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Spectral Representations for Solutions of Certain
Abstract Functional Equations*)

by
George Maltese

Introduction

The only non-constant, continuous, complex-valued functions
which are solutions of the functional equation

(1) F(s+t)+F(s—t) = 2F(s)F(t) s, t real

are cos As, where 4 is an arbitrary complex number (see A. Cauchy
[4] p. 98—105 for the case of real-valued solutions). The functional
equation (1) and the system of functional equations

G(s+t) = G(s)G(t)—H(s)H(t)
(S) s, t real
H(s+t) = G(s)H(t)+H(s)G(¢)

are the starting points of our investigation. In this paper we shall
study a generalized form of equation (1) as well as a generalized
form of the system (S) conveniently expressed in terms of general-
ized convolution algebras. We shall be chiefly concerned with
abstract solutions F(s), G(s), H(s) where for each s, F(s), G(s),
H(s) are (bounded) normal operators on a Hilbert space. Under
certain weak continuity hypothesis we shall obtain spectral
representations of the abstract solutions of (1) and (S) and of the
generalized forms of (1) and (S). For the equation (1) in particular
when s, ¢ belong to a locally compact Abelian group and F(s)
is a normal operator, we shall also study various relationships
between measurability and continuity of the operator solutions
(for the solutions of equation (1) we shall give more details
concerning the spectral representation and concentration of the
spectral measures).

In a recent paper published in Canadian Journal, S. Kurepa
[21] has obtained, under certain supplementary conditions, the
form of the solutions of (1) when s, ¢ are real numbers and F(s),
F(t) are normal operators on a separable Hilbert space. In par-
ticular our results extend, in various directions, the results of
S. Kurepa. We wish to remark that the methods used here to

*) This paper is part of the author’s doctoral dissertation written at Yale
University under the supervision of Professor.C. Ionescu Tulcea. We take this
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obtain the spectral representations are suggested by those used by
C. Ionescu Tulcea ([18], [15]; see also R. Phillips [29], A. Nuss-
baum [26], [27]), and are completely different from those of
S. Kurepa. In fact even in the particular case when our general-
ized convolution algebra is the group algebra of a locally compact
Abelian group, and when the functional equation and the system
of functional equations have exactly the form (1) or (S), it does
not seem possible to obtain our results using S. Kurepa’s methods.
The prototype for studies of this nature is the semi-group theory
of E. Hille [11], [12], who studied the exponential functional
equation (see also N. Dunford-E. Hille [8], J. Lee [22], M. Nagumo
[24], D. Nathan [25] and K. Yosida [85]). Our theorems con-
cerning relationships between measurability and continuity are
also suggested by those in E. Hille-R. Phillips [12].

This paper is divided into three parts. The first part is intro-
ductory and contains various gencral definitions and results
concerning generalized convolution algebras and spectral families.
The main portion of the paper consists of Part II and Part III.
In Part II we shall study a generalization of the functional
equation (1). In Part III westudy a generalization of the system
(S).

Many of the theorems of this paper may be stated and proved
also for the case of unbounded normal operators, but this ex-
tension will not be considered here.

PART 1
Preliminaries

1. Notation. We shall denote below by Z a locally compact
space, by K(Z) the vector space of continuous complex-valued
functions f defined on Z and having compact support S(f) and
for each compact set 4 C Z, by K(Z, A) the vector space of all
f € K(Z) such that S(f) C A. We shall denote by M(Z) the vector
space of all complex Radon measures y on Z having compact
support S(ux) endowed with the norm

# = llull = sup {lu(f)] : fe K(Z), |Ifll =1}

2. Generalized convolution algebras. Let Z be as above and
for each z€ Z let m, be a real Radon measure on Z X Z. For
every f, g€ K(Z) denote by f*g the function !) 3 — m,(f ® g).
Suppose that:

1) The function f ® g is defined on Z x Z by the equations: f @ g((z, y)) =
f(z)g(y) for all (x,y)e 7 x Z.
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(AI) For each compact set 4 C Z there is a compact set
K, C Z such that f, g e K(Z, A) implies f*ge K(Z, K ).

(AII) The multiplication (f, g) — f*g defines on the vector
space K(Z) the structure of a commutative algebra.

(AIII) There is a Radon measure m defined on Z which is
strictly positive on nonvoid open sets, such that
m(|f*gl) = m(|f|)ym(|g|) for all {, g e K(Z).

(AIV) There is an involutive homeomorphism z — 2* of Z
onto Z such that 2) m(f) = m(f) and m((g*h)k) = m((k*h)g) for
every f, g, h, ke K(Z).

(AV) There is e € Z such that e* = e and m,(f ® g) = m(f§)
for any f, ge K(Z).

The mappings (f, g) — f*g and f — f extended by continuity
to LY(Z,m), give LY(Z, m) the structure of a commutative
Banach algebra with involution; we shall denote by f— ||f|l,
the norm in L(Z, m). Such an algebra L(Z, m) will be called a
generalized convolution algebra; sometimes to make our notations
more precise, we shall say the generalized convolution algebra
{Z, m,, m, (f, g) — f*g} instead of the generalized convolution
algebra L1(Z, m).

Consider now a generalized convolution algebra
{Z, m,, m, (f, g) — f*g}. Define L to be the vector subspace of
M(Z) which consists of those measures » having the form 3)
v =g-m where g is an m-integrable function with compact
support. For any measures », ueL, v=g-m and u=h-m
define »u = (g*h) - m; when endowed with this multiplication
L may be obviously identified with a subalgebra of L(Z, m).
For every u = h-me L and 3 € Z let u, denote the mapping ¢)

= u(f) = \Ii*j(z). In the sequel we shall always suppose that
the following condition is also satisfied:

(AVI) For given u = h-me L and compact set 4 C Z the
mappings 2 — y,(g) with ge K(Z, A), ||gllo =1 are equicon- ~
tinuous.

