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Spectral Representations for Solutions of Certain
Abstract Functional Equations*)

by

George Maltese

Introduction

The only non-constant, continuous, complex-valued functions
which are solutions of the functional equation

are cos Âs, where A is an arbitrary complex number (see A. Cauchy
[4] p. 98-105 for the case of real-valued solutions). Thé functional
equation (1) and the system of functional equations

are the starting points of our investigation. In this paper we shall
study a generalized form of equation (1) as well as a generalized
form of the system (S ) conveniently expressed in terms of general-
ized convolution algebras. We shall be chiefly concerned with
abstract solutions F(s), G(s), H(s) where for each s, F(s), G(s),
H(s ) are (bounded) normal operators on a Hilbert space. Under
certain weak continuity hypothesis we shall obtain spectral
representations of the abstract solutions of (1) and (S ) and of the
generalized forms of (1) and (S ). For the equation (1) in particular
when s, t belong to a locally compact Abelian group and F(s)
is a normal operator, we shall also study various relationships
between measurability and continuity of the operator solutions
(for the solutions of équation (1) we shall give more details
concerning the spectral representation and concentration of the
spectral measures).

In a recent paper published in Canadian Journal, S. Kurepa
[21] has obtained, under certain supplementary conditions, the
form of the solutions of (1) when s, t are real numbers and F(s),
F(t) are normal operators on a separable Hilbert space. In par-
ticular our results extend, in various directions, the results of
S. Kurepa. We wish to remark that the methods used here to

*) This paper is part of the author’s doctoral dissertation written at Yale

University under the supervision of Professor. C. Ionescu Tulcea. We take this
opportunity to express our s )cere appreciation to Professor C. Ionescu Tulcea
for many valuable suggestif
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obtain the spectral representations are suggested by those used by
C. Ionescu Tulcea ([18], [15]; see also R. Phillips [29], A. Nuss-
baum [26], [27]), and are completely different from those of
S. Kurepa. In fact even in the particular case when our general-
ized convolution algebra is the group algebra of a locally compact
Abelian group, and when the functional equation and the system
of functional equations have exactly the form (1) or (S), it does
not seem possible to obtain our results using S. Kurepa’s methods.
The prototype for studies of this nature is the semi-group theory
of E. Hille [11], [12], who studied the exponential functional
equation (see also N. Dunford-E. Hille [8], J. Lee [22], M. Nagumo
[24], D. Nathan [25] and K. Yosida [35]). Our theorems con-
cerning relationships between measurability and continuity are
also suggested by those in E. Hille-R. Phillips [12].

This paper is divided into three parts. The first part is intro-
ductory and contains various general definitions and results

conceming generalized convolution algebras and spectral families.
The main portion of the paper consists of Part II and Part III.
In Part II we shall study a generalization of the functional
equation (1). In Part III we study a generalization of the system
(S ).
Many of the theorems of this paper may be stated and proved

also for the case of unbounded normal operators, but this ex-
tension will not be considered here.

PART 1

Preliminaries

1. Notation. We shall denote below by Z a locally compact
space, by K(Z) the vector space of continuous complex-valued
functions f defined on Z and having compact support S(f) and
for each compact set A C Z, by K(Z, A) the vector space of all
f e K(Z) such that S( f ) C A. We shall denote by M(Z) the vector
space of all complex Radon measures p on Z having compact
support S(,u) endowed with the norm

ju - IIflll 1 = sup {11£ (f) 1 f eK(Z), l lfl l  1}.
2. Generalized convolution algebras. Let Z be as above and

for each z e Z let mz be a real Radon measure on Z X Z. For

every f, g E K(Z) denote by f*g the function 1) z --&#x3E; 1nz(f Q9 g).
Suppose that:

1) The funetion f ç§ g is defined on Z x Z by the équations : f ~ g( (0153, y)) =
f(x)g(y) for all (x, y) E Z x Z.
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(AI) For each compact set A C Z there is a compact set

KA C Z such that /, g eK(Z, A ) implies f *g eK(Z, KA ).
(AII) The multiplication (f, g ) - f*g defines on the vector

space K(Z) the structure of a commutative algebra.
(AIII) There is a Radon measure m defined on Z which is

strictly positive on nonvoid open sets, such that
m(If*gl) ~ m(IfI)m(Igi) for all J, g e K(Z).

(AIV) There is an involutive homeomorphism z --&#x3E; z* of Z

onto Z such that 2 ) m(f) = m(J) and m ( (g*h )k ) = m ( (k*h))g ) for
every f, g, h, k eK(Z).

