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Certain Factors Constructed as Infinite
Tensor Products*

by
D. J. C. Bures

The purpose of this paper is to determine the type of certain
factors which are infinite tensor products of factors of type I,
on n2-dimensional Hilbert spaces.!) In the course of this paper we
obtain some results of a more general nature: in particular we
show that any tensor product of maximal abelian von Neumann
algebras is maximal abelian (proposition 8.1, below); and we show
how certain 2) tensor products of von Neumann algebras obtainable
by a construction of the kind of [RO III]3) can themselves be
obtained by such a construction (proposition 4.1, below).

Our results regarding the types of the factors in question may
be summarized as follows. Suppose that J is an infinite indexing
set, and that, for each « € J, n, is an integer = 2. Let H,
and H,, be n,dimensional Hilbert spaces, and let
H,=H,,Q®H,,. Let &, be the factor L(H, ,)® 1 on
H,. Suppose that, for each « € [, f, is a vector of H, with ||f,||=1.
Then it is possible to choose orthonormal bases (q)‘(a’ 8)i=1,2,..n,
for the H, 5 in such a way that

Ny
1 1
ia = zl a; P (a,0) ® Pl
=

*) Many of the results of this paper were included in the author’s doctoral dis-
sertation at Princeton University. The author is indebted to Professor W. Feller
and Professor I. Halperin for their suggestions.

1) In chapter 7 of [IDP], J. von Neumann considered countable tensor products
of factors of type I, on Hilbert spaces of dimension 4. He showed that the types
of certain of these tensor products are I, II,, and II,, respectively. In a later
paper, [RO III], von Neumann asserted that in certain cases the type is III,.
However, the proof was not published.

2) In particular, any finite tensor product.

3) See [RO III], Chapter III. Actually, to avoid restricting ourselves to the
separable case, we use the generalization of J. Dixmier ([1], pp. 127—186). In
the remainder of the paper we refer to a von Neumann algebra which can be ob-
tained by such a construction as ‘“‘a constructible algebra” (see definition 1.1,
below).
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where af =a; = ... ga:ugo.

Let & be the tensor product of (&7,),.; relative to (f,)zcs-*)
Then & is a factor, and:

1. & is of type I if and only if 3,.;(1 — af) < o, in which
case it is of type I5.5)

2. If the n, are bounded, & is of type II; if and only if

ﬂa
S —ntYa?) < oo.
ae] i=1

In the general case, we have not been able to find a necessary
and sufficient condition for &/ to be of type II,; however,

>qa —n;‘*ga:-‘) < o

ae]J i=1

is a sufficient condition, and

B3 (=0T <=

is a necessary condition.

8. Suppose that there exists an infinite subset K of J, such
that, for some ¢ > 0 and some integers p,, g, Wwith
1 = p, 9, < n, the following holds:

a

a%,

a
ag, =¢
and

ay lag =1+ ¢ for all « € K.

Then & is of type III, where { is the larger of {&, and the cardinal-
ity of the set of « in J for which some af = 0.

For the most part we use the notation of [1]. However, our
terminology regarding infinite tensor products needs some ex-
planation.

Suppose that (H,),.; is a family of Hilbert spaces, and that,
for each « €1, f, € H, with ||f,|| = 1. Using the terminology of
[IDP], let € be the equivalence class of C, — sequences containing
the C,-sequence (f,),c;; and let H be the Hilbert space which
is the €-adic incomplete direct product of the H,, that is %, ,H,.

4) See the explanation on terminology below.
5) The dimension function on factors on non-separable Hilbert spaces is dis-
cussed in § 2 (below), and in [8].
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We shall consistently refer to H as the tensor product of (H,),.;
relative to (f,).c;» and denote it by ®Y2) H,. We now state a
result of [1DP] which gives us a working definition of the tensor
product in terms of orthonormal bases. We shall use this result
in the following form throughout the paper.

ProrosiTion 0.1 (lemma 4.1.4 of [IDP]). Suppose that
(H,)ur is a family of Hilbert spaces and that f, e H, with
[|Ifoll = 1. Choose an orthonormal basis (¢);. 7, for each H, in
such a way that 0 € J, and ¢ = f,. Then define ¢) ] = [[,cr/. =
{(a)aer € Ilaer Jo : 7o = O for all but a finite number of the «
in I}, If j = (ju)ger is in J let @ = ®,.; ¢/ Then (¢');,; is
an orthonormal basis for QY2 H,.

Suppose now that (H,),.; and (f,),; are as above. Let H
be the tensor product of (H,),.; relative to (f,),c;- There is
a canonical *-isomorphism 7?) ¢, from L(H,) into ZL(H): if
z, € H, and if z, = f, for all but a finite number of the « in I,
then

(¢ﬂT)(®aeI wa) =
(®ae[—{ﬂ} wa) ® TAZ'ﬂ for

all T e L(H,). We shall call ¢,T the extension of T from H,
to H and denote it by T provided that this does not lead to con-
fusion. If &7, is a von Neumann algebra on H,, then ¢,(%,) is
a von Neumann algebra on H 8), which we shall denote by o7,.

If (,),er is a family of von Neumann algebras, each <7,
on H,, then we shall write ® 2} &, for the von Neumann algebra
generated by the o7, on H = ®V2) H,. We shall refer to @Y./,
as the tensor product of (o,),.; relative to (f,)ycs-

§ 1. Constructible Algebras

We summarize here the construction of [RO III]?) in the
form given in [1]. %) We shall use the notation of this section
throughout the paper.

¢) We shall use this notation for groups also. Suppose that, for each a €1, G,
is a group with identity e,. Then G = I1,.s G, Will mean the subgroup of I1,¢; G,
consisting of elements (g,),; for which g, = e, for all but a finite number of the
a in I.

?) See [IDP], lemma 5.1.1.

8) See [IDP], lemma 5.2.8.

*) [RO III], Chapter III.

10) [1], pp. 127—136.
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Suppose that . is a maximal abelian von Neumann algebra
on the Hilbert space H; and suppose that G is a discrete group
with identity e and a unitary representation g — U, on H.
Assume that U, #UF = # for all geG.