If we consider on L the topology defined by the norm u — ||u||,
then condition (AVI) means that 2 — g, is a continuosus mapping
of Z into L.

%) The function f is defined by the equations: f(z) = f(;_*) for all ze Z.

) The measure y = g - m is defined by the equations »(f) = f Jg dm for feK(Z).

4) The function ; is defined by the equations: ;(z) = f(z*) for all ze Z. Similarly
for v = f-meL, we define a measure 1\; by the equation 1\; =\j’- m.
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Let us also state explicitly the following two results which we
shall need below and which are valid in our generalized con-
volution algebra:

I) If f is a complex-valued, m-measurable function which is
bounded (almost everywhere) on each compact set K C Z, and if
J 1(z)du(z) =0 for all ue L, then f(z) = O locally almost every-
where; if f is continuous then the conclusion is that f(z) = O every-
where.

II) If f is a continuous complex-valued function on Z, then for
every u, ve L (we shall usually write [ instead of [;)

[ 1&)du(z) = [ dr(z) [ 1))

ReMARKs. 1° Concerning this section see C. Ionescu Tulcea and
A. Simon [17], [18] and Yu. Berezanski and S. Krein [1] (see
also the reviews by R. Godement, Math. Review 12 (1951),
p- 188—189). The reader is especially referred to the paper [17]
for a brief survey of important properties of generalized con-
volution algebras. 2° For various examples of generalized con-
volution algebras see, for instance, Yu. Berezanski and S. Krein
[1] (see especially example 4) and A. Povzner [81]. If Z is an
Abelian group and m the Haar measure on Z, then L(Z, m),
for the usual convolution, is obviously a generalized convolution
algebra. The Radon measures m,, z € Z are defined in this case
by the equations m,(f) = [ (¢, t'z)dm(t) for all fe K(Z X Z).

3. A topology for L. Let K C Z be a compact set and define
L(Z,K)CL to be the set of u e L such that S(u) CK: for the
norm u — ||u|] L(Z, K) is a Banach space. On L which is the
union of the directed family L(Z, K), let us consider the inductive
limit topology, (see N. Bourbaki [8}, chap. I, p. 61), of the
topologies of the subspaces L(Z, K); L is a barelled space (espace
tonnelé) for this topology (N. Bourbaki [8], chap. III, p. 2).
Suppose that 2’ is a continuous linear form on L. By the properties
of the inductive limit topology, #’ is continuous on L if and
only if the restriction of 2’ (which we shall also denote by 2')
to each L(Z, K) is continuous on L(Z, K). Using this remark
it can be shown that for every linear continuous form 2’ on L,
there is a complex-valued, m-measurable function ¢ bounded
(almost everywhere) on every compact set, such that

2'(u) = [ p(a)dp(z) = [ p(@)h(z)dm(z)

for all u = h - m € L (see J. Dieudonné [5] and C. Ionescu Tulcea
[18]). We shall need below the following result which can be
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easily proved (for an analogous one see, for instance, C. Ionescu
Tulcea [18], [15]):

III) Let F be a directed set of m-measurable functions on Z.
Suppose that for every compact set K C Z there exists a constant
¢(K) such that for fe F, m({z:|f(z)|= c¢(K)}nK)=0. If F
converges weakly to g, then for every u e L we have

lim [ #(s)dju(s) = [ e(6)dunfs)
uniformly for z in any given arbitrary compact set K C Z.

4. Spectral families. Let X be a Hilbert space and T a locally
compact space. A family & = (4, y)zcx, yex Of bounded Radon
measures defined on T is (hermitian) semi-spectral if

(HI) «— u, , is linear for all y e X.
(HIT) u,, =4, for all ze X, ye X.

(HIII) There is a constant M (&) satisfying the inequality
[t ol = M(ZF) |l|| Ilyll, for all ze X, yeX.

If & is a semi-spectral family, then for every function f which
is bounded and u, ,-measurable for all z € X, y € X there exists ®)
U, e Z(X, X) satisfying the equation

(Uyaly) = [ ), o(2).

If we denote by B®(T) the algebra of all bounded complex-
valued & -measurable functions defined on T, then f — U, is a
linear mapping of B®(T) into £ (X, X). If we endow B*(T)
with the norm f— ||f|]| = sup,.r |f(t)|, then f— U, is a con-
tinuous mapping of B®(T) into £ (X, X)endowed with the usual
norm. A semi-spectral family & = (u,,,) is called (hermitian)
spectral if

(HIV) g ptyy = py,sy for all ge B(T), ze X, ye X.

Clearly (HIV) is satisfied if and only if g — U, is an algebra
representation.

If & = (Usy)sex,yex is a spectral family on 7, then we
shall denote by T'(&) the set of all A C T such that the charac-
teristic function y, € B*(T); then T(&) is a tribe. If we define
Pg(A) = Uy, then Pgis a strongly countably additive spectral
measure. The spectral family % satisfies the equation Py (T) =1
(identity operator) if and only if ||y, .|| = ||z||* for all z € X;
(see for spectral families J. Dixmier [7] and C. Ionescu Tulcea [15].

5) 2 (X, X) is the algebra of all linear continuous mappings of X into X.
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PART 11

An Abstract Functional Equation
1. The functional equation. The characters.