(A V) There is e e Z such that, e* = e and me ( f ® g ) = m(fg)
for any f, g c- K(Z).
The mappings ( f , g) - f*g and f - f extended by continuity

to L’(Z, m), give L’(Z, m ) the structure of a commutative
Banach algebra with involution; we shall denote by f ~|| f||1
the norm in L’(Z, m ). Such an algebra L1 ( Z, m ) will be called a
generalized convolution algebra; sometimes to make our notations
more precise, we shall say the generalized convolution algebra
{Z, ml;’ m, (1, g) f*g} instead of the generalized convolution

algebra L 1 ( Z, m ).
Consider now a generalized convolution algebra

{Z, mx , m, ( f , g) - f *g}. Define L to be the vector subspace of
M(Z) which consists of those measures v having the form 3)
v = g - m where g is an m-integrable funetion ’with compact
support. For any measures ’l’, fl e L, v = g - m and p = h - m
define v,u = (g*h) . m; when endowed with this multiplication
L may be obviously identified with a subalgebra of L 1 ( Z, m).
For every p h - m E L and z ~ Z let PI; denote the mapping 4 )

v

f ~ ux ( f ) = h* f (z ). In the sequel we shall always suppose that
the following condition is also satisfied:

(AVI ) For given p = h - m E .L and compact set A C Z the
mappings z ~ pl;(g) with g E K ( Z, A ), IIg/loo  1 are equicon-
tinuous.

If we consider on L the topology defined by the norm ,u --,u,
then condition (AVI ) means that z -- ,ux is a continuous mapping
of Z into L.

2 ) The funetion f is defined by the équations : f(z) = f(z*) for all zeZ.

3) The measure v 
= g · m is defined by the équations v( f ) = f fg dm for f EK ( Z ).

4) The function f is defined by the équations : f(z) = f(z* ) for all z e Z. Similarly
for v = f · m E L, we define a measure v by the équation v = f m.
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Let us also state explicitly the following two results which we
shall need below and which are valid in our generalized con-
volution algebra:

I) If f is a complex-valued, m-measurable function which is

bounded (almost everywhere) on each compact set K C Z, and il
S f(z)dp(z) = 0 for all ,u e ,L, then f (z) = 0 locally almost every-
where ; il f is continuous then the conclusion is that f (z ) = 0 every-
where.

II) III is a continuous complex-valued function on Z, then for
every jt, v e L (we shall usually write f instead o f Jz)

REMARKS. 1° Concerning this section see C. Ionescu Tulcea and
A. Simon [17], [18] and Yu. Berezanski and S. Krein [1] (see
also the reviews by R. Godement, Math. Review 12 (1951),
p. 188-189). The reader is especially referred to the paper [17]
for a brief survey of important properties of generalized con-

volution algebras. 2° For various examples of generalized con-
volution algebras see, for instance, Yu. Berezanski and S. Krein
[1] (see especially example 4) and A. Povzner [31]. If Z is an
Abelian group and m the Haar measure on Z, then L’(Z, m),
for the usual convolution, is obviously a generalized convolution
algebra. The Radon measures n1, , z e Z are defined in this case
by the equations mz(f) = f I(t, t-Iz)dm(t) for all f c- K(Z X Z).

3. A topology for L. Let K C Z be a compact set and define
L(Z, K) C L to be the set of IÀ c- L such that 5(fl) C K: for the
norm ,u -~ IIulll L (Z, K) is a Banach space. On L which is the
union of the directed family L (Z, K), let us consider the inductive
limit topology, (see N. Bourbaki [3], chap. I, p. 61), of the

topologies of the subspaces L(Z, K); L is a barelled space (espace
tonnelé) for this topology (N. Bourbaki [3], chap. III, p. 2).
Suppose that x’is a continuous linear form on L. By the properties
of the inductive limit topology, x’ is continuous on L if and

only if the restriction of x’ (which we shall also denote by x’)
to each L(Z, K) is continuous on L(Z, K). Using this remark
it can be shown that for every linear continuous form x’ on L,
there is a complex-valued, m-measurable function 99 bounded
(almost everywhere) on every compact set, such that

for all p = h - m e L (see J. Dieudonné [5] and C. Ionescu Tulcea
[13]). We shall need below the following result which can be
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easily proved (for an analogous one see, for instance, C. Ionescu
Tulcea [13], [15]):

III ) Let F be a directed set o f m-measurable f unctions on Z.
Suppose that lor every compact set K C Z there exists a constant
c(K) such that lor f e.F, m({z: fl(z)l&#x3E; c(K)}nK) = 0. Il !F
converges weakly to g, then f or every u e L we have

uni f ormly f or z in any given arbitrary compact set K C Z.

4. Spectral families. Let X be a Hilbert space and T a locally
compact space. A family F = (,ux, ")x E x, v E x of bounded Radon
measures defined on T is (hermitian) semi-spectral if

(HI) x ~ ,ux, v is linear for all y E X.
(HII) ux,y = il", ae for all x E X, y E X.

