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Autohomeomorphism Groups of
0-dimensional Spaces

by
J. de Groot and R. H. McDowell )

If T is a topological space, we denote by A(T) the group of
all homeomorphisms of 7 onto itself. In [2], it was shown that
given an arbitrary group G, one can find a topological space T
such that G and A(T) are isomorphic; in fact, such a T can be
found among the compact connected Hausdorff spaces. In general,
no such T can be found among the spaces with a base of open -
and - closed sets, i.e., ‘the spaces T such that dim 7" = 0. The
present paper investigates the following question. What can be
said, in general, about A(T)if T is a completely regular Hausdorff
space and dim T = 0?

If « is any cardinal = 1, we shall denote by S, the restricted
permutation group on « objects; that is, the group of all those
permutations which involve only finitely many objects. We will
find it convenient to let S, denote the group of one element.
X2 C, will denote the direct sum of ¥, groups of order two.
Throughout this paper, “space” will be used to mean ‘“completely
regular Hausdorff space”. For any 0-dimensional space T, we

. shall show that A(7) must

(1) consist of a single element (in which case we say T is “rigid”’),

(2) contain a subgroup S, for some o,
or (3) contain a subgroup of the form S, 4+ 2 C,. This result is
best possible, in the sense that for any cardinal «, we can construct
spaces whose autohomeomorphism group is precisely S, or
S, + 2 C,. We produce examples of arbitrarily high weight,?2)
but we leave open the problem of constructing compact rigid
O-dimensional spaces of arbitrarily high weight.

In particular, if T is dense in itself, 4(7T) equals the unit

1) The second author is grateful to the Charles F. Kettering Foundation for its
support during the preparation of this paper.

2) The weight of a space is m if there exists an open base of m and not less
than m sets.
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element or contains a subgroup X C,. On the other hand, one
can construct compact 0-dimensional Hausdorff spaces H, dense
in itself, for which A(H) =1 or A(H) equals the direct sum of
continuously many groups of order two (in the last case one takes
the Cech-Stone compactification of [2; § 5, example I]).

Some of the results of this paper were announced in [3].

I. A(T) for 0-dimensional Spaces

1.1. LEMMA. Let {z;} and {y,}, ? € N (the natural numbers) be
sets of distinct isolated points in the space T such that, for every
JCN, {z,} and {y;), € J, have identical boundaries in T’; then
T admits of uncountably many distinct autohomeomorphisms of
order two.

Proor. It is easy to see that the map interchanging z; and y;
for each ¢ in N, and leaving all other points of T fixed, is an
autohomeomorphism; the same is clearly true for every subset
J of N, and there are uncountably many such subsets.

In what follows, we shall need the following well known (and
easily proved) result from group theory.

1.2. ProrposiTION. If G is a group in which all elements distinct
from the identity have order two, then G can be represented as
the direct sum of cyclic groups of order two.

1.3. THEOREM. Let T be a 0-dimensional completely regular
Hausdorff space, containing « isolated points (« may be 0).
Then either A(T) = S,, or A(T') contains a subgroup of the form
S, + 2C,.

Proor. A(T) clearly contains a subgroup isomorphic to S,,
since every one — one onto map moving a finite number of
isolated points, and leaving all other points fixed, is a homeomor-
phism. Thus we need only show that if T admits any auto-
homeomorphism which does more than this, then T contains a
subgroup isomorphic to S, + X C,.

Note first of all that if « > §,, there is no problem, since S,
itself contains such a subgroup. So we assume a0 < NR,, and we
distinguish two cases.

(1) There is an autohomeomorphism ¢ on T which moves a
non-isolated point p. Then we can find an open — and - closed
set U containing p such that U n ¢(U) = ¢. If U has no countable
base, we can find more than §, distinct open- and -closed subsets
K CU, and interchanging K and ¢(K) gives us an autohomeo-
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morphism of order two. If U has a countable base, let D = {z,}
be the set of all isolated points in U. If D is finite, then
M = (U\D) u ¢(U\D) is open-and-closed, dense in itself,
separable, metrizable and 0-dimensional, and is therefore homeo-
morphic to a dense-in-itself subset of the Cantor set. Since M
is not rigid, 4(M) (and hence A(T')) contains a subgroup of the
form X C,, by [2; p. 90, (i)]. If D is infinite and closed, let {z;}
be any enumeration of D; then {z;} and {p(z;)} satisfy the
hypotheses of Lemma 1.1; if D is not closed, it has a limit point
¢ and a subsequence {y;} converging to ¢. In that case, {y,;_;}
and {y,;} satisfy the hypotheses of 1.1. .