We shall say that the system (4, H, G, g = U,) is:

(i) free, if U,.# N M = {0} for all ge G — {e};

(ii) ergodic, if # N {U,:geG} = Cg.

Let H be the Hilbert space with orthonormal basis (£),cc,
and let # = H ® H. Define a unitary representation of G on

B, gV, by V,(h)=gh. Then g—U, ® V, is a unitary
representation of G on H. Define &/[.#, H,G,g —U,] to be
the von Neumann algebra on H generated by # ® 1 and the
U 7,

DerFinNITION 1.1. We shall call &/ a constructible algebra
provided that & is a von Neumann algebra that is spatially
isomorphic to /[A,H,G,g—U,] for some free system
(A, H, G, g > U,). Here 4 is a maximal abelian von Neumann
algebra on H, G is a discrete group with unitary representation
g—> U, and U, #U} = # for all geG.

Prorosition 1.1 ([RO III] and [1]).
Suppose that the system (4, H,G,g—U,) is free and let

oA =AM, H,G, gV,

1. & is a factor if and only if the system (4, H,G,g—U,)
is ergodic.

2. Suppose that &/ is a factor.

(a) o is of type I if and only if A4 contains a minimal projec-
tion.

(b) & is finite (of type I, or II,) if and only if there exists a
finite 1) normal trace ¢ on 4 which satisfies p(U,MU}) = ¢(M)
for all ge G and all M e 4+,

(c) o is of type III if and only if there exists no semi-finite 2)
normal trace ¢ on .# which satisfies ¢(U,MU}) = ¢(M) for all
geG and all M e #+.

8. Define We L(H) by Wz ® §) = (Ukz) ® ¢, for all
# e H and all g e G. Then W is a unitary involution on H, and
WAW = .

11) By a finite trace we mean a trace ¢ with 0 < ¢(1) < 0.
12) By a semi-finite trace on a factor & we mean a trace ¢ with 0 < ¢(E) < ©
for some projection E of <.
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§ 2. The Dimension Function on Factors on
Non-Separable Hilbert Spaces

DErFINITION 2.1. Suppose that &/ is a von Neumann algebra
and that 8 is an infinite cardinal. A projection E of &/ is N-
decomposable (in &) if any family (E;);.; of mutually or-
thogonal projections of & with 0 < E, < E has cardinality

I<N.

Notice that if &7 is a von Neumann algebra on a Hilbert space
of dimension N then any projection E of &7 is N\-decomposable
in .

DEFINITION 2.2. Suppose that &7 is a von Neumann algebra.
If E is a projection of &7, the (decomposability) type of E (in &)
is the least cardinal ®X such that E is X-decomposable in 2.
The (decomposability) type of & is defined to be the decom-
posability type of 1 in &7.

It is clear that the decomposability type of &7 is invariant
under *-isomorphism and that if £ ~ F in & then the type of
E equals the type of F.

LeMMa 2.1. Any cyclic projection of the von Neumann algebra
& is of type NR,.

Proor: Suppose that & is a von Neumann algebra on the
Hilbert space H. If E is a cyclic projection of & then 13)
E = pr [«/'z] for some z € H. Notice that, if a projection F of &
satisfiess F < F and Foz =0, then FA'x = A’'Fx = 0 for all
A'e s’ so that F = FE = 0.

Suppose that (E;);c; is a family of mutually orthogonal
projections of & with 0 < E; < E. Then >, E, < E, and
hence >, ||E;z||? =< ||Ez||? < c©. Now E;z # 0; therefore I is
countable. That demonstrates that E is of type N,.

LemMma 2.2. If E = 3, E, where each E, is a non-zero cyclic

projection of &, then the type of E in & is I, if I is infinite,
and R, if 7 is finite. -

Proor: The type of E in &/ is certainly = I. We need to prove,
then, only that E is N-decomposable in &7, where N is the larger

of I and N,.

13) We write [S] to mean the subspace (closed linear manifold) determined by
the subset S of H; pr [S] denotes the orthogonal projection onto the subspace [S].
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Suppose that E; = pr[&/‘z,;]. Notice that, if F is a projection
of & with Fz, =0 for all i€l and F < E, then F = 0.

Suppose that (F,);c; is a family of mutually orthogonal
projectionsof &/ with 0 < F; < E.Then 3, /|| F;z,||* < || Ez,||* < o0
for each ¢ € I. If ¢ e I is fixed, then, F; z; = 0 for all but a countable
number of the § in /. Now every F, satisfies F; z; % 0 for some

iel, because 0 < F; < E. Therefore j =N, -I = N. This
demonstrates that E is ¥-decomposable.

ProrosITION 2.1. Suppose that &7 is a von Neumann algebra.
Any projection E of &/ can be expressed as >, ; E;, where each
E, is a non-zero cyclic projection of . The decomposability

type of E in & is then the larger of I and N,.

Proor: Using Zorn’s lemma select a maximal family (E,);,
of mutually orthogonal cyclic projections of & with 0 < E; < E.
Let F= Y, E, Then F is in & and F < E. We shall show
that F = E.

Suppose that F < E. Then there is an xzeH with
(E— Flx=2+#0. G=pr[«'z] is a cyclic projection of &
which satisfies 0 < G =< E and is orthogonal to all the E,. This
contradicts the maximality of the family (E,);.;; therefore
E=F=23E,.

The rest of the proposition follows from lemma 2.1.

CoroLrAry. If E = Y, E, where each E, is 8,-decomposable

and non-zero, then the type of E is the larger of I and N,.

Suppose that & is a factor on a separable Hilbert space. Then
[RO] there exists a dimension function d from the projections
of & to the extended positive reals such that: '

1. d(E) = 0 if and only if E = 0. d(E) < oo if and only if
E is finite.