(HIII) There is a constant M(F) satisfying the inequality
~ux, v ~  M(!F) lIaeflllyll, for all x E X, y E X.
If F is a semi-spectral family, then for every function f which
is bounded and Ux,y-measurable for all x ~ X, y E X there exists  )
Ut e L(X, X) satisfying the equation

If we denote by B°°(T) the algebra of all bounded complex-
valued F-measurable functions defined on T, then f -&#x3E; Ut is a
linear mapping of B°° (T ) into L(X, X ). If we endow B°°(T )
with the norm f~ 1IIIf = SUPteT 11(t) 1 , then 1 - Ut is a con-

tinuous mapping of B°°(T) into L(X, X) endowed with the usual
norm. A semi-spectral family F = (p’z, 11) is called (hermitian)
spectral if

Clearly (HIV) is satisfied if and only if g --&#x3E; Ug is an algebra
representation.

If .9v == (03BCx,v )x E X, y E x is a spectral family on T, then we
shall denote by T (F) the set of all A C T such that the charac-
teristic function VA E B°°(T); then T(/F) is a tribe. If we define
P ,(A) - UVA then P, is a strongly countably additive spectral
measure. The spectral family F satisfies the equation P ,(T) = I
(identity operator) if and only if Ilfl%,%11 I = IIX112 for all x E X ;
(see for spectral families J. Dixmier [7] and C. Ionescu Tulcea [15].

5) #(X, X) is the algebra of all linear continuous mappings of X into X.
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PART II

An Abstract Functional Equation
1. The functional équation. The characters.

We consider here the generalized convolution algebra intro-
duced in Part 1 and we suppose that the condition (AVI) is

satisfied. Let us consider the following (formal) equation:

In this and the next paragraph we shall begin to study the
equation (E) and certain particular forms of (E).
By a character we shall mean a (non-identically zero) con-

tinuous complex-valued funetion X defined on Z and satisfying
the equation

for all a, v e L; hère a, b are complex numbers, a, fle 99 m-measure
preserving homeomorphisms of Z onto Z and g is a continuous
complex-valued function on Z such that g(z) =1= 0 for all z e Z.
The measure v03B1 is defined by the relations va(f) = Jf(ce(z))du(z)
for f e K(Z).

Let E be thc set of all characters. Define JI to be the set of
all locally bounded functions r defined on Z with r(z) ’-&#x3E; 0 for
all z e Z. For every r e M define the set E(r)={x e E:lx(z)I r(z)
for z e Z}.
THEOREM 1. For every r e M the space E(r) is locally compact

f or the topology o f uni f orm convergence on the compact sets o f Z.

PROOF: Every xe E(r) is continuous (and hence locallybounded).
Therefore the equation

def ines an élément xX e L’. The correspondence X ~ ae embeds
E(r) as a subset of L’ (we use hère I ) of Part 1 to conclude that
the mapping X ~ xx is one-to-one. ) Since for all p e L

we see that E(r) is a weakly bounded subset of L’. A weakly
bounded subset of the dual of a barrelled space is weakly relatively
compact (N. Bourbaki [3] chap. III, p. 65). Suppose now that
f ~ 0 (locally almost everywhere) is an element of the weak
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closure of E(r) and let F C E(r) be a directed set converging
weakly to f~:

for every ,u s L. By I) of Part 1 there is ,u e L such that
f loo(z)dp,(z) # 0. It is also clear that we may suppose that

f f (z)d,u(z) ~ 0 for all f e F. For any compact set K C Z if we
choose c(K) = sup r(z) then the condition of III) of Part I

seK

is satisfied. Therefore

and

uniformly on compact sets of Z. Recall that for every f e W,
and v e L. ,

Using I) and II) of Part 1 we find that

hence

lim /(99(Z»
fE e

where the convergence is uniform on compact sets. 8ince cp is a
homeomorphism of Z onto Z, we deduce that e7 converges
uniformly on every compact set of Z to a continuous limit which
must therefore be identical (locally almost everywhere) to f~
(we identify f~ with this continuous limit). We conclude that

and from this it is immediate upon integration with respect to
any v e L that f~ is indeed a character and belongs to E(r). This
shows that every element of the weak closure of E(r) is either
a character or identically zero. This means that E(r)u(O) is

(weakly) compact; hence E(r) is (weakly) locally compact. Since
the above proof has shown that on E(r) the weak topology is
finer (or stronger) than the topology of uniform convergence on
every compact set of Z (and hence coincides with it), the theorem
is proved.
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2. The spectral representation of the solutions
of the functional equation.

Let H be a Hilbert space and e(H, H) the set of bounded linear
transformations (opertaors) of H into H. Let z - Uz be a
mapping of Z into .ftJ{H, H) such that

(CI) z - (Uxly) is continuous for every x, y e H.

For every p e L define an operator U, by the relations

We shall frequently use the notation U. = f Uzdfl(Z). Let us
now assume that the mapping z --&#x3E; Uz also satisfies the following
conditions:

(CII) aUpv0153+bUpvP = Upf g(s)U,,(,)d,,(s) for all Il, v e L 6)
(CIII) Us = 7 (identity operator)
(CIV) {Uz : z e Z} is a commuting family of normal operators.

