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Normed spaces of generalized functions
by
J. B. Miller

1. Introduction

We describe here some pairs of dual spaces determined from
initially prescribed normed linear spaces by means of bounded
linear operators. If the prescribed spaces are function spaces, the
dual pair frequently play the roles of a space of generalized func-
tions and its space of test functions, and the construction serves
as a method of embedding a given function space in an extension
space of generalized functions which can be described as strong
limits. The construction of a pair of dual spaces is straightforward.
Let X and 9) be Banach spaces, and 4 a suitable operator on X
into ). We can define a new norm on X by writing

llzlla = ||4|ly,

and if X so normed is incomplete, embed X in its completion,
which we write as X} and call an inflation of X by A. At the same
time, the range of 4 in ) can be normed by

llyllam = [|[A7 yllx (y € AX);
we call this a deflation of 9), and denote it by 9;-1. The spaces

XL, (%)

(where * denotes the adjointing operation) constitute the dual
pair determined by X, §) and A.

Consider two examples.

1°. Take X = 9 = L%(0, c0) and define A by

Ax(t) = t* (k) j; (t—u)z(u)du

(1.1)
(x € L2, k a fixed positive integer)

It turns out that X} is an extension of L2(0, 0) whose elements
have some of the properties usually associated with generalized
functions. The space contains a delta function, and up to &
derivatives can be defined locally for its members, though not
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very conveniently. The dual space (X*)ge-: determined by the
adjoint operator

A*y(u) = I'(k) j:° (t—u)tt*yt)dt (zel?) (L2)

is made up of L? functions 2 for which #*2®(¢)e L? and
x = A*[u*2™(u)]. Elements of this space possess atleast k deriv-
atives, with certain Lipschitz properties. These spaces are discussed
in detail in [5], [6] and [7]. Some other extensions of L2(0, c0)
are described in [8].

2°. Take ¥ = L1(0, ©), let F be a compact subset of the positive
reals with non-empty interior, and consider the Laplace transfor-
mation

Ax(z) = 'f:o e z(u)du = a2V (z) (1.8)

as a mapping of L1(0, o) into the space §) = C(F) of continuous
functions on F with the uniform norm. Then
llzl|la = sup |2V ()], (1.4)

z€F

and by completion under this norm L! yields a space in which
every element has a well-defined strong left derivative. We return
to this example later, and obtain a generalization of it in § 7.

Other examples of the types of structures contemplated in this
paper will be found in [2], [8] and [4]. A. P. Guinand in [2]
describes some deflations of L2(0, o), and also uses deflationary
processes to obtain a pair of subclasses of L2(0, 2x) and 2 with a
Fourier-series reciprocity property. R. R. Goldberg in [8] general-
izes some deflations described by Guinand and the author.

ConTENTS. In § 2 we specify a class of operators which give rise
to inflations and deflations, and in § 8 we examine further the
duality between the two spaces; § 4 is devoted to examples. § 5
discusses the partial ordering of inflations by inclusion. § 6
describes inflation of algebras.

We use Example 2° as a motivating and illustrative example in
the course of the discussion, and in § 7 obtain a natural generaliza-
tion by using the Gelfand representation of a commutative
Banach algebra.

2. Inflating operators in Banach spaces

Starting with spaces ¥ and ), we first consider the conditions
which A4 should satisfy in order that X} be a workable extension of
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Z. For simplicity we suppose 4 linear; and although the norm of X
and its completeness are not necessary for the definition of the
inflation, none the less we suppose both X and 9) to be Banach
spaces. We can regard X} as usual as the set of equivalence classes
of sequences of elements of X which are Cauchy with respect to
the A-norm ||-||4, and write (z,)~a2, 2, 42, z=Ilim,2,
if the sequence (z,), z, € £ (n — ) determines z in X}. We lay
down the following requirements.

(a) ||z|]|4 be defined for all z € X; i.e. D(4) = X.

(b) The norm of X be stronger than ||||4, so that the limiting
process in X be preserved in X}; i.e.

z, z, € X, ||z,—z|| > 0 imply ||lz,—z||4 = O.

For this it is necessary and sufficient that 4 be bounded.
(¢) The norm topology of X} induce a Hausdorff topology on
X; i.e.

z, &y, 2, € X, |lw,—a|la >0, [|@,—Z|la—>0 tmply z= 2,

which is the case if Az = 0, € X imply # = 0. This condition also
ensures that ||-|| 4 has the properties of a norm.

(d) AZX be dense in 9). (If the closure A% were a proper subspace
of §), we could restate the theory using this subspace in place of ).)

(e) X% be a proper extension of X; i.e. there exist at least one
sequence (s,), s, € X, which is Cauchy in X} but not in %.

