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Certain Factors Constructed as Infinite
Tensor Products*

by

D. J. C. Bures

The purpose of this paper is to determine the type of certain
factors which are infinite tensor products of factors of type 1.
on n2-dimensional Hilbert spaces.l ) In the course of this paper we
obtain some results of a more general nature: in particular we
show that any tensor product of maximal abelian von Neumann
algebras is maximal abelian (proposition 3.1, below); and we show
how certain 2 ) tensor products of von Neumann algebras obtainable
by a construction of the kind of [RO III]3) can themselves be
obtained by such a construction (proposition 4.1, below).
Our results regarding the types of the factors in question may

be summarized as follows. Suppose that J is an infinite indexing
set, and that, for each a e J, na. is an integer &#x3E; 2. Let Hj, oj
and H(a., 1) be n.-dimensional Hilbert spaces, and let

Ha, 0) ~ H (a, 1) . . Let da, be the factor L(H(a.,o») ~ 1 on
Ha. Suppose that, for each a e J, la. is a vector of Ha,’with 1 lia.I 1 = 1. .
Then it is possible to choose orthonormal bases (tpa., 6) ) i =-1, 2, ... n0153
for the H(a.,6) in such a way that

* ) Many of the results of this paper were included in the author’s doctoral dis-
sertation at Princeton University. The author is indebted to Professor W. Feller
and Professor I. Halperin for their suggestions.

1) In chapter 7 of [IDP], J. von Neumann considered countable tensor products
of factors of type 1. on Hilbert spaces of dimension 4. He showed that the types
of certain of these tensor products are Ioo, IIH and II~ respectively. In a later
paper, [RO III], von Neumann asserted that in certain cases the type is IIh.
However, the proof was not published.

2) In particular, any finite tensor product.
3) See [RO III], Chapter III. Actually, to avoid restricting ourselves to the

separable case, we use the generalization of J. Dixmier ( [1], pp. 127-136). In
the remainder of the paper we refer to a von Neumann algebra which can be ob-
tained by such a construction as "a constructible algebra" (see definition 1.1,
below).
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where aa1 &#x3E; aa2 &#x3E; ... &#x3E; aan &#x3E; 0.1 2 -- na

Let J2/ be the tensor product of (A)exEI relative to (!ex)exEI.4)
Then d is a factor, and:

1. A is of type 1 if and only if !exEj(1 - a-)  oo, in which

case it is of type Ij.5)
2. If the na are bounded, A is of type III if and only if

In the general case, we have not been able to find a necessary
and sufficient condition for A to be of type II,; however,

is a sufficient condition, and

is a necessary condition.
3. Suppose that there exists an infinité subset K of J, such

that, for some e &#x3E; 0 and some integers P0153’ q. with
1  p«, q0153  n0153 the following holds:

and

Then W is of type III, where M is the larger of No and the cardinal-
ity of the set of a in J for which some aa = 0.

For the most part we use the notation of [1]. However, our
terminology regarding infinite tensor products needs some ex-
planation.

Suppose that (Ha.)0153eI is a family of Hilbert spaces, and that,
for each a e I, la. e Ha. with 1 lia.I | = 1. Using the terminology of
[IDP], let OE be the equivalence class of Co - sequences containing
the Co-sequence (1a.)a.eI; and let H be the Hilbert space which
is the 6-adic incomplete direct product of the Ha, that is ~ â E IH«

4) See the explanation on terminology below.
5) The dimension funetion on factors on non-separable Hilbert spaces is dis-

cussed in § 2 (below), and in [3].
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We shall consistently refer to H as the tensor product of (Ha)aEI
relative to (fa,)aEI’ and denote it by ~(&#x26;(f,-) Ha. We now state a
result of [IDP] which gives us a working definition of the tensor
product in terms of orthonormal bases. We shall use this result
in the following form throughout the paper.

PROPOSITION 0.1 (lemma 4.1.4 of [IDP]). Suppose that

(Ha)aeI is a family of Hilbert spaces and that f « e Ha with
IIlai/ = 1. Choose an orthonormal basis (CP)ieJa for each Ha in
such a way that 0 e J a and ql = la. Then define 6) J = UccefA ==
{(fa)aEI E TIaEI Ja : fa = 0 for all but a finite number of the a
in I}. If f = (fa)aEI is in j let cpi = Q9a,eI 99a Then (cpi)jeJ is

an orthonormal basis for Q9:i Ha.
Suppose now that (Ha)aEI and (1a,)a,EI are as above. Let H

be the tensor product of (Ha)aeI relative to (!a)a,el. . There is
a canonical *-isomorphism 7) CPP from L(Hp) into L (H): if

aea, e Ha, and if aea = la for ail but a finite number of the a in I,
then

all T e 2(Hp). We shall call cppT the extension of T from Ho
to H and denote it by T provided that this does not lead to con-
fusion. If da. is a von Neumann algebra on Ha, then cpa.(da.) is
a von Neumann algebra on H 8), which we shall dénote by da.

If (Aa)aEI is a family of von Neumann algebras, each Aa
on H0153, then we shall write Q"9!{:i Aa for the von Neumann algebra
generated by the da. on H = Q§ l’g) Ha. We shall refer to (&#x26; ,zc-I
as the tensor product of (Aa)«Er relative to (fa)aEl·

§ 1. Constructible Algebras

We summarize here the construction of [RO III] 9) in the
form given in [1]. 10) We shall use the notation of this section
throughout the paper.

6) We shall use this notation for groups also. Suppose that, for each a E I, Ga
is a group with identity ea. Then G = lI0153eI Ga. will mean the subgrvup of II0153eI Ga
consisting of elements (g0153)0153 e I for which ga = ea for all but a finite number of the
a in 1.