We consider here the generalized convolution algebra intro-
duced in Part I and we suppose that the condition (AVI) is
satisfied. Let us consider the following (formal) equation:

(E) X, +bX 0 = X, [ 8(8)X,9d(s)

In this and the next paragraph we shall begin to study the
equation (E) and certain particular forms of (E).

By a character we shall mean a (non-identically zero) con-
tinuous complex-valued function y defined on Z and satisfying
the equation

1) af y(2)dw™(2)+b [ 1(2)dw (2) = [ 2(2)dp(z) [ 2(9(=) g(z)dr(z)

for all u, » € L; here a, b are complex numbers, «, 8, ¢ m-measure
preserving homeomorphisms of Z onto Z and g is a continuous
complex-valued function on Z such that g(z) # 0 for all z € Z.
The measure »* is defined by the relations »*(f) = [f(x(z))dr(z)
for fe K(Z).

Let E be thc set of all characters. Define .# to be the set of
all locally bounded functions » defined on Z with r(z) = 0 for
all z € Z. For every r € A4 define the set E(r)={x € E:|x(z)|=r(z)
for z € Z}.

TrEOREM 1. For every r € M the space E(r) is locally compact
for the topology of uniform convergence on the compact sets of Z.

Proor: Every y € E(r) is continuous (and hence locally bounded).
Therefore the equation

2 (w) = [2(@)du(z), pel
defines an element z, € L’. The correspondence y — z, embeds
E(r) as a subset of L’ (we use here I) of Part I to conclude that
the mapping y — , is one-to-one.) Since for all e L

|2 ()| < sup 7(z)||l|
seS()

we see that E(r) is a weakly bounded subset of L'. A weakly
bounded subset of the dual of a barrelled space is weakly relatively
compact (N. Bourbaki [8] chap. III, p. 65). Suppose now that
fo # 0 (locally almost everywhere) is an element of the weak



7] Spectral Representations for Solutions 7

closure of E(r) and let & C E(r) be a directed set converging
weakly to f.:

lim [ f(a)dp(a) = [ fu()dn(@)

for every u € L. By I) of Part I there is u € L such that
[ fw(3)du(z) # 0. It is also clear that we may suppose that
[ /(z)du(z) ~ 0 for all f e #. For any compact set K C Z if we

choose ¢(K) = sup r(z) then the condition of III) of Part I
zeK
is satisfied. Therefore

tim [ (5)deio (6) = [ foo(5)atara (o)
and

tim [ £()dapia (5) = [ fol)ditga 5)

uniformly on compact sets of Z. Recall that for every fe %,
and ve L.

a [ 1(z)dp(2)+b [ (2)du () = [ {(2)du(z) [ f(9(2)) g(@)dv(z).
Using I) and II) of Part I we find that
a [ 1(8)dhtai (5)+b [ F(8)dupiy () = f(9(2))a(z) [ H(s)du(s)

hence
lim f(p(2))
TeF

=[] feo ($)ptage (8)4 [ fo(8)dptaia (5)] [ £(2) f Fools)da(s) ]

where the convergence is uniform on compact sets. Since ¢ is a
homeomorphism of Z onto Z, we deduce that # converges
unjformly on every compact set of Z to a continuous limit which
must therefore be identical (locally almost everywhere) to f
(we identify f, with this continuous limit). We conclude that

Foo 9(2)8(@) [ Fea(8)01(8)=0 [ foa(5) it (8) D [ Fea(8)dttp (5)

and from this it is immediate upon integration with respect to ‘
any v € L that f, isindeed a character and belongs to E(r). This
shows that every element of the weak closure of E(r) is either
a character or identically zero. This means that E(r)u(0) is
(weakly) compact; hence E(r) is (weakly) locally compact. Since
the above proof has shown that on E(r) the weak topology is
finer (or stronger) than the topology of uniform convergence on
every compact set of Z (and hence coincides with it), the theorem
is proved.
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2. The spectral representation of the solutions
of the functional equation.

Let H be a Hilbert space and Z(H, H) the set of bounded linear
transformations (opertaors) of H into H. Let z — U, be a
mapping of Z into Z(H, H) such that

(CI) z— (U,2ly) is continuous for every z, y € H.
For every u e L define an operator U, by the relations
(Uuzly) = [(U,zly)dp(z) for z, yeH.
We shall frequently use the notation U, = [ U,du(z). Let us

now assume that the mapping 2 — U, also satisfies the following
conditions:

(CII) aU,,e+4bU,.p = U,[g(s)U,dv(s) for all u, veLS®)
(CIII) U, =1 (identity operator)
(CIV) {U,:=z € Z}is a commuting family of normal operators.

We shall denote by R, the set of objects {H, U,} satisfying the
conditions (CI), (CII), (CIII) and (CIV).

REMARK. Suppose that Z is a locally compact Abelian group
and that our generalized convolution algebra is the convolution
algebra of the group Z (in this case m is the Haar measure). It
is immediate (using I) of Part I) in this case that the mapping
2z — U, satisfies the conditions (CI), (CII), (CIII) and (CIV)
if and only if it satisfies the conditions (CI), (CIII), (CIV) and

(CII)* aU.+¢(t) +bU‘+p(‘) = g(t)U‘U¢(t) S, te Z.
By the same method we can show that in this case the condition 1)
in the definition of the characters is equivalent to the following:

1)*  ay(s+a(t) +by(s+B8(2) =g®)x(s)x(p(?)) s teZ.
We are now ready to prove the main result concerning the
functional equation (E).