These suggest

DEerFINITION 1. The linear operator A from X into 9) is called a
“proper inflator” (proper inflating operator) if
24(1) A is bounded, with domain %;
(2) Az =0, ze X imply z = 0;
(8) the range of A is dense, but properly contained, in Y).
If instead A satisfies (1), (2) and
(8)" the range of A is 9,
it is called an ““‘tmproper inflator”.

We denote the set of inflating operators by J(%, 9), of proper
inflators by J,. A proper inflator satisfies (a) to (e). If 4 is an
improperinflator, then X} = X: for A1 exists by (2), and is bound-
ed, by a well-known theorem of Banach;!) hence every A4-
Cauchy sequence is Cauchy in %.

As consequences of 2(1)—(8) we note that 4 is closed, and its

1) See [1], Theorem 2.12.1. Other theorems in Chapters 1 and 2 of [1] are used
below.
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range is of the first category in ) (by the closed graph theorem);
A1 is defined and closed but unbounded; A* (the adjoint of A)
exists as a bounded linear operator mapping $)* into X* (the
conjugate Banach spaces), ||4*|| = ||4]||, and (4*) = (471)*,
the operators being unbounded. We summarize the construction
of X} in

TueoreM 1. If A is a proper inflator in I(X, D), then X} is a
Banach space isometrically isomorphic to 9), and X is a dense sub-
space in X% . The operator A can be extended to an operator mapping
X4 onto Y, with a unique inverse which is the extension of the A~
determined by £24(2).

We shall not as a rule distinguish 4, A* or A1 from their
extensions explicitly. The following result is useful.

LEMMA 1. If a subset W1 of X is dense in X, then it is dense in
X%; that is, AW is dense in 9).

The proof is straightforward.

A consequence of the lemma is that J(%, §)) is a semigroup
under operator multiplication; for if 4, B, € J, then AB clearly
satisfies 2,45 (1) and (2), and (8) follows from the lemma. 3, is
likewise a semi-group, and we have

A €3, Be imply AB, BA €3J,;
for if AB, for example, is improper, (4 B)~!is bounded, and so then
isA-' = B(AB)™,implying 4 ¢ J,. Wenotethat ] e J—,,0 ¢ 3.

THEOREM 2. If A is an improper inflator, then so is A*. If
A eJ,(X,)) and X is reflexive, then A* e I, (D*, X*).

Proor. If 4 € ¥(%, 9)), then 24.(1) and (2) hold. If 4 is im-
proper then (A*)™! = (4-1)* has domain X*, and so A* is an
improper inflator. Suppose A4 proper; we prove £244(3). Now
A* * is properly contained in X*, for if not then 41 is bounded
and 4 is improper. Also A*Y* is dense in X* if X is reflexive.
For then the closure A* )* equals [R(4)]° the annihilator of the
null space of 4: here N(4) is {0}, and hence [N(4)]° = X*. Thus
£ 44(8) holds. 2)

The condition that X be reflexive cannot be omitted. A counter-
example will be found in [12], Ex. (IL,, III,).

THEOREM 8. When A € J(%, V), the deflation 9);-1 is a Banach

space.
Proor. The deflation space is clearly linear; the proof of its

2) We have used [1], Theorem 2.11.15 and [14], p. 286, Theorem 2.
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completeness follows directly from its definition and the assump-
tion that ¥ is complete.

If A* is an inflator, the set A*Y)* can in the same way be made
into a Banach space (X*), e, a deflation of X*, with the norm

0] g0 = [|4*-22*]], o* € ASY*,

We note that if 4 € Y(X, 9)), (X*),.-1 is a Banach space even when
A* ¢ 3(D*, X*), i.e. when 2,4.(8) does not hold.

Let [-, -]4 be the complex-valued bilinear function on
(X*)741 X X} defined by

[2*, 2]a = 2*(x), 2% € (X*)po, weX].

With this form, the deflation and inflation become a pair of dual
spaces in the sense of Rickart [10], p. 62,2) in fact normed dual,
since
[[@*, z) 4| = [(4* 7 a*)(Az)|
= |[A* 2| - ||Az]| = [|2*]| ae-2 - |[2][ 4. (2.1)

We shall denote this pair of spaces briefly by X*-, X+, omitting
the “A4” when there is no ambiguity.

3. Conjugacy and A-weak convergence

We now look for conditions under which the duality between
the spaces £*— and X+ becomes one of conjugacy, and to this end
prove Theorem 5 below. We also consider a form of weak conver-
gence in X+ under which X+ may be complete. The two results
show the way in which X*~ may play the role of a space of test
functions for a space X+ of generalized functions. We assume in
this section that 4 € ¥(X, 9)), but make no stipulation about 4*.

DEriNITION 2. The sequence (z,), x,€ X, is called A-weakly
Cauchy if [x* 2,—a,]a—0 as min (n,m)—> oo, for every -
z* € (X¥) o1

THEOREM 4. Let A € J(X, Y)) and let Y) be reflexive. Then the
A-weak completion of X is X}, and X} is A-weakly complete.