2. E ~ F if and only if d(E) = d(F).

8. If (E,)c; is a family of mutually orthogonal projections
of &, then d(X;c; E;) = 31 d(E).

In the non-separable case the same procedure as that of [RO]
is valid but the resulting dimension fails to have property 2,
above; it has properties 1 and 8 and:

2. E ~ F implies d(E) = d(F).

If, however, we allow infinite cardinals as values, a dimension
function with properties 1, 2 and 8 exists.
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ProrosiTION 2.2. Suppose that & is a factor. Define the
function d' from the projections of &7 to the positive reals and
infinite cardinals by: d’(E) = d(E) for E finite, and d'(E) = the
decomposability type of E in & for E infinite. Then d’ has
properties 1, 2 and 3.

Proor: It is clear that properties 1 and 2’ hold for d’. Property
8 follows from proposition 1.1. Property 2 must hold for finite
projections, so that there remains to be proved only that, if E
and F are infinite projections of the same type, then E ~ F.

First let us show that if & contains any infinite projection,
then there is a projection E, of & which is infinite and N,-
decomposable. Let G be a cyclic projection of /. By lemma
2.1 G is Ny-decomposable. If G is infinite, take E, to be G; if G
is finite, choose'4) a sequence (E,),.; s... of mutually or-
thogonal projections of & with each E, < E and each E, ~ G,
and take E, to be >3, E

Suppose that E and F are N,-decomposable infinite projections
of &/. By the comparability of projections in a factor we may
assume E ~ F; < F. Then (by the argument in the proof of
lemma 7.2.1 of [RO]), F; ~ F and hence E ~ F.

Suppose that E and F are infinite projections of &7 of decom-
posability type & > N,. As in the proof of lemma 7.1.2 of [RO],
by comparability of projections and an exhaustion argument,
E=73E,and F =3, ; F; where each E; ~ E, and each

F, ~ E,. The corollary to proposition 2.1 shows that I= N= ]
Therefore E~F.

CoroLLARY (c.f. theorem VIII of [RO]).

If & is an infinite factor of decomposability type N, the range
of the dimension function consists of certain finite real numbers
and all infinite cardinals @ satisfying %, =< a < NX. We shall say
that the type of such a factor is I, IL,, or IIL; instead of the
usual I, IT,, or III_.

§ 3. Tensor Products of Maximal Abelian von Neumann
Algebras

ProrosiTioN 8.1. If # = @Y A, and each #, is a maximal
abelian von Neumann algebra, then . is also maximal abelian.
In the proof of proposition 8.1 we shall use several lemmas.

14) Here we use the comparability of projections in the factor &/ as well as the
fact that the sum of a finite number of finite projections is finite.
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LemMMA 3.1. An abelian von Neumann algebra with cyclic
vector is maximal abelian. (See [9], corollary 1.1, or [1], pg. 109
number 5).

LemMmaA 38.2. If, for each « €I, .#% is a maximal abelian von
Neumann algebra on H%, then [],.; #% is a maximal abelian
von Neumann algebra on @, H%

ProoF: ([lper #%) = Ilacs (A*) =T11ses #* provided that
each #% is maximal abelian.

LeMwMa 8.8. Suppose that (H,),.; is a family of Hilbert spaces.

Suppose that each H; = @, , Hi with each A4, containing 0.
Let f; be a vector of HY with ||f,]| = 1.

For each ¢ and « € 4; — {0} choose any vector f; of Hf with
12]] = 1; let f0 = f,. Define 4 to be [];c; 4, and, for a=/(o;);c;
in 4, define H*= @9 H.

Then H = @) H, has direct-sum decomposition H = @, ,H®.

Proor: This is a direct consequence of proposition 0.1.

LeEMMA 8.4. Suppose that &; is a von Neumann algebra on
H, and that f, is in H, with ||f,|| = 1. Let H = @V} H, and let
o = QU4 A,. Suppose that p; € H, with ||p;|| = 1, and that ¢,
is a cyclic vector for ;. Then, provided that >, /[1—(f;, ¢;)| < 0,
¢ = ®,; ¢; is a cyclic vector for &7.

ProoF; 15) Since 3,.; 11—(f, ;)] < 0, ¢ = ;1 @; is defin-
able in H, and H = @) H, is also ®%) H,. We may assume,
then, that ¢, = f,.

We have to prove that [&/¢] = H. By proposition 0.1, it is
sufficient to show that, if z,e H; with ||z;]| =1 and z; = f;
for all but a finite number of 7 € I, then ®, ;2! e [Fp].

Suppose that such a family (2;),.; is given along with & > 0.
We are going to produce an operator T € & such that

®icr@; — Toll < e.

Let F = {t €I : z; # ;). Then F has a finite number of elements,
say n. For each ¢ e F let T, e &/, be such that

&€

. — T,
”zi lf‘l” <n2n9

1.

Then let T = [[;cr T

15) c.f. the proof of lemma 4.1.4 of [IDP].
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We have
®icrz; — Tol| =
QRier @i — Quer Tipill =
Dl — T, £:11 H max (L, [|T; fill) =

ieF
n: ?.H(l + llzll) = e
This completes the proof.

ProoF of ProrosiTiON 38.1:

Suppose that, for each ¢ el, #; is a maximal abelian von
Neumann algebra on the Hilbert space H;. Suppose that f, is a
vector of H, with ||f,]| = 1. Let # = QY% #;andlet H = Q) H,.
We want to show that . is maximal abelian on H.

The idea behind the proof is to find a direct sum decomposition
H = @,., H* such that:

1. Each H* belongs to ; that is, pr [H*] € 4.

2. Each |y« has a cyclic vector.1¢)

Then lemmas 8.1 and 8.2 together prove that .# is maximal
abelian.

First we make a direct sum decomposition of each H;. By
Zorn’s lemma there exists a family (f7),c 4, of vectors of H; such
that 0 € 4, with f; = f, and such that 3,., pr[4#,f;] = 1.

Let Hi = [#,f;]. Then H; = @, , H. Furthermore each HY}
belongs to #;, for (#;) = 4, It is clear that f§ is a cyclic
vector for #, HE

Now, as in lemma 3.3, let 4 = [],; 4; and, for a = («;);y
in &, let H* = ®§:§’7 H%, Then H= @®,., H* Clearly each
H* belongs to A. M = Ay (.//7,- :1e€l); therefore M|y =
R M o i € 1) = Ryga (Milyes) : i €T) = QYA lzs).