We shall denote by n1 the set of objects fH, Uz} satisfying the
conditions (CI), (CII), (CIII) and (CIV).
REMARK. Suppose that Z is a locally compact Abelian group

and that our generalized convolution algebra is the convolution
algebra of the group Z (in this case m is the Haar measure). It
is immediate (using I) of Part I) in this case that the mapping
z --&#x3E; U, satisfies the conditions (CI), (CII), (CIII) and (CIV)
if and only if it satisfies the conditions (CI), (CIII), (CIV) and

(CII)* aU,+03B1(t) +bU,+p(t) = g(t)uuq(t) s, t E Z.

By the same method we can show that in this case the condition 1)
in the definition of the characters is equivalent to the following:

1)* aX(s+oc(t» +bX(.8+p(t» ==g(t)X(s)X(gg(t» s, te Z.
We are now ready to prove the main result concerning the

functional equation (E).
THEOREM 2. Let {H, U.} e 911 and let r(z) = IIUzll for all z e Z.

There exista then a spectral family !F = (llae,1I)aeeH,1IeH defined
on E(r) such that

8) Here a, b, 0153, P, 99 and g are as in paragraph 1. For each v E L the operator
J g(s)Uws&#x3E; dv(s) is defined by the relations
(f g(s)U,,(,,) dv(.Y) x 1 , =fg(s)(UW(,) xi y) dv(s) for x, y c- H. We remark that for

every compact sel - C Z there exists a constant cK such that 11 U,« 11 ~ cKIIu1l
whenever S(u ) C K.
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PROOF: 1 ) Let 9Î be the von Neumann algebra spanned by
{U. : z e Z} and let W be the spectrum of 2l; there exists a spectral
family F" = (ux,v):tI)0153eH, yeH such that

2) Let T = U {w : w(U, ) # o}. The mapping w ~ w(Up) is.
peL

continuous for each ,u e L, hence T is open. Let us now show
that W-T is F"-negligible (that is; W-T is negligible for each
measure u’’x,y e.F"). Since W-T is closed, its characteristic

function VW-T is measurable (and of course bounded). Hence
VW-T is equal to a continuous function (except possibly on an
F"-negligible set N). We may therefore choose A e 9î such that
w(A) = VW-T(W) for w tt N. Let p e L and define a function 0’

by the relation 0(w ) = w(A U, ) = w(A )w(U, ). If w tt T then

w(Uu) = o so that 03B8(w) = 0. On the other hand if we T -N,
then w(A) = 03C8W-T(W) = 0, so that 03B8(w) = 0. Hence 03B8(w) = 0
if w tt N. Since 0 is continuous and N is nowhere dense 7) we
obtain 03B8(w) - 0 and hence AUp = 0 for all p e L. Therefore
o = (AUux|y) = J (AUzx|y)d,u(z) for all u e L. Applying I) of
Part 1 we conclude that AUz = 0 for all z e Z. In particular
o = AUe = A (see condition (CIII)). Finally we remark that
w(A) = 0 implies that VJW-T(W) = 0 for all w tt N, which implies
that W-T is contained in N. Hence W-T is F"-negligible.
For each x, y e H let ,u2, y be the restriction of 03BC"x,y to the

open (hence locally compact for the induced topology) set T.
The family F’= (03BC’x,y)xeH,yeH is a spectral family and for

all z e Z, x, yeH

3) For every e T let Xw(z) = w(U,). Then we have

IXw(z)1 = Iw(U.)1 ~ JIU.11 | = r(z) for all z c- Z. Let us now show
that for each e T, the function Xw is continuous. First we

remark that for each u E L the mappings (z, w) -&#x3E; w(UP0153(z))
and (z, w) - w(UPP(z)) are continuous. In fact if (z, w) con-

verges to (z’, w’) then

l W ( U»ce,&#x3E; ) - W’ ( U»ce ,,&#x3E; ) 1  M 1 1&#x3E;ce z&#x3E; -&#x3E;ce z,&#x3E; 1 1 + l W ( U&#x3E;ce z, &#x3E; ) -w’ ( U&#x3E;ce z,&#x3E; ) |
for some constant M (we use here the facts that IIU pli MKlrpli |
whenever S (u ) C K, that a is a homeomorphism, and that then

7) To show that 0(w) ~ 0 it is enough to remark that if f, g E C(W) and f(w) =g(w)
for w e W-N, then UI = UI’ which implies that f = g.
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mapping z ~ P0153(t;) is continuous). Therefore (z, w) -&#x3E; w(U"0153(t;)
is continuous at (z’, w’) and hence on T X W since (x’, w’) is

arbitrary. In the same manner we show that (z, w) -&#x3E; w(U"P(t;)
is continuous. Now the functional equation (CII ) is equivalent
with the equations

that is with

By I) of Part 1 this implies that

Now take wo E T and choose ,u e L such that wo(U p) =P 0. Ap-
plying w to the last obtained relation we have (for zv close enough
to wo)