Proor. If z € X, then (2.1) shows that
$(x*) = [2*, x]4 = a*(2) (81)
defines a bounded linear functional ¢ in (X*~)*, the conjugate

3) Cf. Lemma 2, below.
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space of (X*)7e1. If (z,,) is A-weakly Cauchy, it then follows from
the theorem of uniform boundedness that
z(z*) = lim [z*, 2,]4
71—00
also defines an element of (X*—)*. Therefore every z* € ¥*-, a
bounded linear functional in X*, can be extended to a bounded
linear functional in X+* by defining 2*(2) when z € X+ to be
lim,_,  2*(z,), where (z,) ~4a: the limit exists since any A4-
Cauchy sequence is 4-weakly Cauchy, and it is independent of the
sequence chosen for z. Moreover

le*(@)] = li@lla - [12*]| 41, (8.2)

and ||z]| 4 is the norm of this functional in X+*. Inequality (8.2)
is valid for all # € X+, z* € X*—, and the definition of an 4-weakly
Cauchy sequence can be extended to include sequences with
elements from X+. We call the collection of A-weak limits of
(equivalent) A-weakly Cauchy sequences from % the A-weak
completion of X.

Clearly X} is contained in the A-weak completion of X. Conver-
sely, suppose that (z,), z, € X, is A-weakly Cauchy. Then

y*(dz,—Az,) = (A*y*) (@, —2p) = [2*, 2, —2p]a > O

for all z* = A*y* € X*-, i.e. the sequence (4z,) is weakly Cauchy
in §), and since 9) is reflexive 4) converges weakly to some element
y € 9. By Theorem 1, y = Az for some z € X*; since «*(z) = y*(Ax),
we have

[*, 2, —2]4 = y*(Az,—Az) — 0,
showing that (z,) converges A-weakly to an element of Xt+.

The same argument shows that X+ is 4-weakly complete.

LEMMA 2. Let A eJ(X,9) and z e X;. Then
z*(x) =0, all z* e (X*)je (8.8)
if and only if x = 0.

Proor. If z € X, the result is trivial. The sufficiency of z = 0
is also obvious. Suppose (z,), z, € %, is a sequence for z € X* and
that (8.8) holds, i.e. lim,_  a*(z,) =0, all z* e A*Y*. Write
z* = A*y*; it follows that (Az,) is weakly Cauchy in 9. It is
also strongly Cauchy by definition; since the strong and weak
limits coincide, we have ||4z,|| = 0, that is, 2 = 0.

¢) [14] p. 156, Theorem 2.
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TaeoreM 5. If A €Y (X, ) and Y is reflexive, then X} and
[(X*)5e1]* are isometrically isomorphic.

Proor. Let x € X}; we saw that ¢ in (8.1) is then an element in
(X*-)*. Conversely, any element in (X*~)* can be so written;
let ¢ be an arbitrary bounded linear functional on %*-, so that

[$(@*)] = [18]] * l|lz*]] g1, i.e.
I$(A*y*) = [18]] - lly*|l, all y*eP*.

Then ¢(A*-) defines a bounded linear functional y** on $*, and
since §) is reflexive, an element y e 9 such that ¢(4A*y*) =
y*¥*(y*) = y*(y), all y* e Y*. Since y = Az for some z e X+,
P(A*y*) = y*(Az) = (A*y*)(z); thus ¢ has the form (8.1) for
some z € X*. Moreover

l|§ll = sup{|$(a*)|; a* e X*~, [|a*|| o = 1}
= sup{l¢(4*y*); [ly*|| =1}
= |ly** || = llyll = lIz||a.
The mapping z — ¢ of X+ onto (X*~)* determined by (8.1) is
easily seen to be a homomorphism, in fact an isomorphism by

Lemma 2, and it has been shown to be an isometry. This proves
the theorem.

When A is improper, so is 4*, and the theorem takes the form
X ~ X**. Thus it may be thought of as providing a generalization
of reflexivity. If 9)"is not reflexive, we can still conclude that
X+ C (X*-)*.

CoroLLARY. If A € Y(%, ) and X is reflexive, then (P*)%. and
(Y721)* are isometrically isomorphic.

The proof comes by applying the theorem to A* e J(P*, X*).

4. Examples

1° (continued). It can be verified that the operators 4 and 4*
of § 1, 1° are inflators, in the sense of Definition 1. Theorems 4 and 5
apply.