We conclude that .#|y« has a cyclic vector (lemma 3.4).

This completes the proof.

Lemma 8.4 leads to an easy proof of the following results of
[IDP].

ProProsITION 8.2 (contained in theorem IX of [1DP]).
Suppose that (H,;);.; is a family of Hilbert spaces, and that
fi is in H; with ||f,|| = 1. Then L(®{:) H;) = ®{4) L (H,).

zeI
16) If .4 is a von Neumann algebra on the Hilbert space H, and H’ is a sub-
space of H which reduces .#, then .,l| 1 denotes the von Neumann algebra on
H’ consisting of the restrictions of operators of # to H’.
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Proor:

Let H= Q) H; and & = @} £(H,). We have to show
that & = Z(H). It is sufficient to show that every non-zero
vector z € H is a cyclic vector for 7.17)

By proposition 0.1, choose an orthonormal basis (¢,);.; for H
in such a way that each ¢, = ®, ;2 for some zj e H,. Then
each ¢, is a cyclic vector for .&/ (lemma 38.4). Furthermore
pr [¢;] = T1ic: pr [#}] € &. Suppose that z is a non-zero vector
of H. For some je J, (pr [¢;]) ® # O since (g;);c; is an ortho-
normal basis for H. It follows that (pr [¢;])z is a cyclic vector
for &7, because ¢; is a cyclic vector for 4. Finally, since pr [¢,] € &,
z must be a cyclic vector for 2.

COROLLARY:

QY o, is a factor provided that each &, is a factor.
Proor: Let o = QY &/, and H = QL H,, where &, is
a factor on H,. Then 18)

Rey(At, A')D Ry( A, A :i€]) = Ry(L(H,) :ie]) = L(H).
Therefore o N ' = (', ) = (L(H)) = C.

§ 4. Tensor Products of Constructible Algebras

For each ¢ € I, suppose that .#° is a maximal abelian von Neu-
mann algebra on the Hilbert space H?, and suppose that G* is
a discrete group with identity e’ and unitary representation
g —> U, on H'. Assume that Ui#i(Ui)* = #¢ for all geG"'.
Let &' = A[M°, H, G', g - U;).

Suppose that f*e H* with |[f{|| = 1. Define the Hilbert space
H to be the tensor product of (H?),., relative to (f*),.;; define
the abelian von Neumann algebra .# to be the tensor product
of (M*);; relative to (f);.;. By proposition 8.1, 4 is maximal
abelian on H.

Let the group G be [],.; G’. Denote the identity (e?),.; of
G by e. For g = (g');c; in G let U, = [[,.; U% (Notice that
this is a finite product). Then g — U, is a unitary representation
of G on H.

17) Suppose that every non-zero vector of H is a cyclic vector for /. Then if E
is a non-zero projection of &', Ex =x#0 for some xeH, and hence
E =z pr [oz] = 1. Thus &’ = G and & = Z(H).

18) We write Zy(% ) to denote the von Neumann algebra on H generated by
the subset # of Z(H).
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LEMma 4.1. U, HU¥ = # for all geG.

Proor: It is sufficient to show that UMU¥ e .# for all ge G
and all M e #. For that to hold, it is enough that U,MU} e #
for all g € F and all M € #, where F generates the group G and
S generates the von Neumann algebra # with S* = £,

Since M = Qe M= R( M :ie]) take F={M*': M'ec A",
tel}. Take F = {g = (g°)yc; in G:g* = ¢’ for all except one
of the ¢ e I'}. Notice that, if g e F, then U, = U}; for some i el
and some g‘ € G*. Suppose then that ¢, jel, g¢e G and Mie 47 :

UL M7 (UL)* =

Miifi#j
WM (UL*if =4
and in either case is in .. This completes the proof.

We would like to be able to show that if the systems
(A%, HY, G', g — U}) are free then so is (4, H, G, g — U,). For
the special cases (§ 5, below) we are interested in, however, a
weaker result suffices.

DErinITION 4.1. The system (4, H, G, g - U,) has property
(F) if, for every g e G — {e}, there exists a family (E,),., of
projections of . such that >,., E, =1 and E,(U¥EU,) =0
for all « € A.

LeEmma 4.2. If (A, H, G, g — U,) has property (F'), then it is
free.

Proor: Suppose that (#, H, G, g — U,) has property (F). Let
geG — {e} and let (E,),., be a family of projections of # with
Daca E, =1 and E (UX¥E,U,) = 0 for all a € 4.

Suppose that M e .# and that U,M € #. Then, for each a € 4,
E,(U,M)= (U,M) E,sothat (UYE,U,)M = ME, = E,M. Hence
E.M = E,(E,M) = E_ (U}E,U,)M = 0. Therefore
M=3,,EM=0. We have shown that U,# n 4 = {0}
for any g € G — {e}; that is, that the system is free.

LemMa 4.8. If each (A% H, G', g — U!) has property (F),
then so does (A, H, G, g — U,).

Proor: Suppose that g = (g');.; is in G — {e}. Then for some
itel, gt #¢e'. Provided that (A7 H‘, G, g — U!) has property
(F), there exists a family (E,),., of projections of .#* such that
Deca E. =1 and E,(Uj)* E,U. = 0 for all « € A. Consider the
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family (E,)yes Of projections of . X, ., E,=1, for the
canonical map T — T from Z(H') to #(H) is bicontinuous in
the ultrastrong topology. For any a€A, E, u E—a U, =
E,(Ui)* E,U% = 0. Therefore (#, H,G,g—U,) has property
(F)-

ProrposITION 4.1.
o = QB sfiis spatially isomorphic to Z[ A4, H, G, g —>U,].

o = QUP(ol).
If each system (¢, H', G*, g — U!) has property (F), then the

system (4, H, G, g > U,) is free. The system (#, H, G, g - U,)
is ergodic if each (A% H, G', g — U}) is ergodic.