Since 92 is a. homeomorphism of Z onto Z, we deduce that the
mapping (z, w) - xw (z ) is continuous at each point (z, wo) and
hence on T X W. So for each e T, lw is continuous. Also
w - lw is a continuous mapping of W into the space of all con-
tinuous complex-valued functions on Z, endowed with the

topology of uniform convergence on the compact sets of Z.
Finally we show that for each e T, lw is a character of our

functional equation (E). For w e T choose u e L such that

w(U p,) ~ 0. Then for every v e L we have

From this we deduce for ,u = i - m e L tha.t (take p = ( f ° g )g-1 m)

8 ) We use the fact that w is continuous in the uniform topology and that z --&#x3E; U,«,, (,)
and z--&#x3E;Uu03B2(z) are also continuous in the uniform topology. ( see for instance

E. Hille- R. Phillips [12] p. 66).
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Now we may write

hence xw e E (r ).
4 ) For every te, y e H def ine a measure 03BCx,v on E (r ) by the
equations

The family F = ("’, 1/ )E H, 1/E H 80 defined is a spectral family on
E(r). Finally let F(X) = x(z), then

Hence the spectral representation theorem is proved.
REMARK. For the particular case that (CII ) becomes the

cosine functional equation (see below) it can be shown that the
spectral family given in Theorem 2 is unique in the following
sense: If P¿ = (vx,") is a second spectral family defined on Ë (the
Stone-Cech compactification of the space of all characters) and
concentrated on E(r) and if (Uzae|Y) = f X(z)dv.,,(X) for z e Z, x,
y e H, then -q == F. E(r)

3. The cosine functional equation.9 )
Let H be a Hilbert space and L(H, H ) the set of operators

of H into H. Let z - Uz be a mapping of Z into 2(H, H) such
that

(CI) z - (UzaeIY) is continuous for every x, y e H.
(Cil) Upv+Up; = 2UpUv for all u, v E L.
(CIII) Ue = I.

(CIV) U, is a normal operator for each z e Z.

We shall denote by 911 the set of objects {H, U.1 satisfying con-
ditions (CI), (CII ), (CIII) and (CIV). It is obvious that the

equation given here in (CII ) is a particular form of equation (E).
It is enough to take a (z ) =-= z, fl(z) - z*, q(z) = z, g(z) == 2 and
a = b = 1. The conditions (CI), (CII ), (CIII) and (CIV) given
here are identical with the corresponding conditions formulated
in paragraph 2, as it follows from:

9) Specializing the functional équation (E ) we obtain various equations studied
in S. Kaczmarz [19] and E. VanVleck [33] and the exponential functional equation.



12

PROPOSITION 1. 1 f the object {H, Uz} belongs to ml, then we have
the following: a) i f (fv)ve.y(6) is an approximate identity 10) f or the
generalized convolution algebra, then limYe1"(e)U(pY) = I weakly,
where uv = fv . m f or V e Y(e). b) Ue = Up and U. = U.. for
all u e L and all z e Z. c) UpUv = UvUp and U.U. = UsUz for
allp, v e L and all z, s e Z.

PROOF: a) follows immediately from the fact that the mapping
z - ( Uzx[y ) is continuous for every x, y e H, and from the proper-
ties of the approximate identity sequence. b) Let p = f - m e L,
then lim (U(,V),xly)=Iimf (Uxly)fv*/(z)dm(z)=f (Uxly)/(z)dm(z)
= (Up0153IY) weakly and hence U U.. Since u e L is arbitrary,
we obtain, for all x, y e H,

(U"Xly)+ (U;Xly)=Iim(u(ev) uex1y) +Iim(u(ev) U;xly)
= lim 2(U(,v)U,xly) = 2(U,xly) and so U,+U; = 2Ue.

Hence the first assertion in b) is proved; the second follows
from this. c) The first relation follows from b) and the fact
that pv = v,u for all u, v e L. To prove the second assertion let

,a, v e L then we have

On the other hand

Since u, Y are arbitrary we conclude that Ux Us = Us Ux for all
z, s ~ Z. Hence the lemma is completely proved.

4. S. Kurepa’s Results
In this paragraph we consider more closely various aspects of

the case when Z = the real line R and the functional equation (E)
is the cosine functional equation. We shall use below the fact
that: *) Every cosine character X can be written under the form
X(s) = cos 03BBs for an arbitrary (non-zéro) complex number 03BB.11 )
On its basis we shall prove that S. Kurepa’s results [21] can be
deduced immediately from our results.

Define the following set T of points in the complex plane C:

10) We use here the following result: For every V E (e) (= the neighborhood
system at e) let fv be a function in K(Z) such that fv k 0, J Iv(z)dm(z) = 1, and
S( fy ) C Y. Then if f E Li ( Z, m ) we have weakly lim Ve1’"(e) 1 * Iv = 1 (See C.