2° (continued). Let us verify that 4 € J{L'(0, c0), C(F)} for
the operator in (1.8). Clearly 2(1) holds. Morecver, if z € L1(0, o),
its Laplace transform 2" (2) is a holomorphie function in R(z) > 0;5)
therefore if 2#V(z) vanishes on F, it vanishes for all R(z) >0,
and so # = 0; thus £(2) holds. To prove 2(8) we use the Stone-

5) [18], p. 57.
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Weierstrass Theorem. Let a product in L1(0, c0) be defined by

(2 y)(t) = [ a(u)y(t—u)du, (4.1)

the product induced by regarding L1(0, o) as the closed subalgebra
{z: 2(u) = 0 if u < 0} of the group algebra L!(—oo0, 0) with
convolution product, and consider the images of L}(0, co) under 4.
Since 2V (z)yY(z) = (@ - y)Y (), these form an algebra. The algebra
separates points; for if zV(z) = 2"(z,) for all zelL!, then
e~*1*—e¢~*" g5 an element of L™ defines a zero functional in (L!)*,
and so 2, = 2,. It follows from the complex case of the above-
mentioned theorem that AL1is dense in C(F); ¢) since it is certain-
ly not all of C(F), £2(8) is true. Clearly X is an algebra with iden-
tity.

The adjoint deflation in this case is the space of all measurable
functions f on (0, ) of the form

16) = [ e du(s)

where u is a regular countably-additive set function on the Borel
sets of F, and ||f|] je+ = [pldu(s)|.

8°. Take X = L'(— o0, ), and ) = Cy(— o0, o), the space of
continuous functions on the real line which vanish at 4 oo,
with uniform norm, and take for A the Fourier transformation

Az(t) =["_ et a(u)du = zA(z). (4.2)

£(1) and (2) hold, and (8) also, for it is known ?) that the Fourier
transforms of functions of L1(— 0o, o0) are dense and of the first
category in Cy(— 0, 00). Thus 4 determines a proper inflation of
L', If L' 1s made into a commutative algebra by means of the
convolution product, so that 4(z-y) = Az Ay, then X is also
an algebra; but it does not contain an identity (delta function),
nor is it possible to define derivatives conveniently in it, even of
all L! functions; thus it lacks the more useful properties of the
usual generalized-function spaces.

4°. Consider the A4 of 8° instead as a mapping into ) = C(F).
In this case 2(1) and (3) hold, but not (2). Let

Ip = {x:xeL(—0c0, ©), azM(t)=0 for teF};
¢) [10], (38.2.18). AL! is self-adjoint on F since F is contained in the positive real

axis.
7) See Segal, [11].
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Ip is a closed ideal in L!. Let 4 be the operator induced by
A which maps LY/Ip into C(F), i.e.

A% = 2h (z € coset ).

Then 4 is a proper inflator on X = L!/Ir, and the algebra X%
is well defined. It has an identity, the element § for which
67(t) = 1. (t e F). Let 7* be the translation operator

(x)(u) = x(u+h) (zell), (4.8)
so that
()M (t) = e~ ™Ma(¢);

" is constant on cosets of I, and so *(=(7*)~) is defined, map-
ping X into X; and since ||7*#||; = ||&||3, 7* is extendible to X%.
Consider the operator on L! given by «* = h~1{z*—1), for which,
(*x)M(t) = hY(e~™*—1)z(t). Now if [t| =C and h is small

h=1(e=™—1) = —it+O(C?lh|eC™), (4.4)
and so by appropriate choice of C we find that, for 2 € L1,

lla*z—o*a|la < C? sup |(lhle + |kle®)an (1)) (5)
teF 4.5
=(0(h)+O(k))llz|| 4.

It follows that (z(t+hk)—=a(t))/h as b — 0 is Cauchy in 4-norm.
In fact, it is easy to see that («*%) is Cauchy in A-norm for any
#e X%, and hence that derivatives are definable by strong
limits in X%, for all elements of the space.

A similar argument (without recourse to a factor algebra)
justifies the assertion at the end of § 1, 2°.

To identify the adjoint deflation, notice that X* = (L/Ir)*
can be identified with those elements of (L!)* which are constant
on I r, with the same norms, while (C(F))* is the space rca(F) of
all regular countably-additive set functions on the Borel sets
of F. It can then be shown that A* maps u € rca(F) into f(t) =
Jrettdu(s); thus (X*)3.-1 consists of such f, with [|f|| gs-+ = [rldu(s)|.

5. Partial ordering of inflations

We examine conditions for different inflating operators to
determine the same inflation or same deflation, and more general-
ly, for inflations and deflations to be ordered by inclusion. In-
clusion and equality for two deflations of the same space may
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obviously be taken to mean set inclusion and equality; and then
we have

THEOREM 6. If A €eJ(X, ) and B € (W, 9), a necessary and
sufficient condition for Y 3-» C Yz-1is that B~1 A have domain X. In
this case B1A 1is bounded.

The proof is straightforward. B-14 is a closed operator, and
therefore bounded when its domain is X.