’1) See [IDP], lemma 5.1.1.
8) See [IDP], lemma 5.2.3.
9) [RO III], Chapter III.
10) [1], pp. 12?’-136.
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Suppose that Jé is a maximal abelian von Neumann algebra
on the Hilbert space H; and suppose that G is a discrete group
with identity e and a unitary representation g -&#x3E; U, on H.
Assume that UgJlU; = JI for all g e G.
We shall say that the system (M,H, G, g -&#x3E; Ug) is:

(i) free, if UgeL n M = {0} for all g e G - {e};
(ii) ergodic, if M n {Ug : g e G}’ = CH.
Let 1Î be the Hilbert space with orthonormal basis (g)geG’

and let H = H ~ Ù. Define a unitary representation of G on

H , g - Vg, by Vg(h) = gh. Then g -&#x3E; Ug ~ V g is a unitary
representation of G on H. Define A[M, H, G, g - U,,] to be

the von Neumann algebra on H generated by Jé ~ 1 and the
ul ~ vo.
DEFINITION 1.1. We shall call A a constructible algebra

provided that A is a von Neumann algebra that is spatially
isomorphic to A[M, H, G, g - UgJ for some free system
(M, H, G, g - Ug). Here JI is a maximal abelian von Neumann
algebra on H, G is a discrete group with unitary representation
g --&#x3E; Ug, and UgcLU: = JI for all g e G.

PROPOSITION 1.1 ([RO III] and [1]).
Suppose that the system (M, H, G, g -&#x3E; Ug) is free and let

1. A is a factor if and only if the system (-6, H, G, g -&#x3E; Ug)
is ergodic.

2. Suppose that c9I is a factor.

(a ) A is of type 1 if and only if -4Y contains a minimal projec-
tion.

(b ) W is finite (of type In or IIi) if and only if there exists a
finite 11 ) normal tracte 99 on M which satisfies 99(U,MU*) = p(M)
for all g e G and all M e M+.

(c) A is of type III if and only if there exists no semi-finite 12)
normal trace q on JI which satisfies q;(UgMU:) = q;(M) for all

g E G and all M e M+.
3. Def ine W c- L(H) by W(x (U*x) for all

x e H and all g e G. Then W is a unitary involution on H, and
WAW === A’.

11) By a finite trace we mean a trace ip with 0  92(l)  oo.

12 ) By a semi-finite trace on a factor A we mean a trace 99 with 0  qq(E)  o0

for some projection E of A.
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§ 2. The Dimension Function on Factors on
Non-Separable Hilbert Spaces

DEFINITION 2.1. Suppose that A is a von Neumann algebra
and that K is an infinite cardinal. A projection E of A is N-
decomposable (in A ) if any family (Ei)iel of mutually or-

thogonal projections of A with 0  Ei  E has cardinality
I  ,

Notice that if A is a von Neumann algebra on a Hilbert space
of dimension N then any projection E of A is N-decomposable
in A.

DEFINITION 2.2. Suppose that A is a von Neumann algebra.
If E is a projection of A, the (decomposability) type of E (in A)
is the least cardinal N such that E is N-decomposable in A.
The (decomposability) type of A is defined to be the decom-
posability type of 1 in A.

It is clear that the decomposability type of A is invariant
under *-isomorphism and that if E ~ F in A then the type of
E equals the type of F.

LEMMA 2.1. Any cyclic projection of the von Neumann algebra
A is of type No.

PROOF: Suppose that A is a von Neumann algebra on the
Hilbert space H. If E is a cyclic projection of A then 13)
E = pr [A’x] for some x E H. Notice that, if a projection F of A
satisfies F  E and Fx = 0, then FA’x = A’ Fx = 0 for all
A’ e A’ so that F = FE = 0.

Suppose that (Ei)iel is a family of mutually orthogonal
projections of A with 0  Ei  E. Then ~iel Ei  E, and
hence iel//Ei 0153l12  II ExII I2  00. Now Ei ce # 0; therefore I is
countable. That demonstrates that E is of type X..

LEMMA 2.2. If E = lic, Ei where each E, is a non-zero cyclic
projection of A, then the type of E in A is I, if I is infinite,
and Mo, if I is finite. 

=

PROOF: The type of E in A is certainly &#x3E; I. We need to prove,
then, only that E is N-decomposable in A, where M is the larger
of I and No.

13) We write [S] to mean the subspace (closed linear manifold) determined by
the subset S’ of H; pr [S] denotes the orthogonal projection onto the subspace [S].
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Suppose that Ez = pr[A’xi]. Notice that, if F is a projection
of A with Fx, = 0 for all i e I and F  E, then F = 0.
Suppose that (FJ);eJ is a family of mutually orthogonal

projections of A with 0  FI  E. Then z,j) ) F, ce;[ )2  ] [ Eoe; ) )2  00

for each i e I. If i e I is fixed, then, FJ Xi = 0 for all but a countable
number of the i in J. Now every FJ satisfies F; Xi =1= 0 for some

i e I, because 0  F f s E. Therefore J  No . 1 = N . This

demonstrates that E is N-decomposable.
PROPOSITION 2.1. Suppose that A is a von Neumann algebra.

An y projection E of d can be expressed as Iiel Ei where each
E, is a non-zero cyclic projection of A. The decomposability

type of E in tB/ is then the larger of I and Ko.
PROOF: Using Zorn’s lemma select a maximal family (Ei)iel

of mutually orthogonal cyclic projections of A with 0  E i  E.
Let F Iicj Ei. Then F is in A and F  E. We shall show
that F = E.

Suppose that F  E. Then there is an x e H with

( E - F)x = x =A 0. G = pr [A’x] is a cyclic projection of A
which satisfies 0  G  E and is orthogonal to all the Ei. This
contradicts the maximality of the family (Ei)iEI; therefore
E = F = Iiel Ei.
The rest of the proposition follows from lemma 2.1.

COROLLARY. If E = Iiel Ei where each E, is N0-decomposable
and non-zero, then the type of E is the larger of I and Ko.

Suppose that A is a factor on a separable Hilbert space. Then
[RO] there exists a dimension function d from the projections
of A to the extended positive reals such that: 

1. d(E) = 0 if and only if E = 0. d(E)  co if and only if
E is finite.

2. E ~ F if and only if d(E) = d(F).
3. If (Ei)iel is a family of mutually orthogonal projections

of A then d(Ziel Ei) = Iiel d(Ei).
In the non-separable case the same procedure as that of [RO]

is valid but the resulting dimension fails to have property 2,
above; it has properties 1 and 8 and:

2’. E ~ F implies d(E) = d(F).
If, however, we allow infinite cardinals as values, a dimension

function with properties 1, 2 and 3 exists.
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PROPOSITION 2.2. Suppose that A is a factor, Define the

function d’ from the projections of A to the positive reals and
infinite cardinals by: d’(E) = d(E) for E finite, and d’(E) = the
decomposability type of E in A for E infinite. Then d’ has
properties 1, 2 and 3.