TeEOREM 2. Let {H, U,} €N, and let r(z) = ||U,|| for all z € Z.
There exists then a spectral family F = (Uyy)pen, ven defined
on E(r) such that

(U, zly) =fE 2(z)du,, ,(x) for all ze Z, @, ye H.

(r)

¢) Here a, b, o, f, ¢ and g are as in paragraph 1. For each ve L the operator
J 8(s)Up() dv(s) is defined by the relations
(_f &(s)Up ) dv(s) "= j' &(8)(Ugy | y) dv(s) for z, y e H. We remark that for
every compact sel . - Z there exists a constant cx such that ||U,|| < ck|lul|
whenever S(u) C K.
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ProoF: 1) Let A be the von Neumann algebra spanned by
{U, : 2 € Z} and let W be the spectrum of ¥; there exists a spectral
family &'’ = (4, ,)sen,yen Such that

(U,zly) = J.Ww(U,)d,u;:,(w) for all ze Z, 2, ye H.
2) Let T={ {w:w(U,) #0}. The mapping w—w(U,) is

pel

continuous for each u € L, hence T is open. Let us now show
that W—T is &#''-negligible (that is; W—T is negligible for each
measure y, , € F''). Since W—T is closed, its characteristic
function yy_r is measurable (and of course bounded). Hence
yw_r is equal to a continuous function (except possibly on an
F'"-negligible set N). We may therefore choose 4 € % such that
w(A) = yy_r(w) for w¢ N. Let p € L and define a function &
by the relation 6(w) = w(4U,) = w(4)w(U,). If w¢ T then
w(U,) = 0 so that 6(w) = 0. On the other hand if we T—N,
then w(4) = ypy_r(w) = 0, so that 6(w) = 0. Hence 6(w) = 0
if w¢ N. Since 0 is continuous and N is nowhere dense?) we
obtain 6(w) =0 and hence AU, =0 for all ue L. Therefore
0 = (AU, zly) = [ (AU,z|y)du(z) for all ue L. Applying I) of
Part I we conclude that AU, = 0 for all ze€ Z. In particular
0= AU, = A (see condition (CIII)). Finally we remark that
w(A) = 0 implies that y,,_;(w) = 0 for all w ¢ N, which implies
that W—T is contained in N. Hence W—T is &#''-negligible.
For each @, ye H let u, , be the restriction of s, , to the
open (hence locally compact for the induced topology) set T.
The family %' = (4, y)scn, yen is & spectral family and for
all 2eZ, 2, ye H

(U,aly) = [ w(U,)d,, ,(w)

8) For every weT let yx,(2) =w(U,). Then we have
120(2)] = [w(U,)| = ||U,]| = r(z) for all 2 € Z. Let us now show
that for each w e 7, the function g, is continuous. First we
remark that for each xeL the mappings (z, ) —> w(Us,,)
and (3, w) = w(Ugg,) are continuous. In fact if (3, w) con-
verges to (2’, w’) then

|w(Ul‘a(z))—w'(Ul‘¢(z’))'gM ”.ua(z)——.ua(z’)”+|w(UI‘¢(z’))_w,(Ul‘a(z’))l
for some constant M (we use here the facts that ||U,||<M||u||
whenever S(u) C K, that « is a homeomorphism, and that the

?) To show that 6(w) = 0 it is enough to remark that if f, g e C(W) and f(w)=g(w)
for w e W—N, then U, = U,, which implies that f = g.
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mapping % —> ,, is continuous). Therefore (z, w) — w(Ug,y,)
is continuous at (2’, w’') and hence on T X W since (', w’) is
arbitrary. In the same manner we show that (2, w) — w(Upy,)
is continuous. Now the functional equation (CII) is equivalent
with the equations

[ aU,dw*(z)+ [bU.duwt () = U, f 2(8)U,d¥(s)
that is with

[ av(2) [ aU, dpyi(5)+ [ do(z) [ BU. iy (8)=U , [ &(5)U, oo (s)-
By I) of Part I this implies that

aUpyy +b0Upgy = 8(2)U, U,

Now take w, €T and choose u € L such that wy(U,) # 0. Ap-
plying w to the last obtained relation we have (for w close enough
to w,)

2o(9(z)) = [8(2)w(U )] [aw(Upy ) +bw(Ungy))]-

Since ¢ is a homeomorphism of Z onto Z, we deduce that the
mapping (2, w) - x,(2) is continuous at each point (3, w,) and
hence on T X W. So for each we T, g, is continuous. Also
w —> ¥, is a continuous mapping of W into the space of all con-
tinuous complex-valued functions on Z, endowed with the
topology of uniform convergence on the compact sets of Z.

Finally we show that for each w e T, y,, is a character of our
functional equation (E). For we T choose ueL such that
w(U,) # 0. Then for every » e L we have

[ &ts)0((6)) dr(s)=[w(U,)1 [ [080(Unagy) +bu0(Uipig ) 1dr(s) = ®)
=[0(U )" [ (U +5Ung () ]
=[0(U )]0 (U, o [ 8(6)U,10dr(s)) = ([ £()U,d(s)).
From this we deduce for 4 = f - m € L that (take p = (f°@)g~! - m)
[ 2a(2)1(2) = [ 2.(p(@) 1{(9(2)) dm(z)= [ @)1 (p(2)) dp(z)=*)
=uw( [ 8(2)U 0 dp(2)) =w( [1(p(2)) Upydm(z))
=uw( [U,du(z))=w(U,).
8) We use the fact that w is continuous in the uniform topology and that z —Upq )

and 2—->Upp(, are also continuous in the uniform topology. (see for instance
E. Hille- R. Phillips [12] p. 66).