In defining inclusion for two inflations of the same space X,
we wish to preserve the individuality of the elements of the
included space, and this is achieved if we regard an inflation
of X as a set of equivalence classes of sequences from ¥, and so as a
subclass of the class &(X) of all sets of sequences from ¥, and
understand inclusion and equality to mean set inclusion and
equality in &. Accordingly we make

DEriniTION 8. If A €J(X,Y) and BeIJ(X, 8) then X} C X}
shall mean that

(a) every A-Cauchy sequence from X is also B-Cauchy,

(b) any two A-Cauchy sequences which are B-equivalent are also
A-equivalent.

We note that (a) implies that two sequences which are Cauchy
and equivalent in A-norm are so in B-norm also, and that a se-
quence which converges to z € X in A-norm does so in B-norm
also. Thus (a) ensures that an equivalence class in X} is preserved
intact in X%; (b) ensures that ||-||; imposes a Hausdorff topology
on X}, as required. It is clear that C partially orders the deflations
and inflations of a given space.

A necessary and sufficient condition for (a) to hold is that
BA~ be bounded in §). For BA~! maps 4% onto BX; if it is bound-
ed, then [|[BA™1y|| < c|ly|| for all y € A%, and so ||Bz|| < c||4z||
for all z € %, and (a) follows. Suppose conversely that (a) holds,
and let y, -y for y,, y € AX. Writing y, = Az,, y = Az, we
have z, »>42, and therefore z, -5 x; i.e., BA-ly, — BAly.
Thus BA-! is continuous on its domain, and so bounded. In this
case the least bounded closure BA-! exists.

THEOREM 7. If A €Y (%, Y) and B e J(X, B), a necessary and
sufficient condition for X% C X% is that BA-'e %(9), 8). For

X} = X%, it is necessary and sufficient that BA-1 be improper, i.e.,
that BA—! and AB™! are bounded.

Proor. Suppose that C = BA~! is an inflator; then C is bound-
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ed, and (a) holds. To prove (b), let (2%), (#2) be two A-Cauchy
sequences from X which are B-equivalent, and write z, = z)—a2,
Y, = Az,. Then Bz, — 0; also y, -y for some y € 9), and so
Cy,, — Cy. Since ||Cy,|| = ||Bz,|| - 0, wehave BA-1y = Cy = 0,
and therefore y = 0 by 2(2). Thus Az, -0, and (z}), (2%)
are A-equivalent. Hence (b) holds, and X C %%.

To prove necessity, suppose (a) and (b) hold. By (a), BA™! is
bounded with domain 9), and £2¢(1) is satisfied. Clearly £2¢(3) or
(8)’ holds, and it remains to prove 2.(2). Let y € 9 be such that
BA-1y =0,y # 0. By £24(8) we can find a sequence of elements
Y, = Az, , z, € X, such that y, — y; the (z,) so determined is then
an A-Cauchy sequence defining some z € X%, and « 5 0 since
y # 0. On the other hand,

[1BA™ Y|l = [|1BA™H (g —y)Il = IBA7 - [lya—yll = O;

that is, ||Bz,|| — 0, so that (z,) and (0) are A-Cauchy sequences
which are B-equivalent but not 4-equivalent, which contradicts
(b). The first part of the theorem is proved. The second follows
without difficulty.

CoroLLARY 1. If A and B belong to (X, Y)) and X is reflexive,
X4 C XL implies (X*) 01 2 (X*)ge1.

Proor. The first inclusion implies that BA—1e ¥(9), 9), and
hence that A*-1B* = (BA~1)* = (BA™1)* has domain 9*; the
result follows from Theorems 2 and 6.

CoroLLARY 2. If A and B belong to (%, X), then X5 C X} p,
‘with equality if and only if A is improper.

Proor. We know that AB e (%, X). Since 4 = AB- B lisan
inflator, ¥} C X% ;. If the spaces are equal, A1 = B(4B)™ is
bounded and A4 is improper; conversely if 4 is improper, B(4 B)™!
and 4B - B! are both bounded and so X} = XJ;.

CoroLLARY 8. Unless J,(X, X) is empty, X has no greatest
inflation.

Proor. If 4 eI, (X, %), XiaCXfota for n =1,2,....
The next result concerns repeated inflation.