PROOF: It is clear that properties 1 and 2’, hold for d’. Property
3 follows from proposition 1.1. Property 2 must hold for finite
projections, so that there remains to be proved only that, if E
and F are infinite projections of the same type, then E sw F.

First let us show that if A contains any infinite projection,
then there is a projection Eo of A which is infinite and No-
decomposable. Let G be a cyclic projection of A. By lemma
2.1 G is N0-decomposable. If G is infinite, take Eo to be G; if G
is finite, choose14) a sequence (En)n==l, 2,... of mutually or-

thogonal projections of A with each En  E and each En ~ G,
and take Eo to be lo,’l En.

Suppose that E and F are No-decomposable infinite projections
of A. By the comparability of projections in a factor we may
assume E sw FI  F. Then (by the argument in the proof of
lemma 7.2.1 of [RO] ), F, e:ke F and hence E r--- F.

Suppose that E and F are infinite projections of A of decom-
posability type M &#x3E; Ko. As in the proof of lemma 7.1.2 of [RO],
by comparability of projections and an exhaustion argument,
E = .Iiel Ei and F = _Yi,j F, where each E, - Ee and each

FI Eo. The corollary to proposition 2.1 shows that I = K = J.
Therefore E ~ F.

COROLLARY (c.f. theorem VIII of [RO] ).
If A is an infinite factor of decomposability type N, the range

of the dimension function consists of certain finite real numbers
and all infinite cardinals a satisfying N0  a  N. We shall say
that the type of such a factor is lN’ lIx, or III, instead of the
usual 100’ II,,., or III..

§ 3. Tensor Products of Maximal Abelian von Neumann
Algebras

PROPOSITION 3.1. If M == (&#x26; i(ti) , ,+ f, and each Mi is a maximal
abelian von Neumann algebra, then JI is also maximal abelian.

In the proof of proposition 3.1 we shall use several lemmas.

1.) Hère we use the comparability of projections in the factor Jù as well as the
fact that the sum of a finite number of finite projections is finite.
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LEMMA 3.1. An abelian von Neumann algebra with cyclic
vector is maximal abelian. (See [9], corollary 1.1, or [1 ], pg. 109
number 5).
LEMMA 3.2. If, for each oc e I, vila. is a maximal abelian von

Neumann algebra on Ha, then Tja E I l a is a maximal abelian
von Neumann algebra on ED,,, Hl’.
PROOF: (ITael Ma) = ITael (Ma)’= -fa provided that

each Ma is maximal abelian.

LEMMA 3.3. Suppose that (Hi)iel is a family of Hilbert spaces.
Suppose that each Hz = ED,,, c- A, H: with each Ai containing 0.

Let fi be a vector of H° with Illill = 1.
For each i and a e A, - {0} choose any vector f i of H, with

IIf1I = 1 ; let f ° = Ii. Define A to be Iliel Ai and, for (X=((Xi)iel
in ..4, define Ha = Q§fÎ"&#x3E; Hai.
Then H = Q§ j() Hi has direct-sum decomposition H = 0153aeAHa.
PROOF: This is a direct consequence of proposition 0.1.
LEMMA 3.4. Suppose that di is a von Neumann algebra on

Hi and that f i is in Hi with IIlill J = 1. Let H = ~ EiÎ Hi and let
A = (D i(I’c-’), Ai. Suppose that 99, e Hi with Ilrpill = 1, and that rpi
is a cyclic vector for di. Then, provided that Iielll- ( f i, qqi) 1  Co,
q; = @iel rp is a cyclic vector for A.

PROOF; 15) Since Iielll-(fi’ qqi) |  00, rp = 0iel rpi is defin-
able in H, and H = Q9’} Hi is also ~ Z É Î Hi. We may assume,
then, that rpi = Ii.
We have to prove that [drp] = H. By proposition 0.1, it is

sufficient to show that, if 0153i e Hi with xi 11 J = 1 and xi = fi
for all but a finite number of i e I, then 0iel0153i e [Ap].

Suppose that such a family (aei)¡el is given along with a &#x3E; 0.

We are going to produce an operator T e A such that

Let F = {i e I : xz ~ fi). Then F has a finite number of elements,
say n. For each i e F let Ti e Ai be such that

Then let T = Ili c- F Ti.

16) c.f. the proof of lemma 4.1.4 of [IDP].
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We have

This completes the proof.
PROOF Of PROPOSITION 3.1:

Suppose that, for each i E I, .Li is a maximal abelian von

Neumann algebra on the Hilbert space Hi. Suppose that f is a
vector of Hi with 1 J/j 11 == 1. Let -d == (D -fi) Jé, and let H ® z É‘Î Hi.
We want to show that -46 is maximal abelian on H.

The idea behind the proof is to find a direct sum decomposition
H = Qe.4 Ha such that:

1. Each Ha belongs to M; that is, pr [HI,] E Jé.
2. Each M(jya has a cyclic vectors.16)
Then lemmas 3.1 and 3.2 together prove that M is maximal

abelian.
First we make a direct sum decomposition of each Hi. By

Zorn’s lemma there exists a family (f)0153eA, of vectors of Hz such
that 0 e A i with f ° = f and such that _Y«. A, pr [-fi fi j = 1.
Let Hâ - [MY; fÎ]. Then Hz = O aEA Hi . Furthermore each Ha

belongs to .Li, for (M)’ = .Li. It is clear that If is a cyclic
vector for MJ?.

i

Now, as in lemma 3.3, let A = IIiel A; i and, for oc = (CXi)iel
in A, let Ha = i c- I Hi. t Then H = 0153 A H0153. Clearly each

iel 
i 

_ 

Ha belongs to M.M = (-àf; : 1 e I); therefore M|Hz =

9lH0153(.LiIH0153 : i é 1) - fJlH0153( (.LiIHi) : i el) = ®i:EÎ(°ilHâ·).
We conclude that MHa; has a cyclic vector (lemma 3.4).