[11] Spectral Representations for Solutions 11

Now we may write
a [ 10(2)dr™(2)+b [ (2)du () = 60(U ) + b(U 08
=w(U, [ 2(3)U,wd¥(2)) = | 2o(2)du(2) [ 8(2)ze(9(2)) dv(2);

hence y, € E(r).
4) For every 2, y € H define a measure u,, on E(r) by the
equations

ton(F) = [ F(ra)ds ,(w) for FeK(E(r).

The family & = (u,,y)zc s, yen S0 defined is a spectral family on
E(r). Finally let F(y) = x(z), then

[y 1@Mit0,s(0) = [ 1u(2)is, o (0)=(U,aly) for all z€ Z, 2, y e H.

Hence the spectral representation theorem is proved.

ReMARK. For the particular case that (CII) becomes the
cosine functional equation (see below) it can be shown that the
spectral family given in Theorem 2 is unique in the following
sense: If 2 = (v, ,) is a second spectral family defined on E (the
Stone-Cech compactification of the space of all characters) and
concentrated on E(r) and if (U,zly) = [ x(2)dv, ,(x) for z€ Z, =,
yeH, then 9 = £. Etn

3. The cosine functional equation.?)

Let H be a Hilbert space and #(H, H) the set of operators
of H into H. Let 3 — U, be a mapping of Z into Z(H, H) such
that

(CI) z— (U,z|y) is continuous for every z, y € H.

(il uv,+U, =2U0,U, for all u, velL.

(CIII) U, =1.

(CIV) U, is a normal operator for each z € Z.
We shall denote by R, the set of objects {H, U,} satisfying con-
ditions (CI), (CII), (CIII) and (CIV). It is obvious that the
equation given here in (CII) is a particular form of equation (E).
It is enough to take a(z) = 3, f(z) = 2*, ¢(z) =2, g(z) = 2 and
a = b = 1. The conditions (CI), (CII), (CIII) and (CIV) given
here are identical with the corresponding conditions formulated
in paragraph 2, as it follows from:

?) Specializing the functional equation (E) we obtain various equations studied
in S. Kaczmarz [19] and E. VanVleck [33] and the exponential functional equation.



12 George Maltese [12]

ProrosITION 1. If the object {H, U,} belongs to N,, then we have
the following: a) if (fy)vey() 8 an approximate identity ') for the
generalized convolution algebra, then limy., U v)=1 weakly,
where W = fy-m for Ve¥(e). b) U, =U; and U, = U, for
all pel and all zeZ. c) UU,=U,U, and UU, = UU, for
all u, velL and all 2, s€ Z.

Proor: a) follows immediately from the fact that the mapping
2 — (U, z|y) is continuous for every z, y € H, and from the proper-
ties of the approximate identity sequence. b) Let u = f-me L,
then lim (U, ,ely)=Lm [(U,zly)fy*f(z)dm(z)=[(U,aly)f(z)dm(z)
=(U,z|y) weakly and hence U ,v),— U ,.Since u € L is arbitrary,
we obtain, for all z, y e H,

(U paly)+ (U ly)=lim(U U ,aly) +lim(U 0 Uzly)
= lim 2(U,»\U,2ly) = 2(U,zly) and so U,+-U; = 2U,.

Hence the first assertion in b) is proved; the second follows
from this. ¢) The first relation follows from b) and the fact
that uv = vu for all u, v € L. To prove the second assertion let
U4, ve L then we have

[a(z) [ (UU2ly)du(s) = [ (U,2lUF y)dv(z) = (U, U ,ly).
On the other hand

[av(z) [ (U, aly)au(s) = [ (U, U, aly)dr(z) = (U, U, aly).

Since u, v are arbitrary we conclude that U,U, = U, U, for all
2, s € Z. Hence the lemma is completely proved.

4. S. Kurepa’s Results

In this paragraph we consider more closely various aspects of
the case when Z = the real line R and the functional equation (E)
is the cosine functional equation. We shall use below the fact
that: *) Every cosine character y can be written under the form
%(s) = cos As for an arbitrary (non-zero) complex number 4.11)
On its basis we shall prove that S. Kurepa’s results [21] can be
deduced immediately from our results.

Define the following set T of points in the complex plane C:

T={A:R0%) > 0}u{A: R(A) =0, F(A)=0}

10) 'We use here the following result: For every ¥V € ¥ (e) (= the neighborhood
system at e) let fiy be a function in K(Z) such that f;, = 0, f Jy(z)dm(z) =1, and
S(fy) CV. Then if feL'(Z,m) we have weakly lim pey ) f*fy =f (See C.
Ionescu Tulcea and A. Simon [18]).

11) See A. Cauchy [4] and E. Picard [80] who consider the case of real-valued
solutions.
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(here #(4) and #(A) indicate respectively the real and imaginary
parts of the complex number 1). If ', ' € T and cos A’s = cos 4"’s
for all s € R, then A’ = 4”’. Hence for any given cosine character
« there is only one A, € T such that y(s) = cos 4,s for all s € R.
Denote by u the mapping y — 4, of E into C.

ProrosiTIiON 2. u is a Borel measurable hwpping of E into C.

