Se(p)J  n-l we shall prove
(B) ord @)mlm2°oo  n+l for every @)mlm.o.o.

To this end we shall inductively prove

This proposition is clearly valid for k = 2 since Ums  Uml+1 is
implied by m2 &#x3E; ml+1.
Assume the validity for k = k ; then

follows from U: 1:+1  U.,, combined with the inductive assump-
tion. Hence we get

Since by 3 ) each S (p, U:+l) intersects at most n + 1 sets of Uml’
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each point p of R is contained in at most n+1 of S3(U, Uml+1)’
U e Um . This combined with (C) implies (B). 
Now let us turn to the proof of dim B[Se(P)]  n-1. Let

q e B[Se(P)]; then we can express the positive number e( 1) in
the form of

for some countable sequence m1, m2 , ... of integers with 1  ml

 m2 C .... ive can prove

For, if we suppose q e Ui e Uma:’ i = 1,..., n+1, then by virtue
of (A), there exists U e Um k such that

But this implies

and hence it contradicts (B). Thus {Um , Um2 , ...} can be regarded
as a sequence of open coverings of B[Se(P)] satisfying

Therefore we can conclude

dim B[S£(p)J  n-1

by one of our n-dimensionality theorems9).

Finally, we shall show that {S£(p )Ip e R} is closure preserving
for any e &#x3E; 0. It follows from (A) and (B ) that each S,(p) is a
finite sum of sets of Cc,.,,n2 ... if E = l/ml+1/m2+ .... Hence
closure preserving property of 6mlml8 . implies that of {Ss(p )Ip ER}.
To see the closure preserving of 6m 1 m 1 ... we should notice the
condition (3) which implies that each set of U +1 intersects at
most n+ 1 sets of {S3(U, Uml+l)IU e Uml}. Hence, in view of ( C ),
we can conclude that each set of ltml+l intersects at most n + 1 sets

8 ) Let % be a collection of sets of R and q a point of R. Then ordq 2t denotes the
number of elements of W which contain q. Then ord 2t = max(ordqw[q ER}.

’) [7], Theorem 3.
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of Sm1 ml" " ". Hence m1 m2 " .. is locally finite, and accordingly closure
preserving. Thus {Se(P )Ip e R} is closure preserving, which com-
pletes the proof of this theorem.
The metric in this theorem is rather peculiar considering that the

usual metric of Euclidean space .does not satisfy the closure
preserving condition, but the metric in the following corollary
will be more reasonable.

COROLLARY 1. A metric space R has dim  n i f and only i f
we can introduce a topology-preserving metric p into R such that

dim B[Se(F)]  n-1, e &#x3E; 0

f or any closed set F of R.

PROOF. We can easily deduce it from Theorem 1 as we have
deduced (II) from (1). 10).
COROLLARY 2. A metric space R has dim  n if and only il

zve can introduce a topology-preserving metric p into R such that

for any irrational (or f or almost all) e &#x3E; 0 and for any point p of R
and such that {Ce(p )Ip e R} is closure preserving for any irrational
(or for almost all) e &#x3E; 0, where

PROOF. The sufficiency of condition is clear.

Referring to the necessity we can show the metric in the proof of
Theorem 1 is the required one. To see this it suffices to prove

for any irrational a &#x3E; 0. Since B[Sg(p)] C C,(p) is clear, we let q
be a given point with q 0 B[Sg(p)] to establish the inverse. If
q e S,(p), then q e C,(p) is obvious, so we suppose q o’s(p).
Let e = 1 /2ml + 1 /2m2 + ...; then by (A) in the proof of Theorem 1

Since E is irrational, we can choose a sufficiently large mi such that

") See [4].
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Then it is easily seen that

Hence

which means q e C e( p), and hence

Thus Ce(p) = B[Se(P)] is proved for every irrational E.

In view of this proof we see that

holds not only for irrational numbers but for any positive number
e = 1/2ml+1/2m,,+ ... such that for any positive m there exists
mi satisfying m  mi  mi+l -2.
COROLLARY 3. A metric space R has dim  n i f and only i f

we can introduce a topology-preserving metric p into R such that
for all irrational (or f or almost all) positive numbers e and for any
closed set F o f R, dim Ce(F)  n -1, where

PROOF. The sufficiency is clear. Referring to the necessity we
can easily see that the metric in the proof of Corollary 2 satisfies
the desired condition.

2. Our next problem is to give a new type of condition for
n-dimensionality by use of the new terminology ’rank’ of collec-
tion of sets.

DEFINITION 1. Two subsets A and B of R are called independ-
ent if A et B and B a A. A collection of subsets is called independ-
ent if any two members of it are independent.
DEFINITION 2. Let U be a collection of subsets of a space R

and p a point of R. Then rankp U is the largest integer n such that
there are n independent members of U which contain p. Moreover
rank U = max{rankp U!p e R}.

In view of this definition we clearly see rankp U  ordP U for
any point p and collection U of subsets, and accordingly
rank U  ord U.

DEFINITION 3. Let A and B be two subsets of R. If A meets B

as well as R - B, then we say A overflows B.
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Now we can prove the following.
THEOREM 2. A metric space has dim  n if and only if it has

an open basis U with rank U  n + 1.

PROOF. To begin with, let us prove the if part by induction.
Let U be an open basis with rank ’1. Suppose F and G are dis-
joint closed sets of R. Then we let

Since U is an open basis of R, U is an open set satisfying

If p o U, then there exists U’ e U such that peU’ C R - F.
If we assume U’ n U =F cf&#x3E;, then U’ n U" =F cf&#x3E; for some U" e U
with U" n F =F cf&#x3E;. Since U’ and U" are clearly independent, we
reach a contradiction to rank U  1. Hence U’ n U = cf, which
means that the open set U is closed in R. Thus we get dim R  0.