This completes the proof.
Lemma 3.4 leads to an easy proof of the following results of

[IDP].
PROPOSITION 3.2 (contained in theorem IX of [lDP]).
Suppose that (Hi)iel is a family of Hilbert spaces, and that

f i is in Hi with Illilf = 1. Then .flJ( 0.’¿} Hi) = Q9il.flJ(Hi).
16) If JI is a von Neumann algebra on the Hilbert space H, and H’ is a sub-

space of H which reduces -f, then ...I/H’ denotes the von Neumann algebra on
H’ consisting of the restrictions of operators of ...1 to H’.
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PROOF:

Let H = ®; EI Hi i and A = Q§j(°) Y(Hi). We have to show
that A = L(H). It is sufficient to show that every non-zero

vector x E H is a cyclic vector for W.17)
By proposition 0.1, choose an orthonormal basis (qJ;);e for H

in such a way that each = Q9iel 0153 for some 0153 e Hi. Then
each q, is a cyclic vector for A (lemma 8.4). Furthermore
pr [q;] = Ili., pr [xJ E W. Suppose that x is a non-zero vector
of H. For some i E J, (pr [qJ;]) ae =1= 0 since (qJ;);e is an ortho-

noriiial basis for H. It follows that (pr [q;] )ce is a cyclic vector
for A, because 9?; is a cyclic vector for A. Finally, since pr [qJ;J e A,
x must be a cyclic vector for A.

COROLLARY:

‘d i E:Ii is a factor provided that each Ai is a factor.
PROOF: Let A = Q9l} di and H = Q9i} Hi, where di is

a factor on Hi. Then 18)

BlH(d, W’ ) D BlH(di, W’ : i c- I) = BlH(.!R(Hi) : i el) = L(H).
Therefore A n A’ = (d’, A)’ = (2(H»)’ = C.

§ 4. Tensor Products of Constructible Algebras

For each i E I, suppose that .4f’ is a maximal abelian von Neu-
mann algebra on the Hilbert space Hi, and suppose that Gi is
a discrete group with identity ei and unitary representation
g -&#x3E; U’ on Hi. Assume that U’..*fi(U’)* = ,*f i for all g e Gi.
Let Ai = Hi, Gi g - ulir].

Suppose that fi e Hi with Iifili | = 1. Define the Hilbert space
H to be the tensor product of (Hi)iel relative to (fi)ieI; define
the abelian von Neumann algebra M to be the tensor product
of (J(i)iel relative to (/i)iel. By proposition 3.1, J( is maximal
abelian on H.
Let the group G be jli Er Gi. Denote the identity (ei)iel of

G by e. For g = (gi)iel in G let UD = rliEI Ui,’, (Notice that
this is a finite product). Then g - Ug is a unitary representation
of G on H.

17) Suppose that every non-zero vector of H is a cyclic vector for A. Then if E
is a non-zero projection of A’, Ex = x  ~ 0 for some x E H, and hence

E &#x3E; pr [Ax] = 1. Thus .9/’ = C and A = L (H).
18) We write .qfH(I) to denote the von Neumann algebra on H generated by

the subset 17 of L (H).
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LEMMA 4.1. Ug.LU: = M for aU g e G.
PROOF: It is sufficient to show that UgMU: e.M for all g e G

and all M e M. For that to hold, it is enough that UgMU: e M
for all g e F and all J.1f e /, where F générâtes the group G and
I générâtes the von Neumann algebra M with J* = J.

Since M = (6)el.Li = fJl(.Li : i e 7) take I = {Mi: Mi e Mi,
i e.I}. Take F = {g = (gi)iel in G : gi = ei for all except one
of the i e I). Notice that, if g e F, then Ug = U;l for some i e I
and some gi e Gi. Suppose then that i, i e I, gi e Gi and Mi e .Li :

Ul Mi (Ul)* =

and in either case is in JI. This completes the proof.

We would like to be able to show that if the systems
(Mi, Hi, Gi, g - U§ ) are free then so is (M, H, G, g -&#x3E; U,,). For
the special cases (§ 5, below) we are interested in, however, a
weaker result suffices.

DEFINITION 4.1. The system (M, H, G, g -&#x3E; Ug) has property
(F) if, for every g e G - {e}, there exists a family (EaJ0153eA of

projections of -4l’ such that Y,,,,,c,4 E. = 1 and Ea(U: EaUg) = 0
for all a e A.

LEMMA 4.2. If (M, H, G, g -&#x3E; Ug) has property (F), then it is
free.

PROOF: Suppose that (M, H, G, g - Ug) has property (F). Let
g e G - {e} and let (E0153)0153eA be a family of projections of 141f with
l ar:A E&#x26; = 1 and E0153(U: E0153Ug) = 0 for all a c- A.

Suppose that M e JI and that UIM e M. Then, for each a e A,
E0153(UgM) = (UgM) Easothat ( U* E«U )M = MEa = E0153M. Hence
EaM = Ea(E0153M) = E0153(U: E0153Ug)M = 0. Therefore
M = _Ya., E«M = 0. We have shown that U.-W n JI = {0}
for any g e G - {e}; that is, that the system is free.

LEMMA 4.3. If each (Jli, Hz, Gi, g -&#x3E; U£) has property (F),
then so does (M, H, G, g -&#x3E; Ug).
PROOF: Suppose that g = (gi )s E I is in G - {e}. Then for some

i e I, gi =1= ei. Provided that (Mi, H’, Gi, g --&#x3E; Ui ) has property
(F), there exists a family (Ea)0153eA of projections of Mi’ such that
I0153eA Ea = 1 and E.(U’,)* g E.U’, 9 = 0 for all a e A. Consider the
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family (EQJ0153A of projections of JI. -Y,.c-A E« = 1, for the

canonical map T - T from L(Hi) to L(H) is bicontinuous in

the ultrastrong topology. For any oc c- A E0153 U* E0153 Ug =

E.(U’i)* E Usi = 0. Therefore (M,H, G, g - U,) has property
(F).
PROPOSITION 4.1.