(2) No autohomeomorphism moves a non-isolated point. Let ¢
be a homeomorphism moving an infinite set of isolated points
{y;}. If we can find a set of isolated points {z;} such that
{z.} n {pz;} = ¢, then {z,} and {pz,} clearly satisfy the hypotheses
of 1.1. But such a set {z,} is easily found, for if there is a y e {y,}
with infinite orbit, let z; = ¢?y; if each y; has finite orbit,
form {,} by choosing one point from each of the orbits determined
by y..

It follows that A(T) contains a group isomorphic to X C,;
from the construction, it is easily seen that by dividing the iso-
lated points into two disjoint infinite sets if necessary, one can
find a subgroup isomorphic to S, 4+ X C,.

It should be pointed out that in only one case in the proof of
1.8 do we fail to find continuously many distinct autohomeo-
morphisms of order two. We could replace > C, in the statement
of the theorem by the direct sum of continuously many groups of
order two if we could prove the following: if U and 1" are 0-
dimensional, disjoint homeomorphic spaces having no countable
base, and X = U u V, then 4(X) contains ¢ elements of order two.

II. Rigid Spaces

In this section, we extend the methods of [2] to produce rigid
0-dimensional spaces of arbitrary (infinite) weight. We shall
require some ideas in the theory of uniform spaces; the reader is
referred to [1] and [4] for a development of these ideas.

First, we extend a metric space theorem to uniform spaces in
a routine manner.

2.1. DEFINITION. An intersection. of m open sets will be called
a G ,-set; a Gxoa-set will be called, as usual, a G,-set.

2.2. THEOREM. Let X be a completely regular Hausdorff space
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of weight m, complete in a uniformity 2 generated by a set D
of m pseudometrics. Then every continuous map f from a subset
H of X into X can be extended continuously to a map f from a
Gms-set GO H into X.

Proor. For each d € 9, and each x € H, let w,(x) be the oscil-
lation of f at # with respect to d. Let

G, = {xz € H : wy(z) = 0}.
G, is evidently a G,-set. Let
G =Gy
deg
then GO H is a G 4-set.

Now f can be extended continuously over G. For let {h,} be
any net in H converging to a point « € G. Then, in the uniformity
generated by 9, {f(h,)} is a Cauchy net, by the definition of G.
Hence {f(z,)} converges to some point p € X; set f(z) = p. f is
evidently continuous at .

Now, using 2.2, we extend some of the results in [2].

2.8. DerFINITION. If X is a topological space, and f a map from
a subset of X into X, then f is called a continuous displacement
of order M if f is continuous, and is a displacement of order M.
A continuous displacement of order ¢ will be called, as usual,
a continuous displacement [2; § 2].

2.4. THEOREM. Let X be a completely regular Hausdorff space
of weight m, complete in a uniformity 2 generated by m pseudo-
metrics, and let |[X| = 2™ = M. Further, let {K,} be any family
of M subsets of X, each of cardinal M. Then there is a family
{F,} of 2™ subsets of X such that

(1) For y #y', |[F\F, | =M.

(2) No F, admits of any continuous displacement of order M
onto itself or any other F.,.

(8) For every B, y, |[F, n Kyl =M, and [(X\F,) n Kzl = M.

Proor. There exist only M G, ,-sets in X, and a fixed subset
of X admits at most M continuous maps into X, and therefore
at most M continuous displacements of order M. Let f, be a
continuous displacement of order M whose domain is a Gp;-set.
The family {f;} of all such mappings has cardinal at most M.
This family is non-empty (otherwise the theorem is trivial), so
by counting a given displacement M times if necessary, we may
assume that |{f;}| = M.
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Now we apply [2; Lemma 1], with X = N, M = m, and {f,}.
We obtain a family {F,} of 2" subsets of X satisfying (1) and (3).
Suppose (2) is false, and there is a continuous displacement of
order M, ¢, from F,, onto F,.. This ¢ can be extended (Theorem
2.4) to a continuous map ¢ of a Gp,-set G, D F into X, s0 ¢ = f,
for some B. Hence, by [2; Lemma 1, (2.8)], for every pair y, ',
fsF \F, # ¢, and so, since ¢ = f, on F,, oF \F,.+# ¢, ie,
¢ maps F, onto no member of {F,}.

2.5. LEMMA. Let P be a space in which every open set has
cardinal at least M. If ¢ : P — P is non-trivial, and is either
locally topologically into P or continuous onto P, then ¢ is a
displacement of order M.

Proor. The proof is word for word the proof of [2; Lemma 2],
with “N’ replaced by “M”, and ‘“continuous displacement”
replaced by “continuous displacement of order M”.

2.6. THEOREM. Let X be a locally compact Hausdorff space
of weight m, complete in a uniformity generated by m pseudo-
metrics, such that every open set in X has 2™ points. Let K be
the set of all compact subsets of X whose cardinal is 2™. Then
the sets {F,} constructed in Theorem 2.4 are such that no {F,}
can be mapped topologically into or continuously onto itself or
any other F,.