THEOREM 8. If A and B belong to ¥(%, X) and X} C X}, then B
has a closure B in (X, X%), and

X5 = (X0}
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Proor. Since ||Bz||4 = ||ABA~! - Ax||, B exists if and only if
ABA-! is bounded; but this is a consequence of BA~! € ¥(%, X).
Now suppose C is a bounded linear operator mapping X} into
itself; it is easy to verify that C e (X}, X}) if and only if
ACA-' € (%, X). For example, 2,(2; X}) takes the form

z,€X,x,—2, >40, Cx, >40 imply x,—>40,
which by the substitution &, = Az, becomes
Z,eAX, ©,—%, >0, ACA'Z, >0 wmply %,—>0,

and this is equivalent to: £ € X, ACA-1Z = 0 vmply & = 0. Thus
it follows from ABA-'=ABA-1=A-BA1eY(%, %) that
B e (%], %}). And X5 = (X})%. For the elements of these spaces
are the classes of B-equivalent sequences of elements from
%, X} respectively, and any class of (%)) can by the diagonal
process be seen to contain a sequence from X. But two such se-
quences determine the same or distinct elements in (X})% accord-
ing as they determine the same or distinct elements in X}.
Thus the spaces are isomorphic, and since one contains the other,
they are equal.

The theorem and corollary point the distinction between X},
and (X)) = %3.

If the operator of (1.1) is denoted by 4,, it can be verified by
using Mellin transform theory that

B CEL it k=1,

in the sense of Definition 8.

Consider the dependence in Example 2° of X} upon the set F:
write A p for the operator in (1.8), and let F, G be two compact
sets of the type described in § 1, 2°, with F C G. Clearly ||z||4p =
||lz]| 4 for 2 € X; but this is not sufficient to imply that X}, C X}5.

In fact, A, Ag" satisfies 2(1) and (8)’, but not (2). The set

N={r:xeXl,, 2Y3@x)=0 for zeF}
is a closed ideal in X}, and
iR = X5 .

(On the other hand, the adjoint deflation for F is contained in
that for G). At the same time there exist sequences which are
Cauchy in 4 p-norm but not in 4g-norm. Shrinking the set F
has the effect of making the inflation less discriminating.
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6. Inflation of Banach algebras

We suppose now that X and ) are both commutative Banach
algebras over the complex field, and that 4 is also an isomorphism
of X onto a dense subset in ), i.e. that it satisfies £2,4(1) to (3)
as a mapping of linear spaces, and also

Q4(4) A(zy-2y) = Ay - Ay, all z,,2,€X.

Then the norms ||*|| 4 and ||*|| ;-1 are algebra norms, and X}, 9,
are likewise Banach algebras.

Let @&(X), ©(9) denote the carrier spaces 8) of X, ¥),.i.e. the
subsets of X*, 9* respectively whose elements are the homo-
morphisms from the spaces onto, the complex-number field;
for ¢ € D(X) and z € X let £(¢) denote the image of  under ¢.
The isomorphism 4 induces a mapping 4 of &(9)) into @(X), by
the relation

#(A¢) = (Az)M($), all zecX, all ¢ed(Y). (6.1)

A is a continuous mapping under the %- and 9-topologies (the
weakest topologies on @(X) and @(9) for which the functions
&, § are continuous). Because of 24(8), 4 maps the zero homo-
morphism onto the zero homomorphism, and is one-to-one:
forif A¢ = Ay for ¢, y € B(9)), then by (6.1), 7($) = F(y) forally
in a dense set of 9), in fact all y € ) since § is a continuous function
of y; hence ¢ = . It is clear that if ¢ € @(X) corresponds to
&* € X* under the embedding @ C X*, then £(¢) = &*(x) for all
@ € X; (6.1) shows that the adjoint operator A* coincides with 4
as a mapping on ().

THEOREM 9. The carrier space of X% is AD(Y)), and consists of
those ¢ in D(X) for which

1#(4)] < |lella for all zeX (6.2)

(and so for all x € X3).
Similarly AD(Y7-1) = D(X), and D(Y)) consists of those p in
D(YD4-1) for which

G = llylla for all y e Yya.
Proor. If ¢ = Ay e AD(Y) then (6.2) certainly holds, for
[£(dy)] = [(Az)A (y)| < ||Az|lp = ||@lla-
On the other hand, if (6.2) holds then clearly ¢ has a well-defined

*) &(X) is Py, in the notation of [10], Chapter 3.
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extension to X}, and (4-1-)"(¢) determines a homomorphism on
9) onto the complex numbers, y say. Then ¢ = Ay e AD(Y).
The proof of the second part is similar.

Ezample 2° (continued). Let us determine the carrier spaces
for ¥ = L1(0, ) and its inflation, bearing in mind that X is
not the usual group algebra for the group of positive reals, but is
to be regarded as a closed subalgebra of L1(—o0, o), with the
form of product (4.1).°)