A = ® â É ®; i is spatially isomorphic to d[JI, H, G, g - Ug]. ·

If each system (Mi, Hi, Gi, g --&#x3E; Ug ) has property (F), then the
system (M, H, G, g -&#x3E; Ug) is free. The system (M, H, G, g - Ug)
is ergodic if each (Jli, Hi, Gz, g --&#x3E; U§ ) is ergodic.

PROOF: The third statement is a direct result of lemmas 4.2

and 4.3. The fourth statement follows from the first statement,
from part 1 of proposition 1.1, and from the corollary to proposi-
tion 3.2. We now proceed to prove the first statement.

is a von Neumann algebra on the Hilbert space

t91[J, H, G, g -&#x3E; U,] is a von Neumann algebra on the Hilbert
space H = H 0 fi. Now 11 is defined as the Hilbert space with
orthonormal basis (g)geG. Since G = lIiel Gi, fi is isomorphic
to (&#x26; le) fli i by the mapping y, defined by y(g) = Q9ielgi for

all g = (gi)iel in G. Therefore H is isomorphic to

( (&#x26; (f’) Ili) 0 «&#x26; (") Êi) by the mapping 1 Q§ y.
Now there is an associative isomorphism ( [IDP], Theorem VI)
from

Denote this isomorphism by à; then à((Q§;i x") Q§(©;ei y"))
= Q9iel (xi Q9 yi), for all Q9iel xz eH with each xz c- Hi and
all Q9iel yi c- (") Hi i with each yi EH i.

Let q be the isomorphism 1 Q9 y followed by the isomorphism
ô. iî is then an isomorphism of H with H. It is an easy calculation
to show that:

1. If T e 2(Hi) then ql(T Q9 1)r T ® 1.
2. If g c- Gi, then -1(Ufl © V§)q = Uai Q9 V ¿ii, whereg g 

9 g

4§ = (ôh ) with ôh = eh if h e I - {i} and à’ = g. 
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Now A = .9H (.WW’: i e I). Each Ai = (M @ l U’ (D V’:
M e -di, g e Gi). Because the canonical map Wi Ai is bicon-
tinuous in the ultrastrong topology, di -9H(M 0 1,

U§ @ Vi : M E M, g e GI). Therefore the isomorphism n-1 carries
A into

fJl = H,(R © 1, U¿ji @ V¿jl: M e -di, g e Gi, i e I). Again
g g - 

because the map Y(H) -+ !fJ(1l) is bicontinuous in the ultrastrong
topology, RH(M ® 1 : M e -Y, 1 e 1) = fflH(M : M e Jti, i e 1)0
1 = Jt 0 1. Finally, then, -q = .9H (.,,f 0 1, Ug @.Vg : g E G)=
A[Jé, H, G, g - U,]. This completes the proof that W and
W[-W, H, G, g -+ U,l are spatially isomorphic.
For each, i e I, let Wi e L (H ) be defined by Wi(X 0 g ) =

(U’)*x 0 g-1 for all x e Hi and all g e Gi. According to proposition
1.1, W z is a unitary involution and W’.WiW’ = (Wil’. Define
W e Y(H) by W(x (D g ) = U:x 0 9-1 for all x E H and all

g e G. Then W is a unitary involution and W,9W = fJ6’ where
(JI = d[Jt, H, G, g -+ UgJ. Define Y E !fJ(!!) by Y = q wq-1.
Then Y is a unitary involution and YWY = A. It is an easy
calculation to show that YfiY = WiTWi for T e !fJ(Hi). Hence
.W’ == Y.WY

§ 5. Infinite Tensor Products of Facto rs of Type In on
n2-Dimensional Hilbert Spaces

Suppose that A is a factor of type 1. on an n2-dimensioÍlal
Hilbert space H. Then H = Ho Q9 H1 and A =: Y(HO) Q9 1
where Ho and H1 are n-dimensional Hilbert spaces.

LEMMA 5.1. If f is a vector of H, it is possible to choose or-
thonormal bases (qq’)i, z. for Ha, à = 0 and 1, in such a way
that: 
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PROOF: We omit the proof. It is based on the fact an ii X n
matrix A may be expressed as UDV where U and V are n X n
unitary matrices and D is an n X n positive diagonal matrix.
The proof is given in detail for the case n = 2 in [IDP], pgs.
69-70.

In the following lemma. ive show explicitly how a factor of
type 1. on an n2-dimensional Hilbert space is. a constructible

algebra in the sense of § 1.

LEMMA 5.2. Suppose that Ho and Hl are n-dimensional Hilbert
spaces, that A = Y(HO) (&#x26; 1, and that f e H = Ho 0 Hl with
IIf!: = 1.

Let H be the Hilbert space with orthonormal basis (y’); z,.
Let Jt be the abelian von Neumann algebra on H generated by
the pr [1pi] for i e Zn. Let G = Zn and define a unitary represen-
tation g --&#x3E; Ug of G on H by U,(Vl) = 1pi-f/ for all i e Zn.
Then vit is maximal abelian and U .fU* = Jt for all g e G.

The system (M, H, G, g -&#x3E; Ug) is free and ergodic. Let R==Hofi
where fl is the Hilbert space with orthonormal basis (g)f/EG.
Then d[cL, H, G, g --&#x3E; UgJ is a factor on H. There is an iso-

morphism y from H to H which takes A onto d[Jt, H, G, g - Ug]
and takes f into 99 == (!iEZn ai1pi) 0 0. where ao &#x3E; ai 2ù ... &#x3E;

an-l &#x3E; 0 and !iEZ (ai)2 = 1.
PROOF: It is clear that 141f is maximal abelian, that U.-WU = -Àf

for all g e G, and that the system (M, H, G, g -&#x3E; Ug) is free and
ergodic.
By lemma 5.1 select bases (â )i EZ 

n 
for Hd, à = 0 and 1, in

such a way that f = !iEZ aif{J qq’ 1 and aO&#x3E;al¿ ...&#x3E;an-l &#x3E;0.
Since Ilfli = 1, !iez.. (ai)2 = 1. /B
Now define y by y(q( ® qi ) = 1pi ® (i - i), for all i, e Z n.