Proor: The third statement is a direct result of lemmas 4.2
and 4.8. The fourth statement follows from the first statement,
from part 1 of proposition 1.1, and from the corollary to proposi-
tion 3.2. We now proceed to prove the first statement.

o = QPN o
is a von Neumann algebra on the Hilbert space
H= QL (H' Q HY).

[ M, H,G,g—~>U,] is a von Neumann algebra on the Hilbert
space H = H @ H. Now H is defined as the Hilbert space with
orthonormal basis (£),.¢ Since G = [],.; G', H is isomorphic
to @) At by the mapping y, defined by y(§) = ®,c;8° for
all g =(g');e; in G. Therefore H is isomorphic to
(®§) H') ® (®{); H') by the mapping 1 ® .

Now there is an associative isomorphism ([IDP], Theorem VI)
from

(®F H) ® (B HY) to ®FP" (H' @ A)=H.
Denote this isomorphism by ¢&; then 6((®;c; ') ®(®;ery?))
= Q1 (Z° ® y¥), for all ®,.,a*e H with each z‘e H' and
all ®,.; ¥ e ¥, At with each y' el .

Let 5 be the isomorphism 1 ® y followed by the isomorphism
d. 7 is then an isomorphism of H with H. It is an easy calculation
to show that:

1. f TeP(H)then (T QR1)p=T @ 1.

2. If geG’, then 71U} @ Vijp=U, ® Vi, where

g g
4, = ("), with * =¢* if hel — {i} and & = g.
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Now o = By(#*:iel). Bach o' = Bmr(M @ 1, Ui ® Vi:
M e #*, g e G'). Because the canonical map &/ — &/ is bicon-
tinuous in the ultrastrong topology, oA = Bug(M R 1,
U, @V, : Me M g eG’). Therefore the isomorphism 7~ carries
& into
B=Rz(M 1, UA: ® VA;: Me 4, geG', iel). Again
because the map £ (H) — #(H) is bicontinuous in the ultrastrong
topology, Zx(M @ 1: M e Mi,iel) = Ry(M : M e M icl)®
1= .4 Q® 1. Finally, then, Z =Zz(# ®1, U, QV, :geCG)=
M, H,G, g —U,]. This completes the proof that o/ and
A M, H, G, g - U,] are spatially isomorphic.

For each, tel, let Wie L(H') be defined by Wi(x ® §) =
(U;)*z ® g~ for all x € H and all g € G*. According to proposition
1.1, Wt is a unitary involution and Wi/iW? = (&%)’. Define
WeZH) by Wa®§)=Ulx®g? for all ze H and all
g€ G. Then W is a unitary involution and W#W = %’ where
B =M H, G, g—>VU,]. Define Ye LH) by Y =Wy
Then Y is a unitary involution and Y&Y = &/’. It is an easy
calculation to show that YI'Y = WiTWi for T € & (—IT"). Hence
A =YLY

= Ru(YA'Y :iel)
= Ry(WistiWi:iel)
= Ru((L?) :iel)
= P ().
§ 5. Infinite Tensor Products of Factors of Type I, on
n*-Dimensional Hilbert Spaces

Suppose that & is a factor of type I, on an n2-dimensional
Hilbert space H. Then H =H,® H, and & = Z(H,)® 1
where H, and H, are n-dimensional Hilbert spaces.

Lemma 5.1. If f is a vector of H, it is possible to choose or-
thonormal bases (qag)iez” for Hy;, § =0 and 1, in such a way
that:

f=2 ap; ® 91
ieZ,

and gy =¢a, =...=a = 0.

n—1 =
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Proor: We omit the proof. It is based on the fact an n X n
matrix 4 may be expressed as UDV where U and V are n X n
unitary matrices and D is an n X n positive diagonal matrix.
The proof is given in detail for the case n = 2 in [IDP], pgs.
69—70.

In the following lemma. we show explicitly how a factor of
type I, on an n*-dimensional Hilbert space is a constructible
algebra in the sense of § 1.

LemMmaA 5.2. Suppose that H, and H, are n-dimensional Hilbert
spaces, that & = #(H)) ® 1, and that fe H = H, ® H, with
lIfis =

Let H be the Hilbert space with orthonormal basis (y°);.z, .
Let .# be the abelian von Neumann algebra on H generated by
the pr [y?] for 1€ Z,. Let G = Z, and define a unitary represen-
tation g - U, of G on H by U, (y*) = y*~? for all t € Z,.

Then 4 is maximal abelian and U,.#U¥ = # for all geG.
The system (4, H, G, g - U,) is free and ergodlc Let H=H®H
where H is the Hilbert space with orthonormal basis (£),cc-
Then /[4,H,G,g—>U,] is a factor on H. There is an iso-
morphism y from H to H which takes & onto /[ 4, H, G, 8> U,]
and takes f into ¢ = (3,2, ay’) ® 0, where ¢y =a, = ... =2
a,; =0 and Z¢ez,, (a;) = 1.

Proor: It is clear that 4 is maximal abelian, that U, #U} = .#
for all g € G, and that the system (#, H, G, g —> U,) is free and
ergodic.

By lemma 5.1 select bases (%);sz for Hy, 6 =0 and 1, in
such a way that f = z,ez a,tpo ® i and ay=a,= . 1=0.
Since Hﬂl = 1 ZQEZ (a /\

Now define y by y(% ® <p1) =y ® (j — 1), for all ¢, jeZ,.
Then y is an isomorphism from H to H.

A[M,H, G, g—>U, is the von Neumann algebra on H
generated by the pr [y'] ® 1 for ieZ, and the U, ® V, for
g € Z,. Let us calculate the operators on H corresponding to these
operators under the isomorphism 1. First we deal with
pr [v‘] ® 1. This is the projection onto the subspace [y'] ® H;
Yy @Al =y [y @EF:geZ,] = [p) @ ¢ft :geZ,]) =
[#0] ® H;. Therefore y~1 (pr [y‘] @ 1)y = pr [ps] @ 1. Secondly
consider y~1(U, @ V,)y. If¢,§ € Z,, then [y~1(U, @ V,)y1(¢i®@%i)

AN

N\, .7
=7 U, @V )(¥® (G —1) =r'(¥* Q@ (j—i+8g)=
P0° @ ¢i. Hence y~}(U, ® V,)y = Y, ® 1 where Y, is a unitary
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operator on H, defined by Y (¢3) = @5~ for all i, ge Z,.