ProorF: We have to show that for every open set U C C, u~1(U)
is a Borel measurable set in E. For this it is enough to show that
u1(K) is Borel measurable for every compact set K CT. We
know that if 4, € T and cos 4,s converges to cos 1,8, 4, € T,
uniformly in s, on every compact subset of R, then 4, - £1.
Let y € w~1(K) and suppose y —> ., (we remark that E is metrizable
since Z = R). Then u(y) € K and u(y) > +u(x,). But u(y) eK
and lim u(y) e K C T, so that u(y) - +u(x.). Hence x,, € u=1(K)
which implies that #—1(K) is closed i.e; Borel measurable, so the
lemma is proved.

We prove now a corollary to the spectral representation
theorem, which contains the main result of S. Kurepa [21].

THEOREM 8. Let Z = R and let {H, U,) e R,. There exists then
a spectral family G = (v,,y)zen, yen defined on the complex plane C
.such that

(Usaly) = [ cos As d,, ,(3) for all se R, @, y e H.

The (unique) spectral measure G is concentrated in a cylinder (with
bounded bases) parallel to the OX axis of the complex plane.
Proor: By the spectral representation Theorem 2

(U.aly) = [,

where & = (U4, y)sen, yen 1S @ spectral family on E(r). Define
the family ¢ = (v, ,),en, yenw Of bounded Radon measures on C
by the relations

[ HDare y(2) = [ Fu(x)) dpy(2) for & K(C)

(see proposition 2 for the definition of u). Now ¥ = (v, ,),cn, yen
is a spectral family on C (we have U, , = U, ,,, and from
this follows immediately that % is a spectral family). For all
se R and z, y e H we may write,

fc cos Asdy, ,(1) = fm cos u(x)s du,, (1)
= fm 2(8)dps, o (x) = (U, zly)

x2(s)du, ,(x) for all se R, , ye H
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hence the first half of the theorem is proved. For the second
half we remark that for each se R, ||U,|| = sup,.p |cos 4s|
where D is the closure of the union of the supports of the measures
(¥, ¢ )z~ We shall now show that D is contained in a cylinder
of the complex plane as mentioned in the statement of the
theorem. For this it is enough to show that sup,., | (1) < co.
But since |cos 4| < ||U,|| for all 4 € D, this implies that the set
{#(2) : A€ D} is bounded and completes the proof (uniqueness
is a consequence of the remark following Theorem 2).

For more details concerning this paragraph see G. Maltese [23].

5. Measurable Solutions of the Cosine Functional Equation

In this paragraph we shall suppose that Z is a locally compact
Abelian group, so that the generalized convolution algebra is the
familiar group algebra. We shall discuss measurable solutions of
the equation

U,.+U, ,=2U,U, s, te”Z

where for each s € Z, U, is a normal operator on a Hilbert space H.
We show that under various conditions, strong continuity of the
solutions is a consequence of weak measurability. We shall sup-
pose in this paragraph that the mapping 2 — U, of Z into £ (H, H)
satisfies the above cosine functional equation and the following
condition:

(MI) z— (U,zly) is measurable for each , y € H.

THEOREM 4. Suppose the mapping z — ||U,|| is locally bounded
and let H, the linear subspace spanned by the set {U,x:pe L,z € H}
be dense in H. Then the mapping z — U, is continuous in the strong
operator topology.

Proor: Let U,ze Hy, u = f - m and let s, t € Z; then we have

(Mf = SupzeS(p) ”Uz‘z’“)
”2U3U;¢m-2UtUpw“ = Sup||y||§ll j [(2U3Uz‘z'ly)_<2UtUzw|y)]dﬂ(z)|

= supysal [[(Usr2ly) + (Ussaly) — (Ussaly)—U - aly))f (@)dm ()|
= supy <l [(Uzly)[f(z— )+ H(s—2) — f(z— ) — {(t—2) 1dm(3)|
< M,[[lf(z—s)—{(z—t)ldm(z)+ [ [f(s—=)— {(t—2)ldm(z)].

But the last two integrals which we have written converge to
zero as s converges to £. Hence we have shown thatz — U, U, 2
is continuous for all U,z € H,. Since H, is dense, and since the



[15] Spectral Representations for Solutions 15

mapping 2 — ||U,|| is locally bounded, we conclude that 3 — U,z
is continuous for every z € H. Hence the theorem is proved.

ReEMARK. The hypothesis that U,, z € Z are normal operators
is not used for the proof of this theorem.

ProrosiTioN 8. Let H be a separable Hilbert space and let the
mapping 2z — ||U,|| be locally bounded. Suppose that, if U,z = 0
locally almost everywhere, then x = 0. Then the mapping z — U,
is continuous in the strong operator topology.

Proor: By the previous theorem we have only to show that the
linear span H, of the set {U,y:ueL, ye H} is dense in H.
For this purpose let £ € H and suppose that % is orthogonal to
H,, so that 0 = (k|U,y) = [ (U,ylh)du(z) for all x e L and all
y € H. For fixed but arbitrary y, I) of Part 1 implies that o)
(U¥hly) = 0 for all 2 ¢ N,, where N, is locally negligible. Let
Y = {y;, Y5, . . .} be a countable set which is dense in H and

let N =UN, . By o) we have (U}hly,) = 0 for all z¢ N, that

1

is to say UFh = 0 locally almost everywhere, that is; Uk = 0
locally almost everywhere since ||UXh|| = ||U,h||. Consequently
h = 0 and therefore H, is dense in H. Hence the proof is complete.

In the case that Z = R" it can be shown that under certain
conditions weak measurability implies local boundedness. In
fact a method of proof essentially similar to that of S. Kurepa
[21] yields the following:

ProrosiTiON 4. Let H be a Hilbert space and let the mapping
s — U, of R"into £ (H, H) satisfy the cosine equation. If s — ||U,|
is measurable, then s — ||U,|| is locally bounded.