Ionescu Tulcea and A. Simon [18]).
11) See A. Cauchy [4] and E. Picard [30] who consider the case of real-valued

solutions.
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(here R(Â) and I(03BB) indicate respectively the real and imaginary
parts of the complex number 03BB ). If Â’, 03BB" e T and cos 03BB’s = cos 03BB"s
for all s e R, then 03BB’ - 03BB". Hence for any given cosine character
x there is only one Ax e T such that X(s) = cos Axs for all s e R.
Denote by u the mapping x ~ 03BBx of E into C.

PROPOSITION 2. u is a Borel measurable mapping o f E into C.

PROOF: We have to show that for every open set U C C, U-l(U)
is a Borel measurable set in E. For this it is enough to show that
u-1(IK) is Borel measurable for every compact set K C T. We
know that if Ân e T and cos A,,, 8 converges to cos Âoos, Âoo e T,
uniformly in s, on every compact subset of R, then Ân --&#x3E; ::I:Âoo.
Let,Z e 11,-l(K) and suppose X Xoo (we remark that E is metrizable
since Z = R). Then u(x) c- K and u(X) - ±u(X,,.). But u(x) e K
and lim u(X) e K C T, so that u(X) -&#x3E; +11,(Xoo). Hence Xoo e u-1(K )
which implies that u-1 (K ) is closed i.e; Borel measurable, so the
lemmas is proved.
We prove now a corollary to the spectral representation

theorem, which contains the main result of S. Kurepa [21].

THEOREM 8. Let Z = R and let {H, Uz ) c- 9l1. There exists then
a spectral family G = (V.1, H, , c- H defined on the complex plane C
.such that

The (unique) spectral measure G is concentrated in a cylinder (with
bounded bases) parallel to the OX axis of the complex plane.
PRooF: By the spectral representation Theorem 2

where F = (yx, v)x c- H, v cq is a spectral family on E (r). Define
the family G = (vx y )x E H, y E x of bounded Radon measures on C
by the relations 

.

. (see proposition 2 for the définition of u ). Now G = (vx, y )x E H, y E x
is a spectral family on C (we have Ug, f = CT ’,fou and from
this follows immediately that 0 is a spectral family). For all
s e R and x, y e H we may write,
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hence the first half of the theorem is proved. For the second
half we remark that for each s e R, IIU,II = SUPAeD ]cos ’181
where D is the closure of the union of the supports of the measures

(vx,x)xEH We shall now show that D is contained in a cylinder
of the complex plane as mentioned in the statement of +he
theorem. For this it is enough to show that SUPAeD IJ(Â)I  oo.

But since Icos Âl  IIUll1 ] for all Â e D, this implies that the set
{.f (Â) : Â e D} is bounded and completes the proof (uniqueness
is a consequence of the remark following Theorem 2).
For more details concerning this paragraph see G. Maltese [23].

5. Measurable Solutions of the Cosine Functional Equation
In this paragraph we shall suppose that Z is a locally compact

Abelian group, so that the generalized convolution algebra is the
familiar group algebra. We shall disruss measurable solutions of
the equation

where for each s c- Z, Us is a normal operator on a Hilbert space H.
We show that under various conditions, strong continuity of the
solutions is a consequence of weak measurability. We shall sup-
pose in this paragraph that the mapping z --&#x3E; Uz of Z into 2(H, H)
satisfies the above cosine functional equation and the following
condition:

(MI) z - (Uzaely) is measurable for each x, y c- H.

THEOREM 4. Suppose the mapping z --&#x3E; 11 U 11 | is locally bounded
and let Ho the linear subspace spanned by the set {Uu x : fl c- L, x c- H}
be dense in H. Then the mapping z - Ux is continuous in the strong
operator topology.

PROOF: Let Up,aee Ho, u = f . m and let s, t c- Z; then we have

But the last two integrals which we have written converge to
zero as s converges to t. Hence we have shown that z - Uz U p, 0153
is continuous for all Up,x e Ho. Since Ho is dense, and since the
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mapping z -&#x3E; 11 Uz11. is locally bounded, we conclude that z - Ue
is continuous for every x ~ H. Hence the theorem is proved.
REMARK. The hypothesis that Uz, z e Z are normal operators

is not used for the proof of this theorem.

PROPOSITION 3. Let H be a separable Hilbert space and let the
mapping z - 11 U. ] be locally bounded. Suppose that, il Ux x = 0
locally almost everywhere, then x = 0. Then the mapping z - Uz
is continuous in the strong operator topology.
PROOF: By the previous theorem we have only to show that the

linear span Ho of the set {U p y : fl E L, Y e H} is dense in H.
For this purpose let h E H and suppose that h is orthogonal to
Ho, so that 0 = (hIUpY) = J (U. y 1 h)dlà (z) for aIl Il E L and all
y e H. For fixed but arbitrary y, I ) of Part I implies that 03C3 )
(U: h IY) = 0 for all z rt N tJ’ where N" is locally negligible. Let
Y = {yl , y2 , ... } be a countable set which is dense in H and

let N = U Nyn . By a) we have (U.,*hlyn) = 0 for all z rt N, that
1 

n

is to say Uz h = 0 locally almost everywhere, that is; U,h = 0
locally almost everywhere since JIUz*hll = I/Uzhlf. Consequently
h = 0 and therefore Ho is dense in H. Hence the proof is complete.