We have shown that the isomorphism »~! from H to H takes
S[M,G, H, g—>U,] onto Zu(pripg]l ®1, Y, Q1:i€eZ,
gel,) = %(Hy) ® 1= Finally p(f) = y(Zicz, 2: 9, ®@1)=
(ziez, a;y') ®O0.

We are now going to consider the most general infinite tensor
product of factors of type I, on n?-dimensional Hilbert spaces.
Let J be an infinite indexing set. For « € /, let n, be an integer
= 2, and let H, 4 for 6 = 0 and 1 be the n,-dimensional Hilbert
space with orthonormal basis (g{,, , )iez”a. Let f, be a vector of
H,=H, q,Q® H,  with ||f,|| =1; by lemma 5.1 we might as
well assume that f, = Y.z ai‘tpf, o @ P, 1) With
ag=ai=...2a,,, =20 and E,ez (a?)? = 1. Let the factor
o, on H, be defined as Z(H, o) ® 1. Let & be the tensor
product “of (4 )aey relative to (f)ee-

For the remainder of the paper, &/ will be as it is defined above.
& depends on the indexing set J, the family of integers (n,),c
and the families of real numbers (a‘}‘)iezm. We always assume that
J is infinite, that each n, =2, and that aj =2 a7 = ...=2a;,_;, =20
and Eiezna(afﬁ =1 for all a € ].

ProrosiTioN 5.1. & is a factor. & is a constructible algebra;
specifically, & is spatially isomorphic to /[, H, G, g— U,]
where: H = ®§,';“}H where H, is the Hilbert space with or-
thonormal basis (gu‘,‘),Ez and ¢, = Jiez, alyl;

M= Ry(EL:ieZ,, e]) where Ef = pr (vel; G = 1aeys Zays
and, for g = (ga)ael in G, U, =T],es ;‘a, where U; e Z(H,)
is defined by UZ (yi) = zp“"

Proor: & is a factor by the corollary to proposition 8.2. The
rest results from lemma 5.2 and proposition 4.1. Proposition 4.1
also shows that the following is true:

COROLLARY
= Q) .,
= ®(f°‘) 1® Z(H,, 1)))
We now determine the decomposability type of .

ProrosiTioN 5.2. Let K = {x € J : a; = 0 for some %€ Z,,u_}.

Then the decomposability type of & is the larger of 8, and K.
Proor: We are going to find a family (E,),, of non-zero
cyclic projections of & with Y,.; E, = 1. Then lemma 2.2 will
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show that the decomposability type of &/ is the larger of ¥,

and L.
Let us fix our attention on a particular x € /. We have

Ay =% (H,o)®1 and &, =1Q L(H, ) Let

L, ={0}u{ieZ,, :af =0}. Notice that this is a disjoint
union and that L, = {0} if and only if a € /] — K. For i€ L,,
define 0 to be f, for i =0 and @[, o ® {1 for ¢ # 0. Let
F;, =vpr [«,0.], then each F% is a non-zero cyclic projection
of &, and ¥, Fi =1

Let L = J1,.;L,, and, for A = (4,),c; in L, let 0* = ®,.; 05
and E, =T],.; Fi*. Then each E, e /. By lemma 3.4, each
E, = pr [« 01], so that each E, is a non-zero cyclic projection
of &. As in lemma 8.3, 3,.; E, = 1.

We have proved that the decomposability type of & is the
larger of 8, and L. Recall that L = Il.es L. where each L,
is finite and is {0} if and only if « € / — K. Therefore [ is finite
if K is finite, and J = K if K is infinite. That completes the
proof.

We now give a necessary and sufficient condition for &/ to
be of type I.

ProrosITION 5.3. o is of type lif and only if 3, ;(1 — aj) < o,
and in that case is of type I3

Proor: Notice that |L — (f,, ¢% o ® @0 1))l =1 — a§. This
means that, if Y (1 — af) << oo, then the Cjy-sequences (f,)qe;
and (¢{, o) ® @0y 1))zcs are equivalent, and hence define identical
&Z’s. To prove the sufficiency of the condition, then, we need to
show only that &/ is of type I provided that each a§ = 1.

Suppose then that af =1 for all « € /. By an associative
transformation (theorem VI of [IDP]),

(@%(a, °
oA = QY08 (2(H, ) ®1)

is spatially isomorphic to (@& Z(H, ) ® (% V1)
=ZLH)Q 1.
Therefore o is of type I. This completes the proof of the suf-

ficiency.’®) Since H has dimension ]_ , & is of type I5.

1*) For more detail, compare [IDP], pp. 71—72.
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Conversely, suppose that & is of type I. Then, according to
propositions 5.1 and 1.1, .# has a minimal projection E,. For
each ae [, Diez, Eo E! = E,. Therefore, since E, is minimal
and ./ is abelian, for each « € J there is an i(x) € Z,, such that
E{® = E,. Let F =I],¢; E'®; then F is a pr0]ect10n of A
and F =Z E, > 0.

By proposition 0.1, there exists an orthonormal basis for H
consisting of vectors of the form ®,.;y, Wwhere each y,e H,
with ||y,|| = 1, and y, = ¢, for all but a finite number of the «
in J. Since F > 0, there is some vector y of the above form,

Y = QaesYw With [|Fyll > 0. Let Jo={xe]:y, = ¢u.; then
J — Jo is finite.

[1Fyll = H NEL Y.l = I_gaz(a) = H a-
ae 0 ae 0
Therefore ],.; a§ >0, so that 3,.; (1 — a5) < co. Finally,
because | — J, is finite, 3,.; (1 — a‘(’,‘) < 0.

We now state a sufficient condition for & to be of type II,.
If the n, are bounded, the below condition is also necessary for
& to be of type II, (proposition 5.6, below).