Then y is an isomorphism from to H. 
_

A[M, H, G, g -&#x3E; U,] is the von Neumann algebra on H

generated by the pr [Vi] 01 for i e Zn and the U, (&#x26; V, for

g e Zn. Let us calculate the operators on H corresponding to these
operators under the isomorphism y-1. First we deal witli

pr [1pi]  1. This is the projection onto the subspace [1piJ 0 H;
Y-1 [,Pi  1Î] = ,,-l[1pi 0 g : g E Zn] = [991 0 f{Jf+i : g e ZnJ =
[f{J] ® Hi. Therefore y-1 (pr [Vi] 0 1)y = pr [f{J] Q§ i. Secondly
consider y-l(Ug cg, Vg)y. If i, i e Z n, then [y-l(Ug ® V D )y] (gô ® gi )

/B /B
= y-l(Ug V 11) (1pi 0 (i - i)) = y-l(1pi-f/ 0 (i - i + g)) =
9’-tI 0 q;{. Hence y-’ (U,, 0 V,)y = Y,, 0 1 where Yg is a unitary
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operator on Ho defined by Y(q() = qk-° for all i, g e Zn.
We have shown that the isomorphism y-1 from ÏÏ to H takes

W [-Y, G, H, g - Ug] onto fJiH (pr[l{J] 01, Yg 0 i : 1 e Z n,
g e zn) " L(Ho) 0 1 = d. Finally x(f) = Y(Zez ai Pk ©Pl)+
(Iiez. ai 1pi) 0 o.
We are now going to consider the most general infinité tensor

product of factors of type ln on n2-dimensional Hilbert spaces.
Let J be an infinite indexing set. For ex e J, let na be an integer
&#x3E; 2, and let H(/%J 6) for ë = 0 and 1 be the na-dimensional Hilbert
space with orthonormal basis (l{J’(a 6)iez . . Let la be a vector of
Ha = H(a,o) 0 H(a, 1) with fa  l = 1; by lemma 5.1 we might as
well assume that foe = IieZraa alfw(z, o&#x3E; © l{Ja, 1) with
a] &#x3E; aÎ &#x3E; ... &#x3E; a:N-l &#x3E; 0 and Iiez (aÎ)2 = 1. Let the factor
W on H /% be defined as !fJ (H (a, 0) 0 1. Let A be the tensor
product of (d a)ae] relative to (Ia)/%e].
For the remainder of the paper, A will be as it is defined above.

A depends on the indexing set J, the family of integers (na)ae],
and the families of real numbers (a)ieZ . We always assume that
J is infinite, that each n &#x3E; 2, and that a] &#x3E; aÎ # ... &#x3E;a:a-l &#x3E; 0
and Iiez fI/% (a)2 = 1 for all ce e J.

PROPOSITION 5.1. A is a factor. A is a constructible algebra;
specifically, A is spatially isomorphic to d[vI, H, G, g - Ug]
where: H = Q§[foe") H where Ha is the Hilbert space with or-

thonormal basis (tp)iez and l{Ja = Iiez aly£;
vi = fJiH(E: i E Zna, OC e J) where E pr [Vl] ; G = lloeeJ Zna;
and, for g = (ga)ae] in G, Ug = n.ey U:a, where Uoc e .P(H(%)
is defined by U:a("P) = y)°".
PROOF: A is a factor by the corollary to proposition 8.2. The

rest results from lemma 5.2 and proposition 4.1. Proposition 4.1
also shows that the following is true:

COROLLARY

We now determine the decomposability type of J3/.

PROPOSITION 5.2. Let K = {oc e J : a = 0 for some i e Z,,«I.
Then the decomposability type of A is the larger of No and K.
PROOF: We are going to find a family (EA)AeL of non-zero

cyclic projections of A with IAeL Ex = 1. Then lemma 2.2 will
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show that the decomposability type of A is the larger of No
and L.
Let us fix our attention on a particular oc E J. We have

A a = !e(H(0153,O)) ® 1 and A = 1 Q9 2(H(0153,1)). Let

La. = (o)w(1 e Zna. : az = 0}. Notice that this is a disjoint
union and that La = {0} if and only if oc E J - K. For i e .La,
define 6â to be /a for i = 0 and q;a., 0) Q9 w(z, i&#x3E; for i =1=- 0. Let

Fâ = pr [W§0£], then each Fi is a non-zero cyclic projection
of d, and 2ieL0153 F = 1.

Let L = lI0153e] L0153, and, for Â = (i0153)a.e] in L, let ()1B = ® « E J 0bOE
and E1B = IT0153e) F0153. Then each E1B c- A. By lemma 3.4, each

Ex = pr [d’ OÀJ, so that each E1B is a non-zero cyclic projection
of A. As in lemma 3.3, 21BeL Ex = 1.

We have proved that the decomposability type of A is the

larger of No and L. Recall that L = Il.c,, La where each L«
is finite and is {0} if and only if a E J - K. Therefore J is finite
if K is finite, and J = K if K is infinite. That completes the
proof.

We now give a necessary and sufficient condition for A to
be of type I.

PROPOSITION 5.3. dis of type I if and only if 2a.e )(1 - aô )  co,
and in that case is of type ly.

PROOF: Notice that Il - (/a, q;?0153,o) Q9 (po, 1» = 1 - al. This
means that, if 2(1 - aô )  oo, then the Co-sequences (fa.)a.e]
and (,990, 0) 0 990, »a c,, are equivalent, and hence define identical
A’s. To prove the sufficiency of the condition, then, we need to
show only that A is of type I provided that each aô = 1.

Suppose then that a- = 1 for all oc e J. By an associative
transformation (theorem VI of [IDP] ),

is spatially isomorphic to (0 (,P" («, 0» .flJ(H(0153.o»)) 0 (0 (eo (a, 1» 1)
= 2(H) 0 1.
Therefore A is of type I. This completes the proof of the suf-

ficiency.19) Since H has dimension J, iA is of type IJ.

19) For more détail, compare [IDP], pp. 71-72.
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Conversely, suppose that A is of type I. Then, according to
propositions 5.1 and 1.1, JI has a minimal projection Eo. For
each (X E J, Yi. z,,, Eo E = Eo. Therefore, since Eo is minimal

and -6 is abelian, for each oc e J there is an 1(ce) e ZIa such that
E(0153) &#x3E; Eo. Let F = IT0153e] E(0153); then F is a projection of -4Y
and F &#x3E; Eo &#x3E; o.
By proposition 0.1, there exists an orthonormal basis for H

consisting of vectors of the form 00153e] Y0153’ where each ya c- Ha
with I I2Ja I I = l, and ya = 99, for all but a finite number of the a
in J. Since F &#x3E; 0, there is some vector y of the above form,
y = 00153e] YfI.’ with jjjFz/jj l &#x3E; 0. Let Jo = e j : ya = gg,,,I; then

j - Jo is finite.