In the case that Z = R n it can be shown that under certain
conditions weak measurability implies local boundedness. In

fact a method of proof essentially similar to that of S. Kurepa
[21] yields the following:
PROPOSITION 4. Let H be a Hilbert space and let the mapping

s --&#x3E; Us of Rn" into Y (H, H ) satis f y the cosine equation. If s --&#x3E; 11 Us 11 ]
is measurable, then s ~ Us ~| is locally bounded.

PART III

A System of Abstract Functional Equations
1. The System (S)

We consider here a generalized convolution algebra as in Part I.
Let a, b, c, d, a’, b’, c’, d’, be complex numbers and consider the
following (formal ) system: (for y, v E L )

We shall say that the pair (X, p) of continuous, complex-valued
functions defined on Z satisfy the system (S) or is a solution

of (S) if
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(S) 
X(yv) = ax(p )x(v )+bX(p )p(v)+cp(p )X(v)+dp(.c )p(v)

(S) 
PUv) = a’X(IÀ)X(v)+b’X(,u)p(v)+c’p(ju)X(v)+d’p(IÀ)p(v).

for all ,u, v e L. (For any continuous, complex-valued function f
defined on Z, and v e L we write f(v) = f f(z)du(z).) We shall
denote by d the set of all pairs (X, p) of functions X, p e rc (the
set of all continuous complex-valued functions on Z) which are
not both identically zero and which are solutions of the system (S).
We denote by A the first projection of 9 into W and by &#x26; the
second projection of é into C. By definition it follows that

X e d if there exists p e C such that (x, p) is a solution of (S);
this implies in particular that p e B (the characterization for
B is similar). We shall sometimes call the functions x e A
.and p e B characters of the system (S). We consider on W the
topology of uniform convergence on the compact subsets of Z.
Define JI to be the set of all locally bounded funetions r defined
on Z with r(z) ~ 0 tor all z e Z. For every r e.M define the sets

e(r) = {x e A: IX(z)l ~ r(z) for all z e Z}
B(r) = {p e B: ’p(z)1 |  r(z) for all z e Z}.

We consider der) and &#x26;(r) as subspaces of le and we denote
by der) and B(r) their respective Stone-Cech compactifications.
Let H be a Hilbert space and let L(H, H) be the set of all

bounded linear transformations (operators) of H into H. Let
z --&#x3E; Uz and z - V. be two mappings of Z -&#x3E; e(H, H) such that

(CI) 
z ~ (U.aeIY) is continuous for all x, y e H.

For every u e L define the operators U p and V p again by the
following equations:

(Ui&#x26;xly) =.f(U$xIy)df(z) and (Vlxly) f (Vxly)dlÀ(z)
for all x, y e H. For every compact set K C Z there exists a constant

cK such that ] ] U, | |  cKllflll and ] ] V, ] |  cKllfl/l whenever S(Jl) CK.
Let us assume further that the mappings z ~ U. and z ~ V.
satisfy the following:

For every z e Z, /À e L let us write

and
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Finally we shall suppose that the following two conditions also
hold:

(CIII) D. = I (Identity operator)
(CIV) {U.: z e Z} u {V, : z e Z} is a set of commuting normal
operators.
Denote by 9l the set of all objects {H, Az} where H is a Hilbert

space and z ~ AZ is a mapping of Z into L(H, H). We shall
denote by 9l(tf) the set of all pairs of objects ({H, Uz}, fH, FJ)
having the conditions (CI), (CII), (CIII), and (CIV); 9l(d)
denotes the first projection of N(E) into 9l and n(B) denotes
the second projection of 9l(tf) into 9l.

2. The Spectral Representation for the Solutions of the
System (S)

We are now ready to prove our main result concerning the
system (S).
THEOREM 5. Let ({H, Uz}, {H, Vz)) e nî(E) and let r(z) = sup

(IIU.II, , IIV.II) f or all z e Z. There exist then two spectral f amilies

F= H, ... and -9 = (vx,y)xsH,yEH finedrespectively on A(r)
d(r) and concentrated respectively on der) and BI(r), such that

(Uzxly) = jàr)x(Z)d/x,v (x ) and (V. ae/y) = jà(r) p(Z)d"x,V(p)
f or all z e Z and x, y e H.