ProrosiTioN 5.4
& is of type II, if

[ —angt 3 a] < oo
ae] t€Z,,

Proor: Suppose that the above series converges. For each
wae], let 6, =n3t Siez,, wi; then ||6,/| =1 and, because
1 — (6, @)l =1 — m} Sicz,, @i the Cosequences (6,)se;
and (@,),.; are equivalent. Therefore 6 = ®,.; 0, is definable
in H= QP 1,

A is an abelian von Neumann algebra on H; thus w(M )= (M6, 0)
for M € 4+ defines a finite normal trace w on #. ForallgeZ,,
and all e, U =6. Therefore U0 =0 for all geG, and
w(UFMU,) = (MU0, U,0) = (M0, 0) = w(M) for all geG and
all M €.#. By propositions 5.1 and 1.1, then, & is finite. The
possibility I, for an integer n is ruled out by proposition 5.3
(recall our assumption that J is infinite). Consequently &/ is of
type I1,.

Suppose that ] is a disjoint union of two infinite sets, /, and

Jo- Then of = /' @ /2 where %= QY% o, for §=1
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and 2. The tensor product of a factor of type I, with a factor of
type I1, is a factor of type II,.%) Hence & is of type 11 provided
that

> (1—af)< o

a€e],y
and 3 [1 —n;t 3 a?) < oo.
ae]y i€z, ,

We are now going to show that & can be of type III, that, in
fact, & is almost always of type III. In the course of the proof,
we shall need to use a Radon-Nikodym theorem for the maximal
abclian von Neumann algebra #. We state the theorem which
we need as lemma 5.8. It may be considered to be a special case
of the Radon-Nikodym theorem for finite von Neumann alge-
bras [2]. It may be proved also by a straightforward transfer
of the classical Radon-Nikodym theorem for a localizable measure
space.2!)

LemMA 5.8. Suppose that .# is a maximal abelian von Neumann
algebra, and that w is a faithful semi-finite normal trace on .#.

If » is a semi-finite normal trace on .#, then there exists a
unique resolution of the identity in .#, E(4), such that:
¥(T) = [Adw(E(A)T) for all T e.#+. (By a resolution of the
identity in .#, we mean a monotone function from [0, c©) to
the projections of # with lim,_, E(1)=1 and lim,_, At E(A) =
E(4,) for all 4, € [0, ©0).)

The vector ¢ = ®,.; @, in H defines a finite normal trace »
on A, v(M)= (Mg, ) for all M e .#+.

LeMwMA 5.4. Suppose that E is a projection of A# with E < E_i,
where i€ Z,, and a € J. Then, for geZ, :
(a5) »((U5)* E(U5)) = (afy, )2 »(E).
Proor: Such an E can be expressed as EE‘F, where
FeRy(Ej:ieZ,,pe] — {x}). Then »((U*E(UZ))
v(E F) = o(ES) »(F)=(a2,)* »(F). Similarly »(E)
v(Eg) »(F) = (a7)? »(F).

I

20) [RO 1V], chapter II.
1) A maximal abelian von Neumann algebra is spatially isomorphic to L®(%)

acting by multiplication on L%(#) for some localizable measure space <. ([9],
theorem 1).
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LemMma 5.5. Suppose that p — «(p) is a one-to-one map from
the positive integers into J. Suppose that, for each positive
integer p, i¢(p) e Z,,u(’). If a3?) tends to a limit as p — oo, say
lim, ., a}®) = a; then '

lim »(M Ei®))

a(p)
Pp— 00

= a?® »(M) for all M e .

Proor: The lemma clearly holds for M a finite product of
projections EE Hence by linearity it holds for all M in &, the
*-algebra generated by the I—':Ta & is strongly dense in #. Given
Me #, then, and &> 0, there exists T e such that
[|ITe — My|| < % &. Then:

la® v(IM)—y(ME'® )| <|a2v(M)—a2»(T)| + |a?»(T)—»(TE® )| +

a(p) a(p)
[W(TE))—v(MEDR)|=a*|((M—T)gp, )|+a®(T)—v(TED)

+ I((T—M)p, Efp)l <ket+detde=e
provided that p is large enough. That completes the proof.

PRroOPOSITION 5.5.

Suppose that there exists an infinite subset K of J, such that,
for some ¢ > 0 and some p,, ¢, €Z, :

N *

a a
o Qgp = €

a qa —

P

- and aj fa; =1 + ¢ for all « € K. Then & is of type IIL

Proor: 22) Suppose that & is not of type III. Then, by pro-
positions 5.1 and 1.1, there exists on .# a semi-finite normal
trace w which satisfies w(U_;‘M (0?)*) = w(M) for all Me. &+
and allge Z, , « € J. This condition and the fact that the system
(#,H,G,g—U,) is ergodic imply that « is faithful: for the
largest projection of . on which w is 0 has to be invariant under
the Uj, and thus equal to 0 or 1.

By lemma 5.8, there exists a resolution of the identity in .,
E(4), such that

WT) = [ 2 do(E@W)T)
for all T e #+.

22) c.f. [8], pp. 140—141.
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Fix, for the moment, « in J and ¢, § in Z,,. Assume that ag,
s 0 and let r = (af/a})?. Write U for U7 ,. Suppose that E
is a projection of # satisfying E < E;. By lemma 5.4,

W(E) = ro(U*EU) =7 [ "Ado( E()U*EV) =r [ “2do(U E(2)U* E)
= [74dw(UE(3r)U*E).

On the other hand, »(E) = [§ Ad(E(A)E). Therefore, by the
uniqueness part of lemma 5.3 applied to .A/IEE,
ELE(A)=ELU E(AJr)U* for all Ae[0, ). Then »(ELE(A))=
rv(U*E":U E(A[r)U*U) by lemma 5.4, or
WELE(R) = ro(ELE@r))-
Assume now the hypothesis of the theorem. Then there exist

maps from the positive integers, p — a(p), p — ¢(p), and p - j(p),
such that:

1. p - «(p) is a one-to-one map from N into J.
2. For each p e N, i(p), j(p)eZ
8. lim,_, af?) =a >0,

lim,, a*® =b >0,

Ba(p)”

p~o0 Bi(y) =
and
aiplasy) > 1+ ¢ for all p e N.
Let 7, = [a%8)/a;®)%, and let E, = E.) and F, = Efp.