Therefore II0153eJo a’ &#x3E; 0, so that _Y,,,, jo (1 - aô )  00. Finally,
because J - Jo is finite, ey (1 - ae)  00.

We now state a sufficient condition for A to be of type IIi.
If the na are bounded, the below condition is also necessary for
A to be of type II, (proposition 5.6, below).

PROPOSITION 5.4

A is of type III if

PROOF: Suppose that the above series converges. For each

a E J, let °0153 = nt ¿iez n0153 1J’; then )t!)=l and, because

Il - (°oe’ woe)1 = 1 -’ n« ZeZ a, the Co-sequences (°ce)ce&#x26; J
and (q) j are equivalent. Therefore 0 = (il)0153e] (}0153 is definable
in H = § (woe j f

vit is an abelian von Neumann algebra on H; thus w(M)= (M0, 0)
for M E vIt+ defines a finite normal trace w on vit. For all g e Zn«
and all x e J, U§0 = 0. Therefore U98 = 0 for all g e G, and

w(U:MUg) = (MUgO, UgO) == (MO, 0) == w(M) for all g E G and

all M e vit. By propositions 5.1 and 1.1, then, A is finite. The
possibility ln for an integer n is ruled out by proposition 5.3
(recall our assumption that J is infinité). Consequently A is of
type II.

Suppose that J is a disjoint union of two infinite sets, Ji and
J2. Then A = A1 Q9 d2 where A8 == é§iÉÎ)à ôô’ce for = 1
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and 2. The tensor product of a factor of type Ia with a factor of
type III is a factor of type II a.2o ) Hence A is of type IIII provided
that 

We are now going to show that A can be of type III, that, in
fact, A is almost always of type III. In the course of the proof,
we shall need to use a Radon-Nikodym theorem for the maximal
abelian von Neumann algebra JI. We state the theorem which
we need as lemma 5.3. It may be considered to be a special case
of the Radon-Nikodym theorem for finite von Neumann alge-
bras [2]. It may be proved also by a straightforward transfer
of the classical Radon-Nikodym theorem for a localizable measure
space.21 )

LEMMA 5.3. Suppose that M is a maximal abelian von Neumann
algebra, and that cv is a faithful semi-finite normal trace on M.

If v is a semi-finite normal trace on JI, then there exists a
unique resolution of the identity in M, E(Â), such that:

y(r)==j(E(A)r) for all T e.4f+. (By a resolution of the
identity in J(, we mean a monotone function from [0, 00) to

the projections of -t with limA-.oo E(Â) = 1 and limA-.A o + E(Â) =
E(Âo) for all Âo e [0, oo).) 
The vector q; = 0a,E/ q;a, in H defines a finite normal trace v

on d, v(M) = (Mgg, q;) for all M e M+.

LEMMA 5.4. Suppose that E is a projection of -6 with E :::;: E&#x26; ag
where i e Zna, and oc e J. Then, for g e Zna:

PROOF: Such an E can be expressed as E£F, where

Fef1lH(E:ieZnp,fJeJ - {oc}). Then v(U:)*E(U=») =

y(Eâ+D F) = y(Eâ ) v(F)-(a +) y(F). Similarly v(E) =
"(Ek) "(F) " (as )2 v(F).

2°) [RO IV], chapter II.
21) A maximal abelian von Neumann algebra is spatially isomorphic to LOO(9’)

acting by multiplication on Lt( 9’) for some localizable measure space 9’. ([9],
theorem 1).
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LEMMA 5.5. Suppose that p - a.(p) is a one-to-one map from
the positive integers into J. Suppose that, for each positive
integer p, i(p) e Z"CZ(J). If at§§) tends to a limit as p -&#x3E; oo, say

lim £Îà# = a; then

PROOF: The lemma clearly holds for M a finite product of
projections Eâ. Hence by linearity it holds for all M in f/, the
*-algebra generated by the E£. I is strongly dense in vit. Given
M e JI, then, and e &#x3E; 0, there exists T E I such that

IITp - .iBf pli  l e. Then:

provided that p is large enough. That completes the proof.

PROPOSITION 5.5.

Suppose that there exists an infinite subset K of J, such that,
for some e &#x3E; 0 and some Pal qa e Z,,.:

. and a:0153/a:a. &#x3E; 1 + e for all oc e K. Then A is of type III.

PROOF: 22) Suppose that iA is not of type III. Then, by pro-
positions 5.1 and 1.1, there exists on -4Y a semi-finite normal

trace to which satisfies co(Ûg«-.AI(U«)*) = w(M) for all M eJl+
and all g e Z.., oc e J. This condition and the fact that the system
M H, G, g --&#x3E; Ug) is ergodic imply that ~ is faithful: for the

largest projection of JI on which is 0 has to be invariant under
the Ua, and thus equal to 0 or 1.

By lemma 5.3, there exists a resolution of the identity in .£,
E{Â), such that

for all T e J(+.

a2) c.f. [8], pp. 140-141.
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Fix, for the moment, oc in J and i, i in Zna. Assume that ai ,

a§f # 0 and let r = (alla§f )2. Write U for U§_;. Suppose that E

is a projection of M satisfying E  E£. By lemma 5.4,

Om the other hand, y(E)=J(E(A)E). Therefore, by thf

uniqueness part of lemma 5.3 applied to ..LIE’ 
-

Assume now the hypothesis of the theorem. Then there exist
maps from the positive integers, p --&#x3E; a(p ), p -&#x3E; i(p ), and p  i(p),
such that:

1. p -- a(p) is a one-to-one map from N into J.
2. For each p E N, 1(p ), j(p ) E Zn a (2) ).
3. lim a(2) = a &#x3E; 0, 3. lim ai(2) = a &#x3E; 0,

limp. a (2) = b &#x3E; 0,Iffi2)-+OO aj(fJ) = &#x3E; 0,
and

a«. (p) a. (p) &#x3E; 1 + e for all p E N.i (p) la,(,,
Let r - [aa(P)/-’(.P)]2 and let E E’(P) and F - Ei(2)et 

p 
- 

ai(fJ) ai (2) , and let 
p 
= 

a(p) and o 
- 

a(p&#x3E;. .