PROOF:12) 1. Let W be the von Neumann algebra spanned by
the set {Uz : z e Z} u {Vz : z e Z} and let W be the spectrum of
21. There exists then a spectral family G’ = (03B4x,y)xEx, yEx such that
for every z e Z and x, y e H, 

,

2. Let 13 ) T = U {w : w(Dp) ~ 0}. Applying I ) of Part I
p,eL

successively and using the assumption that De = I, it can be,
shown that W - T is G’-negligible. For each x, y E H let 03B4x, y be
the restriction of 03B4x,y, to the open set T. Then G = ( 03B4x, y )x, y E H
is a spectral family such that 

for all z E Z, x, y E H.
11) Since the method of proof is parallel to that of Theorem 2 of Part I, we shall

indicate here only the main ideas.
13) It is easily shown that Vu, Uu E n and hence D p e 2( for every peL.
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3. For every e T define Xw(z) = w(U.) and Pw(z) = w(Vz)
so that IXw(z)J~ r(z) and IPw(z)1 ~ r(z) for all z e Z. Making
use of the fact that the mappings (z, w) ~ w(U P) and (z, w)~w(Vuz)
are continuous for each IÀ e L, and using the relations

obtained by an application of I ) of Part 1 to the system (CII ),
we can show that for each e T, XW and Pw are continuous func-
tions. We remark also that the mappings w - Xw and w - p.
are continuous mappings of W into the space W endowed with
the topology of uniform convergence on the compact sets of Z.

Finally we show that for each w e T the pair (Xw, Pw) E E.
For this we first show that for every v e L we have

In fact for w e T choose ,u e L such that w(D p) =1= 0, then

Hence the first relation in (3.1 ) is proved and the second may be
proved in a similar fashion. From (3.1) it is now easy to show
that for each w e T, (XtD’ P.) e E (obviously IXwl+IPwl | # 0 and
x. E A (r), pw e B (r) for every w E T ).

4. For every x, y E H def ine two measures ux,y and vx,y on A (r )
and B(r) respectively, in the following manner:

for any continuous functions F, G def i ned on dlr) and B(r)
respectively and having compact support. The families

F = (P0153,,,)zeH,,,eH and .9 = (vz,,,)zeH,,,eH are spectral families on
si(r) andg(r) respectively (and concentrated on A (r ) and B(r)
respectively ). Now let F(z) = x(z) so that F(Xw) = Xw(z) = w(Uz). ·
Then we have

Similarly letting G(p) = p(z) so that G(PtD)=w(Vs) we obtain

Hence the spectral representation is demonstrated.
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REMARK. If we suppose that for each z e Z, the operators U,
and V. are hermitian, then X. and Pw are real-valued functions
since XtD(z) = w(U,J = w(U:) = w(U.) = XtD(z) and Pw (z)= Pw(z)
for all z e Z. When we consider only real-valued functions on Z,
we shall use the notation tf., AR , (JI. etc.

REMARK. In the case when our generalized convolution algebra
is the convolution algebra of a locally compact Abelian group Z
(here the measure m is the Haar measure), it is immediate that
the mappings z -&#x3E; U. and z --&#x3E; V of Z into .fR(H, H) satisfy
(CI) and (CII ) if and only if they satisfy (CI) and

(CII)’

By the same method we can show that the system (S ) for characters
is equivalent to the following system:

3. An Example for the Case Z = R
In this paragraph we consider more closely a special case of

the system (S) when Z = the real line R. In particular we sha.ll
suppose that the mappings z - Ux and z -&#x3E; V., satisfy the con-
ditions (CI), (CII )’ with a = 1, d = -1, b = c = O, a’ - d’ = 0,
c’ = b’ = 1, (CIII) and (CIV) with the restriction that for every
z E R, the operators ’Uz and V. are hermitian. The system therefore
becomes

The set tf. corresponding to the system (S.) consists of ail

pairs (x, p) of continuous real-valued functions Z, p defined on
R which are not both identically zero, and which satisfy the
following:

It is well-known (W. Osgood [28] p. 608) that the elements
(l, p) e tf 111 are x(s) = e03B1s cos 03B2s and p(s) = :i:tfl’ sin ps where
a and P are arbitrary real constants. Denote by R+ the set of
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non-negative real numbers. It is easy to see that for any given
(X, p) e tf 111 there exists only one pair (ocx, Px) c- R X R+ such
that X(s) = em", cos Pxs and (if p ~ 0 ) only one pair
(03B1p, Pp) E R x R+ such that p (s ) = e"P» sin B p s.

Denote by u the mapping z - (ccx, Px) of d 111 into R X R+
and by v the mapping p --&#x3E; (oce, BP ) of BR - {0 into R X R+ .
It is directly verified that the mappings u and v are continuous
(the topology in d. and BR is the topology of uniform con-
vergence on compact sets of R ). With this we state now (without
proof) the following corollary to the spectral representation
theorem of the preceding paragraph .

THEOREM 6. Let Z = R (we consider now the system (S.») and
let ((H, U), {H, V,}) c- W (.es ). There exist then two spectral
families F = (.te.. )0153eH, .eH and D = (Voe,V )fleH, v eH dejined on R X R
such that (Uxly) = fRxR e03B1s cos Pq djÀ.,,(ot, P) and

(V. x/y) =fRxR e"sin pa dv,y (ce, P) f or all 3 e R and x, y e H.
Yale University and University of Gtittinger

(Oblatum 7-2-61).
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