Suppose we have proved that the existence of an open basis with
rank  n implies dim R  n -1. Then we suppose R has an open
basis U with rank U  n + 1. Let F and G be two disjoint closed
sets of R. Then we define an open set U by

U clearly satisfies

We shall prove that U’ = {U’IU’ c- U, U’ n F = cp} restricted to
B[U] makes an open basis of B [U] satisfying rank U’  n.
It is clear that U’ is an open basis of B [U] if restricted to B [U].
Thus all we have to show is that rankp U’  n for a given point

p e B [U]. Suppose the contrary, i. e. Ul , ..., Un+l are independ-
ent sets of U’ which contain p. Since p e B[U], we get

Thus

for some U’ E U with U’ n F =1= C/&#x3E;, U’ C U. Since Ui n F = C/&#x3E;,
U i n (R - U’) =1= C/&#x3E;, i = 1, ..., n + 1, U1 ..., U n+ 1 and U’ are
independent contradicting rank U  n+1. Thus we get rankp U’
::;: n, and hence dim B [U]  n20131 follows from the inductive
assumption. Therefore dim R  n is proved.
To prove the only if part we suppose R is a metric space with
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dim R  n. R can be decomposed into n + 1 zero-dimensional
subspaces Ai, i =:: 1, - .., n + 1. Let us apply one of our previous
results 11 ) to the present problem to get a locally finite open
covering Ui with mesh U1  1 such that

Let

then it follows from Bk C A k-i 1 U ... u An+l that

Each Bk is closed since B [UIJ is locally finite. Moreover Bk C Bx_1
is clear from the definition of Bx . Let (5 be an open covering with
mesh  i. For every point p of Bk-Bk+l we choose an open
nbd U (p) of p such that U(p ) overflows just sets of U1. We see
the existence of such an nbd in view of the definition of Bk. Then

is a collection of open sets which covers Bk-Bk+l- Now we can
define a locally finite open covering p  6 such that 13 = U"- k O$k ,
$k :) k-l’ ord $k  k+1, 13k-13k-1  n-k 13) and $k covers
Bn-x . To realize it we shall show, by induction, that for any m
with 0  m  n we can define locally finite open collections Bm
of R such that

and such that Bk covers Bn_k .
For m = 0 we choose, by use of dim Bn  0, an open covering s’

of Bn with ord 0 0, 0  Bn A 6. It is easy to see that D
can be extended to a locally finite collection B0 of open sets of R
such that

and such that

11) [5] Lemma 2.1.
12) Let il be a collection of subsets of R; then mesh Z = sup{diameter UJU e W},

B[9{] == {B[U]IU e 9I}.
13) We suppose Bn = {U(p)lp E B.}, $-1 = e.
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Now let us suppose we have defined Bm at our desire. Then let

Since dim Bn-m-l :::;: m+ l, we can find a locally finite open
covering W of Bn-m-l satisfying

It is easy to see that N can be extended to a locally finite collection
9R of open sets of R such that

We let

Then ljlli = UJ§£X ljl[ is the desired locally finite open collection
which covers Bn-m-l. The only problem is to show that $; covers
Bn-le but this can be easily deduced from the fact that each element
of m-$le does not meet Bn-le since

and each element of M.-k-1 U - - - u Za.-. does not meet Bn_x
by the definition of M,. Each element of n-m-l’ of course, does
not meet Bn-k’ either. Let p be a given point of B.-k; then p e M
for some M e M. Since 3K  B u Bn-m-1 it follows from the
above remark that p e M C P for some P e ?k, and hence M C P’
for some P’ e 13’. Thus we can define the desired locally finite
open covering B of R. Let 13 == {PylY e F}, $k = {Pyly e Fk},
k = 0, ..., n ; then there exists an open covering B = {V yly E F}
of R such that J7y C Py, y e r. Now again by use of the lemma in
[5], we can define an open covering u2 = {UyIY e T} of R satis-
fying J7y C Uy C Py , y e F and

In view of the process of definition it is clear that

where U" = {Uyly e rk}.
Let us finally show rank Ui U U2  n+1.
Suppose
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for n + 2 independent sets

Then, since ord un-k  n-k+l, at most one of Uk+1 ... Un+2
does not belong to un-k. For example, let

Since 111+’-Ul  Mn-l-1 and each member of Mn-l-1 overflows
just n-l-l sets of U1, Uk+l overflows at most n-l-1 sets of U1.
Since n - 1 - 1  k-l, Uk+1 overflows at most k -1 sets of Ut.
On the other hand, since Ul , ..., Uk , Uk+x are independent and
have a common point p, U i+I must overflow k sets Ul, ..., Uk
of UI, which is a contradiction. Thus we can conclude

rank U1 U U2  n+l.
By repeating this process again we can define the third locally

finite open covering U3 of R such that

and

Eventually, by repeating this process, we get a sequence UI, U2,
Us,... of open coverings of R satisfying

Thus Il = U:l Ui is the desired open basis of R with rank U s
n+1.
The following is a direct consequence of this theorem.

COROLLARY 4. A metric space R has an open basis U with

rank,, Il  + oo at every point p of R i f and only i f R is strongly
countable-dimensional 14 ), i.e. it is the countable sum o f f inite-
dimensional closed sets.
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