By the preceding paragraph, v(EPE(Â» = r,v(F,,E(Âlr,».
Since each r. &#x3E; 1 + E, v(El’E(Ã))  Tl’’P(FfJE(Â/l + e»). Taking
the limit as p - oo, and using lemma 5.5, we get:
a2v(E(Â»)  (lim2)-+oo Tf))b2v(E(Â/l + e)) = a2V(E(Â/1 + e»). That
is, v( E (A»)  v( E (Ã/l + e») for all Â e [0, oo ). We conclude that
v(E(O» = 1; this contradiction completes the proof that iA is of
type III.

We now examine the situation when W is of type Il,. Our
final result is proposition 5.6 (below), which states that a certain
series converges if .91 is of type 111. The proof is based on the
Kolmogoroff criterion for the convergence almost everywhere of
a sequence of independent functions. Since we choose. to carry
out our reasoning on the maximal abelian von Neumann algebra
..4, rather than on an appropriate probability space, we must
translate the classical Kolmogoroff theorems into the language
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of von Neumann algebras. We state the result that we need as
lemma 5.6 (below).
We need a few preliminary definitions. Suppose that vit is an

abelian von Neumann algebra on H, and that cv is a normal
trace on vit satisfying w(l) = 1. w extends to a weakly continuous
functional on vit, which we denote by w also.

DEFINITION 5.1. A family (Ei)e] of projections of vit is p-

independent (with respect to w) if, for every finite subset I’ of
I, (TI~r Ei) = M~7 w(Ei). A family (T),el of hermitian

operators of vit is p-independent if, for every function f : I -&#x3E; R,
(Ei(f(i»)i.j is a p-independent family of projections. Here we
have denoted by E(Â) the spectral resolution of Ti.

DEFINITION 5.2. If T is a hermitian operator of M, the variance
of T (with respect to w) is a2(T) = w((T - o(T»2).

DEFINITION 5.3.23) A linear subset L of H is essentially dense
(with respect to vit and w), if there is an increasing sequence of
closed subspaces (M n)n-l, 2,... such that pr [Mn] c- d,
limn-+oo (»(pr [Mn]) = 1, and each Mn C L.

LEMMA 5.6. Suppose that (T n)n==l, 2, .. , is a p-independent
sequence of hermitian operators of M, and that Il T ni I s K  o0

for n = 1, 2, .... Then Li T n converges weakly on an essen-
tially dense (with respect to -4O’ and co) subset of H if and only if:

1. zf_i w(T n) converges,
and 2. I==l a2(T n) converges.

PROPOSITION 5.6.

PROOF: Assume that A is of type II,. Then, by propositions 
5.1 and 1.1, there exists on vit a finite normal trace 00 which
satisfies oo(U:MUg) = co(M) for all g e G and all M c- -4. We may
assume that co(1) = 1. As in the proof of proposition 5.5, co must
be faithful. It is clear that

for any finite subset F of J and for each i(ot) E Z’na.. Therefore,

28) If (J) is faithful, this definition agrees with definition 16.2.1 of [R,O].
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if (i(ex) )0153eJ is in II0153eJ Zn0153’ then (E’(’x»,,c -j is a p-independent
(with respect to o) family of projections of JI.
There is another finite normal trace on JI, namely the trace v

defined by v (M ) _ (M,99, q;) for all M e M. Notice that v( i ) == 1.
A short calculation shows that, for ( i ( ex) ) 0153 e ] in II0153 e J Zna,
(E’("»,,.,cj is a p-independent (witli respect to v ) family of pro-
j ections of -6.

Let K be a countable subset of J. Let X be the real Hilbert
space of sequences of real numbers (z" )Îji na satisfying Iiez n0153 ae = 0
for al l « E K and I0153eK Iiez n0153 (ae)2  00: the inner product in

X is to be defined by 

For each (ae:) e X define a p-independent (with respect to both
w and v ) sequence of hermitian operators of JI, (TaJa.eK’ by

Then, for each rJ. E K, IITal!  sup faef  II(ae)II.
Also co (T,,) = l/na ZieZ ae = 0, and a2 (Ta)
1 I na iEZ na (x")2 i Ç _Yi. z,,,, (ae:)2. Therefore Y,., r= K a2(Ta)  00.

By lemma 5.6, then, Y,,,c-K Ta converges weakly on an essen-

tially dense (with respect to M and M) linear subset of H. But w
is faithful; therefore -Y« c- KTa converges weakly on an essentially
dense (with respect to JI and v ) linear subset of H. Hence, by
lemma 5.6 in the other direction, lotc-K y(rj converges. That is,
I«eK -Yic-Z,,, (ai )2 xa converges. Substituting Â = (ai)2 - l/na;,
and using the fact that s E zn xi = 0, we find that k aeKiez na Âf ae
converges.
We have defined a linear functional cp on X: cp( (ae») =

la E K _Yi c- Z,,,, a a . It is clear that cp is closed; therefore, by the
closed-graph theorem, cp is bounded. Therefore, for all ae e X,
cp(ae)=(ae, y) for some y = (yi ) in X. Then each ya must be
Â Hence

Since K can be any countable subset of J,
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COROLLARY. If the na. are bounded, d is of type III if and

only if !a.eJ !tez"a. (ÀÎ)  00.

PROOF: The corollary will follow from propositions 5.6 and 5.4,
provided that we can show that z j  E Zna (Â)2  00 implies
that lacj [1 - n;i !iez"a. ai ]  oo when the na. are bounded.

Suppose that each na  N. Choose ô &#x3E; 0 such that

[ (i + x)1 - (1 + +x - ix2)[  x2 for [x[ ô. Write xÎ for

Ân0153. Then, provided that IÂ"l  ôlN, [i - n;-t z,z a?[ =

That completes the proof.

Queen’s University, Kingston, Canada.
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