By the preceding paragraph (E E()) = r,v(F,E(Ar,))-
Since each 7, > 1 + ¢, »(E, E(2)) gr,,v(F,E(l/I + ¢)). Taking
the limit as p — o0, and using lemma 5.5, we get:

@(E(1)) S(lim, o, 7, )b »(E(H[1 + ¢)) = at»(E(}1 + ). That
is, »(E(4)) < »(E(4/1 + ¢)) for all A € [0, c0). We conclude that
»(E(0)) = 1; this contradiction completes the proof that &/ is of
type III.

We now examine the situation when & 1s of type II,. Our
final result is proposition 5.6 (below), which states that a certain
series converges if & is of type II,. The proof is based on the
Kolmogoroff criterion for the convergence almost everywhere of
a sequence of independent functions. Since we choose to carry
out our reasoning on the maximal abelian von Neumann algebra
M, rather than on an appropriate probability space, we must
translate the classical Kolmogoroff theorems into the language
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of von Neumann algebras. We state the result that we need as
lemma 5.6 (below).

We need a few preliminary definitions. Suppose that .4 is an
abelian von Neumann algebra on H, and that w is a normal
trace on . satisfying (1) = 1. w extends to a weakly continuous
functional on ., which we denote by w also.

DeFiniTION 5.1. A family (E,),.; of projections of .# is p-
independent (with respect to w) if, for every finite subset I’ of
I, o(Tlicr E:) = Ilicr @(E;). A family (T,),; of hermitian
operators of # is p-independent if, for every function f: I — R,
(Es(f(2)))ser is a p-independent family of projections. Here we
have denoted by E,(1) the spectral resolution of T,.

DErinITION 5.2. If T is a hermitian operator of #, the variance
of T (with respect to w) is ¢*(T) = o((T — o(T))?).

DeFINITION 5.8.28) A linear subset L of H is essentially dense
(with respect to 4 and w), if there is an increasing sequence of
closed subspaces (M), ... such that pr[M,]e,
lim, , o(pr [M,]) =1, and each M, CL.

LemmA 5.6. Suppose that (T,),. ... is a p-independent
sequence of hermitian operators of M, and that ||T,|| = K < o©
for n =1,2,.... Then 332, T, converges weakly on an essen-
tially dense (with respect to .# and w) subset of H if and only if:

1. D%, o(T,) converges,
and 2. >3, ¢*(T,) converges.

ProPOSITION 5.6.

Let 27 = (af)? — 1/n,. If &/ is of type II,, then
Suer Siez,, () < .

Proor: Assume that & is of type II,. Then, by propositions
5.1 and 1.1, there exists on 4 a finite normal trace o which
satisfies w(U¥MU,) = w(M) for all g € G and all M € .#. We may

assume that w(1) = 1. As in the proof of proposition 5.5,  must
be faithful. It is clear that

o(T B =11 -

aeF acF Ny

for any finite subset F of J and for each i(«) € Z,,. Therefore,

) If o is faithful, this definition agrees with definition 16.2.1 of [RO].
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if (4(@))aey is in JTpe; Zy,, then (EZ®),.; is a p-independent
(with respect to w) family of projections of .#.

There is another finite normal trace on .#, namely the trace »
defined by »(M) = (Mg, ¢) for all M e .#. Notice that »(1) = 1.
A short calculation shows that, for (i())ec; in TJacj Zpg»
(E¥*)qey is a p-independent (with respect to ») family of pro-
jections of 4.

Let K be a countable subset of J. Let X be the real Hilbert

space of sequences of real numbers (z* )?:fn satisfying Ziez,, x;=0
3 a

for all xeK and 3,.x Eiez,.a (F)? < oo: the inner product in
X is to be defined by
(@), ¥9)) = 2 3 (afys)

aeK i€Z,

For each (2f) e X define a p-independent (with respect to both
o and ») sequence of hermitian operators of #, (T,),cx> by
T,= Y 2*E’.
ie€Z,,

Then, for each a €K, ||T,|| < sup |2?| < ||(a%)]]
Also w(T,) = 1/n, zer,.¢ i =0, and o*%(T,) =
1/n, Ziez”a (@) = Ziez,,a (#7)% Therefore 3, ¢*(T,) < o0.

By lemma 5.6, then, >, . T, converges weakly on an essen-
tially dense (with respect to # and w) linear subset of H. But o
is faithful; therefore ¥, . T, converges weakly on an essentially
dense (with respect to .# and ») linear subset of H. Hence, by
lemma 5.6 in the other direction, Saex ¥(T,) converges. That is,
Dack ziez,,a (a7)? @7 converges. Substituting A% = (a%)2 — 1/n,,
and using the fact that Eiez,.a 2 = 0, wefind that 3, x3;cz, A7 25
converges.

We have defined a linear functional ¢ on X: #((2F)) =
Sack Ziezm A7 af. It is clear that ¢ is closed; therefore, by the
closed-graph theorem, ¢ is bounded. Therefore, for all z € X,

$(x)=(z, y) for some y = (y?) in X. Then each y? must be
A%. Hence

2 2 (AP =lyll < co.
eeK teZ,,

Since K can be any countable subset of I
2 2 ()<,

ae] iez,.“
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CoroLrAry. If the n, are bounded, & is of type II, if and
Only if za eJ Ziez,,a (;_:)2 < .

Proor: The corollary will follow from propositions 5.6 and 5.4,
provided that we can show that Y,.; Ziez (42)? < oo implies

that 3,.; [1 — nt Diez,, 8] < © when the n, are bounded.
Suppose that each =, g N. Choose 6 > 0 such that

1+ 2)f — (1 + 32— }a?)| <a? for |z] <d. Write a? for

*n,. Then, provided that |A%| < §/N, |1 — n3t ez, %l =

| Btetn, - 11— (4 151 Sien,, Bt~ @Y

+ Ztsz (wi
< G+ 1) Sies,, @)
< W S er, (R

That completes the proof.

Queen’s University, Kingston, Canada.
g
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