PART III

A System of Abstract Functional Equations
1. The System (S)

We consider here a generalized convolution algebra as in Part I.
Let a, b, ¢, d, a’, b', ¢/, d’, be complex numbers and consider the
following (formal) system: (for u, ve L)

() Xy =aX,X,+bX,Y,+cY, X, +dY Y,
Y, =dX, X+b'X, Y +Y, X, +dY,Y,.
We shall say that the pair (x, p) of continuous, complex-valued

functions defined on Z satisfy the system (S) or is a solution
of (S) if
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() x(wv) = ax(u)x(v)+by(u)p(v)+ep(u)x(v)+de(n)e(v)
p(w) = a'g(u)x(v)+0'x(w)p(v)+¢ p(u)x(v)+d'p(1)p(»).

for all x4, v € L. (For any continuous, complex-valued function f
defined on Z, and ve L we write f(») = [ f(z)dv(z).) We shall
denote by & the set of all pairs (y, p) of functions y, p € € (the
set of all continuous complex-valued functions on Z) which are
not both identically zero and which are solutions of the system (S).
We denote by & the first projection of & into € and by # the
second projection of & into ¥. By definition it follows that
x € & if there exists p € € such that (y, p) is a solution of (S);
this implies in particular that p e # (the characterization for
Z# is similar). We shall sometimes call the functions y e &/
and p € #Z characters of the system (S). We consider on € the
topology of uniform convergence on the compact subsets of Z.
Define 4 to be the set of all locally bounded functions r defined
on Z with r(z) = 0 Tor all z € Z. For every r € 4 define the sets

HL(r) = {yeHd: |x(z)] = r(z) for all z€ Z}
B(r) = {peB: |p(z)| = r(z) for all z€ Z}.

We consider &/ (r) and %(r) as subspaces of € and we denote

by o (r) and .@(r) their respective Stone-Cech compactifications.

Let H be a Hilbert space and let #(H, H) be the set of all
bounded linear transformations (operators) of H into H. Let
z — U, and 2 — V, be two mappings of Z — #(H, H) such that
z — (U,2ly) is continuous for all 2, y € H.

(CT)

z — (V,z|y) is continuous for all =, y € H.

For every p e L define the operators U, and V, again by the
following equations:

(U,zly) = [(U,zly)du(z) and (V,zly) = [(V,zly)du(z)
for all 2, y € H. For every compact set K C Z there exists a constant
cg suchthat ||U,|| < ck|lul|and ||V || = ck||u|| whenever S(u) CK.
Let us assume further that the mappings 3 — U, and z » V,
satisfy the following:
U, =aU,U,+bU,V,+cV,U,+dV,7V,
Vy =aU,U,+bU,V,+c'V,U+dV,V,
For every z€ Z, ue L let us write

D, = [aU,+cV,][b'U,+d'V,]—[bU,+dV,][a'U,+c'V,]

(CII) u vel

and
= [aU,+¢V ,][b'U,+d'V ,]—[bU,+dV ] [a'U,+c'V ,].



[17] Spectral Representations for Solutions 17

Finally we shall suppose that the following two conditions also
hold:

(CIII) D, =1I (Identity operator)

(CIV) {U,:2eZ}u {V,:3€Z}is a set of commuting normal
operators.

Denote by R the set of all objects {H, 4,} where H is a Hilbert
space and 2z — A, is a mapping of Z into Z(H, H). We shall
denote by R(&) the set of all pairs of objects ({H, U,}, {H, V,})
having the conditions (CI), (CII), (CIII), and (CIV); (&)
denotes the first projection of (&) into N and N(#) denotes
the second projection of N(&) into N.

2. The Spectral Representation for the Solutions of the
System (S)

We are now ready to prove our main result concerning the
system (S).

TrEOREM 5. Let ({H, U,}, {H,V,}) e (&) and let r(z) = sup
(U IVLI]) for all 3 € Z. There exist then two spectral families
f = (:“a:,v)zel!,ye[{ and 9 = ("w,v)zeH,veHde/iMdrespec‘ivelymd(r)
Z(r) and concentrated respectively on (r) and %(r), such that

(Usaly) = [ zn2(@)dpes(x) and (V,aly) = [5)p(2)d%,(p)
for all z€e Z and z, y e H.

Proor:12) 1. Let % be the von Neumann algebra spanned by
the set {U,:2eZ}u {V,:3€ Z} and let W be the spectrum of

9. There exists then a spectral family 9’ = (4, , ), yen Such that
for every € Z and 2, y € H,

(U,aly) = [, w(U,)d&, (=) and (V,aly) = [, w(V,)ds, ,(w).
2. Let®) T = {w:w(D,)#0}. Applying I) of Part I
#eL
successively and using the assumption that D, = I, it can be
shown that W—T is ¢'-negligible. For each x, y € H let 4, , be

the restriction of 4, , to the open set 7. Then ¥ = (4,,), yen
is a spectral family such that

(U,aly) = [, w(U.)dé,, ,(w) and (V,aly) = [, w(V,)ds,,(w)
for all € Z, z, ye H.