The homomorphisms ¢ of @(X) are in one-to-one correspondence
with the maximal modular ideals of X. Let & and R stand for the
algebras obtained from L!(— oo, c0) and L(0, c0) by adjunction of
the (common) identity. Every maximal ideal J¢(# L1(0, c0)) in R
intersects R in a maximal ideal of R; moreover, if M, is a maximal
ideal in R contained in some maximal ideal I, in R, then M,
= IM; n R. On the other hand, the maximal modular ideals in
L(0, o) are precisely the intersections with L1(0, co) of the maxi-
mal idealsin R other than L1(0, co)itself. Thus to every It will corre-
spond a maximal modular ideal in L1(0, c0), namely ¢ ~ L(0, o0).
But the I are in one-to-one correspondence with the elements
z of the character group of (— oo, o), and from this it can be
deduced that the maximal modular ideals M induced in L!(0,00)

as a subalgebra of L1(— 00, c0) are those given by relations of the
form

#(by,) = #(M) = j;” z(t)e*dt  (all z € L1(0, o))

Here ¢,,, M and y are corresponding elements, and y ranges over
(— o0, ).
The ¢,, so determined do not exhaust @(X). We can obtain the

whole space as follows. Every ¢ in the space, being a bounded
linear functional on L!(0, ), determines by

8($) = [ a(t)gy(t)dt  (all e LY(0, 0))

an essentially bounded measurable function g4 = g. Then, for
any 2, y in L(0, o),

(@ y)r4) =, eyt a(w)y(t—u)du
=fo x(u)du L y(t—u)g(t)dt, by Fubini’s theorem,
- f;” z(u)du j;” y(t)g (t+u)dt,

?) For the following remarks cf. [9], § 7,2, VI, and § 31, 1.
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while
H$)9($) = [ a(w)du [” y(t)a(t) glu)dt.
These imply
g(t+u) = g(t)g(u), all t,u>0,
and this identity, with the measurability of g, implies that 19)
g¢(t) = e—(w+ix)t

for some complex number z = w4y depending upon ¢, with
® = 0. We have £(¢,) = «"(z) in the notation of (1.8), and the
elements of @(X) can be identified with the points of the half-
plane R(z) = 0, the region of convergence of the Laplace trans-
form.

If X} is the inflation of L1(0, o) by A = A, of (1.8), Theorem
9 shows that @(X%) can be identified with the compact set F.
@(C(F)) is also F.

7. Inflations using C(F)

We end with a discussion of the case ) = C(F), and obtain a
generalization suggested by Example 2°. We consider the following
situation.

Let I stand for any one of the real number sets I, = (0, o),
J = (—0,0), or I, = (—o0, ). Let A = A(I) ‘be a complex
commutative Banach algebra without identity, whose elements are
functions on I to some general linear space &, so that 2(t) e ®
whenever z(-) e ¥, tel. Let ||-|| be the norm of ¥, and suppose
that the linear operations of addition and scalar multiplication in
A are those induced from K.

Let @ = @(A) be the carrier space of %. We know that 2 — &
is a homomorphic mapping of U into Cy(P), the space of all
continuous functions on the locally compact space @ which vanish
at oo, with the uniform norm.

Let F be a compact subset of @, which does not contain the zero
homomorphism. Let Ar be the induced mapping z — £ of U
into C(F'), the space of all continuous functions on F, and write

[@|F = ||2||ap = I;lg;c [£()]- (7.1)

In what circumstances does 4 r € J(¥%, C(F))? Since |z|r < ||2]],
£(1) certainly holds. 2(2), will not hold in general; it is valid in

10) 1], Corollary to Theorem 4.17.8.
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the case of Example 2° but not for Example 4°. Conditions for
Q(8) are given by the Stone-Weierstrass theorem: 4 % certainly
separates the points of F, and does so strongly since F does not
contain the zero homomorphism; if also 4 ¥ is self-adjoint on F,

(contains the complex conjugate f(¢) whenever it contains
f(¢), for ¢ € F) it follows that 4 r U is dense in C(F). Assume that
Q(2) does hold: if dr is such that dr(¢) =1 for ¢ € F then
-+ 8p = a for all 2 € A, contradicting the assumption that A
has no identity; therefore 4 ¥ is a proper subset of C(F). Thus
£2(2) and self-adjointness together imply £2(8). 2(4) obviously
holds.

To reproduce the characteristics of Example 2° we need some
assumptions concerning the translation operation

Pa() = a(-+h) (he]), "2)
(") = (")
We shall assume:
(i) that A is closed under translations z* for every ke J,
J being one of the sets I,, ,I, or I, not necessarily distinet from 1.
(ii) that z*is a strongly continuous operator function of % at 0,
in the sense

|l?*z—=2|| >0 as h—>0 in J, for every ze U;

and
(iii) that the product in ¥ is so defined that

?Meey) = (Pr)-y==2-(7*y) (all ke J,alla,yeA).

Notice that, if & is an algebra, (iii) holds only if the product in %
is not that induced from & (except in the trivial case when all
elements of U are constant on I'); the given property is characteris-
tic of convolution-type products.

(Example 2° can be considered as a case where I = I,, J = ,I.
We have to remember in defining * that z(t) = 0 for ¢ < 0).