Proor. Each open set in each F, will have 2™ points. By
Lemma 2.5 and (1), Theorem 2.4, any non-trivial ¢ satisfying
either condition of the theorem is a continuous displacement
of order M. But this contradicts (2), Theorem 2.4.

2.7. ExaMPLE. Theorem 2.6 enables us to construct many
examples of rigid 0-dimensional spaces of arbitrary weight. For
instance, let

X=1,,X,

where [4| = m, and, for each «, X, is a discrete space of cardinal
two. Then X has weight m, X is compact, and hence complete
in any uniformity, so X is complete in a uniformity generated by
m pseudometrics. Further, every open set in X contains 2™
points. Now, applying Theorem 2.6, we get a collection of 22™
sets {F,}, each of weight m and dimension 0, such that F, is
rigid for each y, and the F, are topologically distinct.

2.8. ProBLEM. The rigid spaces constructed in the preceding
example are proper dense subsets of a compact space, hence they
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are not themselves compact. We have not been able to construct
examples of compact, rigid 0-dimensional spaces of arbitrarily
high weight; such spaces would be of interest in the study of
Boolean rings (see, for example, [2; § 8.1]).

III. Spaces whose Autohomeomorphism Groups are
S,or S, + 2C,.

If « is finite, the discrete space of cardinal « has S, as its
autohomeomorphism group. This is not the case for « infinite,
of course. In Example 8.1, however, we produce for each infinite
« a space having « isolated points whose autohomeomorphism
group is precisely S,. In Example 8.2, we find spaces whose auto-
homeomorphism group is the direct sum of S, and the sum of
continuously many groups of order two; this group is then iso-
morphic to S + X' C, if we assume the continuum hypothesis.
In this connection one should recall the remark following the
proof of Theorem 1.8; it is conceivable that §§,; can be replaced
by c¢ throughout this paper.

In both 8.1 and 8.2, the spaces S, which play a part in the
construction can evidently be chosen to have arbitrarily high
weight, hence the same is true for our examples.

3.1. ExampLE. Let P be a discrete space of cardinal «, and
let BP be its (0-dimensional) Cech-Stone compactification. With
each pe P, we associate a 0-dimensional space S, such that

(1) for each pe P, S, is rigid and dense-in-itself,
and (2) if p and ¢ are distinct elements of P, then no non-empty
open subset of S, is homeomorphic to an open subset of S,.

Such a collection {S,} can be constructed by using Example 2.7,
as follows: with each p € P, we associate a cardinal «, such that
if p#gq, 2% # 2%, Taking «, = m in 2.1, we obtain a rigid
space which we can denote by S, such that each open subset of
S, contains 2% points. The collection {S,}, p € P evidently
satisfies (1) and (2).

Now let

X=US,upP.

peP

We topologize X by prescribing a base for the open sets, consisting
of

(i) the sets {p}, pe P,

(ii) the open-and-closed sets in S, for each p e P,

(iii) the sets
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vulUs,
peU
where U is open-and-closed in P.

The space X so defined is evidently a 0-dimensional completely
regular Hausdorff space. The topology on each S, as a subspace
of X is the same as its original topology.

Every mapping of X onto X which permutes a finite number
of the (isolated) points of P and leaves all other points of X
fixed, is clearly a homeomorphism. These are the only auto-
homeomorphisms of X. For if an autohomeomorphism ¢ leaves
each p € P pointwise fixed, then the points of fP are fixed, so

Us,

peP
must be mapped topologically on itself. But from (1) and (2),
this space is rigid, so ¢ is the identity map. On the other hand, if
@ displaces an infinite subset D of P, then ¢ must move some
point of BP\P (since the closures of D and ¢(D) in BP are
non-empty and disjoint), hence there is a pe P such that
S, N ¢S, = ¢. But ¢S, n BP = ¢, since no open set in S, contains
an isolated point. It follows that ¢S, n S,, 7# ¢ for some p # p’,
contradicting (2).

8.2. ExampLE. For each «, we construct a space T, such that
A(T,)is precisely S, + 2 C, (assuming the continuum hypothesis).
Let M be a 0-dimensional subset of the real numbers such that
A (M) is the direct sum of continuously many groups of order two
[2; § 5, Example I], and let X be the space constructed in Example
8.1, so that 4(X) = S,. Let T, = X u M. If ¢ is any autohomeo-
morphism of T, then z € M if and only if ¢(z) e M, since z e M
if and only if the least cardinal of a base at z is {,. It follows
that A(T,) = A(X)+ AM) =S, + ZC,.
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