12) Since the method of proof is parallel to that of Theorem 2 of Part I, we shall
indicate here only the main ideas.
13) It is easily shown that ¥, UI,EQI and hence D’eﬁ[ for every ucL.
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8. For every we T define x,(z) = w(U,) and p,(z) = w(V,)
so that [y,(z)] < r(z) and |p,(2)] = r(z) for all ze Z. Making
use of the fact that the mappings (3, w)—>w(U, )and (2, w)—>w(V,,)
are continuous for each u e L, and using the relations

D, U,=(bU,+dV,)U,—@OU,+dV, V,,
D,V,=(aU,+cV, )V, —(a'U,+cV,)U,

obtained by an application of I) of Part I to the system (CII),
we can show that for each w e T, ,, and p, are continuous func-
tions. We remark also that the mappings w — y,, and w — p,,
are continuous mappings of W into the space € endowed with
the topology of uniform convergence on the compact sets of Z.

Finally we show that for each we T the pair (y,, p,) €¢.
For this we first show that for every » e L we have

(8.1)  [re@)dr(z) = w(U,) and [ p,(z)dv(z) = w(V,).
In fact for w e T choose u € L such that w(D,) # 0, then

[ 2u@)dr(z) = [w(D,)] [ w(D,U,)dr(z)

=[w(D,)) % [[(b'U,+dV U, — (U ,+dV )V, Jdv(z))
=[w(D,)]'w(D,U,) = w(U,).

Hence the first relation in (8.1) is proved and the second may be
proved in a similar fashion. From (8.1) it is now easy to show
that for each we T, (1., p,) € & (obviously |x,|+]|p,] 0 and
Yo € (r), p,€H(r) for every weT).

4. For every 2, y € H define two measures 4, , and »,, on o (r)
and .95(7) respectively, in the following manner:

taw(F) = [ F(1)d8,,(w) and 2,,(G) = [, G(py)dd, ()

for any continuous functions F, G defined on oA (r) and .é(r)
respectively and having compact support. The families
F = (o, y)ectt,yern 30 D = (v, )zcn, yen ar€ spectral families on
& (r) and .Q;(r) respectively (and concentrated on &/(r) and #(r)
respectively ). Now let F(y) = x(z)so that F(x,) = x,(2) = w(U,).
Then we have
[ 7y 2@)pe () = [ w(U )8, ,(w)= (U, aly).
Similarly letting G(p) = p(2) so that G(p,)=w(V,), we obtain
[0 PEas(p) = [ 0(V.)db,,o(0) = (V,aly).
Hence the spectral representation is demonstrated.
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REMARK. If we suppose that for each z € Z, the operators U,
and V, are hermitian, then x,, and p, are real-valued functions
since x,(z) = w(U,) = w(U}) = w(U,) = 1,(z) and p, (z)= pu(z)
for all 3 € Z. When we consider only real-valued functions on Z,
we shall use the notation &,, &4, %, etc.

REeMARK. In the case when our generalized convolution algebra
is the convolution algebra of a locally compact Abelian group Z
(here the measure m is the Haar measure), it is immediate that
the mappings 2 — U, and 22—V, of Z into #(H, H) satisfy
(CI) and (CII) if and only if they satisfy (CI) and

Ul+¢ = aUa Ut+bUs Vt'l"cl/, Ug+dV, Vt
(CIIy 5 teZ.
Vepe = a'UUHYU, V4V, U AdV,V,

By the same method we can show that the system (S) for characters
is equivalent to the following system:

(S x(s+t) = ax(s)x(t)+bx(s)p(t)+cp(s)x(t)+dp(s)p(2)
pls+t) = a'x(s)x(8)+b'x(s)p(t)+c'p(s)x(t)+d"p(s)p(2).

3. An Example for the Case Z = R

In this paragraph we consider more closely a special case of
the system (S) when Z = the real line R. In particular we shall
suppose that the mappings z — U, and z — V, satisfy the con-
ditions (CI), (CII)’ witha=1,d = —1,b=c¢c=0,a' =d =0,
¢’ =b' =1, (CIII) and (CIV) with the restriction that for every
2 € R, the operators U, and V, are hermitian. The system therefore
becomes

Upo=U,U,—V,V,
(Se) s, teR
Vere = U,V+V,U,

The set &, corresponding to the system (S,) consists of all
pairs (x, p) of continuous real-valued functions y, p defined on
R which are not both identically zero, and which satisfy the
following:
z(s+t) = x2(8)x(t)—p(s)p(2)
(Sg) s, teR
p(s+1) = z(s)p(t)+p(s)x(?)
It is well-known (W. Osgood [28] p. 608) that the elements
(2, p) € &4 are x(s) =€* cos fs and p(s) = +€* sin fs where
a and B are arbitrary real constants. Denote by R, the set of
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non-negative real numbers. It is easy to see that for any given
{x> p) € €4 there exists only one pair («,,f,) € R X R, such
that x(s) = e"x* cos B, s and (if p #0) only one pair

(«,, B,) € R X R, such that p(s) = e%"sin f,s.

Denote by u the mapping y — («,, 8,) of &4 into R X R,
and by v the mapping p — («,, 8,) of #,—{0} into R X R,.
It is directly verified that the mappings u and v are continuous
(the topology in &/, and %, is the topology of uniform con-
vergence on compact sets of R). With this we state now (without
proof) the following corollary to the spectral representation
theorem of the preceding paragraph:

THEOREM 6. Let Z = R (we consider now the system (Sg)) and
let. ({H,U,}, {H,V,})eN(E,). There exist then two spectral
families F = (.uc.v)zeH.yEH and 9 = (”z,v)zeH,veH definedon RX R

such that (U,zly) = f g & €08 Bs duy, (2, B) and

(V.aly) = [, esin Bs dv,,(o, f) for all s€ R and @, y e H.

Yale University and University of Géttinger
(Oblatum 7-2-61).
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