We now prove

THEOREM 10. Let UA(I), J and F be defined as above, and
suppose that ArU is self-adjoint on F and that 2, (2) is valid.
Then Ar € 3,(¥, C(F)), and W}, contains for each of its elements =
a derivative

2 = lim b (*e—2x) (h—>0 in J).

Proor. The assumptions make Ar a proper inflator. Now if
¢ed(N), and z,ye Y,
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(M- ) MP) = (P2)\($) - §($) = £(¢) - ()" ($).
It follows that
(Pz)M($) = £($)f(R),

where f is some numerical function depending upon ¢. From
"% — ¢#* and the definition of 7* we deduce

f(h+k) = f(h)f(k), f(0)=1. (7.3)

Also, if h € J, for each ¢ € F we can find an 2 such that £(¢) # 0,
and then

[£($)] - If(h+k)—f(R)] = |(**z—7*2) ($)|
|I¥(z*2)—(Pz)|| if ke]
= M) - ()| if —ke]

-0 as k—0,

by assumption (i); hence f(k) is continuous on both sides at every
k € J. It is therefore a measurable function, and we conclude as
before that

f(h) =™, (z)"($) = &(¢)e™,

for some complex number s which will in general depend upon ¢.

Let S be the image of F under the mapping ¢ — s(¢) = s.
Itis clear that the mapping is continuous, for since 4 r¥ is dense
in C(F) an  can be found for which £#(¢)+# 0 for ¢ e F. S is
therefore a compact set in the complex plane. The proof proceeds
now as in § 4, 4°. For h e J, |h| < h,, we have

[t*2|r = max |£(¢)e®?|
@EF
= max |£(4)| - max [e®| = B(h,) * |2|r, say.

¢€EF seS
so that * is extendible to a bounded linear operator mapping
A%, into itself. It should be emphasized that our assumptions-
do not make the elements of the inflation functions on I to &,
so that for z € A} #p» @(- 4+ k) must be taken to be defined as ™z,

rather than the converse.
Writing o* = h~1(v*—1), we get

oh
|e*zr—a*2|p = max (e —1 e.k ! f(?‘)l
PeF h
< maxls+0(|s*h|e"“')—8+0(|8’k|8""')| X max|£(¢)|
ses $eF

: = {O(IR1)+-O(Ik)} - 2l
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valid for every z € ¥},; and all Cauchy subsequences of («"z),
h — 0, define the derivative 2% as an element of Aj..
This concludes the proof.

We note that if # has a derivative already defined as a strong
limit in %, then this coincides with z%. The operation ¢ is linear, and
has the product law

@y =oty—o-y

Clearly (z*)"(¢) = £(¢) - 5(¢)-

We notice also that %}, is an algebra with identity, 6 = dr
say, whose defining property is 8(¢) = 1. Now % is without
identity; let U, be the algebra obtained by adjoining an identity, e
say. Since é and e have the same algebraic properties, we may
embed %, in A}, by making z+-Ae correspond to z+ 44 for every
x € % and scalar A. Then % C A; C Af .. The norm of U, , given by
llz+A48|| = ||x||+|A|, dominates |-|r.

Since s as a function of ¢ belongs to C(F), there is some element
in A%, to which it corresponds: it is 6%, for (6%)"(¢) = 6($)s(¢) =
s(¢). We see that differentiation can be written as multiplication
by 6%: 2% = (z-96)¢ =z - &%

Integration in %}, can be defined as follows. Suppose F so
chosen that s(¢) does not vanish in F: then [s(¢)]~ belongs to
C(F) and so determines an element, ¢ say. We define integration
to be the operation of multiplying by ¢, and write ' = ¢ - . Then

@) = (2') = z;

g may be identified with (6¢)~1. These formal calculations suggest
that a Mikusinski-like calculus exists in %} ,; but the space must
always possess divisors of zero, and the generalized functions
envisaged here are essentially different from Mikusinski’s.
The adjoint operator A% maps the space rca(F) into A*,
and thus the adjoint deflation %A*— consists of those bounded
linear functionals #* on A which can be written in the form

a*(z) = [ &($)du(4) (all z e ALp)

for some u e rca(F). Here A% u = a*, and [l2*|| a5 = Jpldu($)l.

The Ap-weak completion of U consists of the limits of
sequences (z,), @, € ¥, for which [r(&,(¢)—2,(8))du(¢) — 0, for
all u erca(F). Since C(F) is not weakly complete in general,
A% is properly contained in the 4p-weak completion of U.
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We observe that Example 2° is a case covered by the theorem,
since F there is supposed real (contained in the real axis) and has
non-empty interior; for the first of these conditions is necessary
and sufficient for 47 to be self-adjoint on F, and the second
implies 24,(2). For complex F, the example falls outside the
scope of the theorem.
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