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QUANTIFICATION OF NUMBER-THEORETIC
FUNCTIONS

by

S. C. Kleene

A class C of one-place number-theoretic functions has been
called a basis for a class D of predicates of a function variable 03B1, 1)
if, for each predicate B(03B1) of D,

whence, since the converse implication is immediate,

We showed in [7, XXVI] that the hyperarithmetical functions
are not a basis for the predicates (x)R(a, x) with R recursive. 2)

In this paper we give some more information about this situa-
tion. Extending the use of the term "basis", say C is a basis for a
predicate P (a ) expressed in the form ( Ea ) B (a, a ) with a certain B
(or for the quantifier in this expression), if C is a basis in the above
sense for the class {B(0, oc), B(l, a ), B(2, oc), . thus when

B(a, oc) ~ (x)R(a, 03B1, x), if

(2b) (a){(E03B1)(x)R(a, a, x) ~ (E03B1)[03B1 ~ C &#x26; (x)R(a, a, x)]}.
Dually, C is a basis for P (a ) expressed in the form (03B1)(Ex)R(a, a, x)
with a certain R (or for the quantifier (oc) in this expression), if

(3b) (a){(03B1)(Ex)R(a, 03B1, x) ~ (03B1)[03B1 E C ~ (Ex)R(a,03B1, x)]},
which is equivalent to saying it is a basis for P (a ) expressed as
( E a. ) (ae ) R (a, a, x).
By [7, XXVI], the hyperarithmetical functions are not a basis

for (E03B1)(x)Ti03B11(a, a, x), with 1’l(a, a, x) itself as the R(a, a, x), and

1) The term "basis" was suggested to us by G. Kreisel in correspondence in 1952,
but investigations of bases for various classes D of predicates B(03B1) were begun late in
the 1940’s by Kreisel and us independently of each other. (The results numbered
(1 )-(3) in [5, 5.5] were known to us in 1950 before we learned of Kreisel’s work;
and [5, the first part of Corollary Theorem 7] was communicated to him in 1952.)

2 ) A hyperarithmetical function can be defined as a function general recursive in a
hyperarithmetical predicate, or equivalently as a function whose representing pred-
icate [4, p. 199] is hyperarithmetical [7, p. 210]. We presuppose acquaintance with
our [4], [5], [6], [7].
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a particular value f of a that refutes (2) is constructed; but the
question remains whether for some other recursive R(a, 03B1, x) they
might be a basis. However a slight recasting (in § 1 below) of the
argument of [7] shows that they are not; indeed, whenever a
predicate P(a) can be expressed in the form (E03B1)(x)R(a, 03B1, x) (or
in the dual form) with a recursive R and the hyperarithmetical
functions as basis, it is hyperarithmetical, and then (using § 2)
it is so expressible with the hyperarithmetical functions located
lower than itself in the hyperarithmetical hierarchy as basis (ex-
cept if it is already at the bottom). For this remark, a hyperarith-
metical function or predicate is to be located in the hierarchy by
the least Iyl (where y E 0) for which it is recursive in H1/. By
Spector’s [9, Theorem 5] here only |y| matters and not y itself. 3)
Thus the hyperarithmetical predicates are characterizable as the
least class of predicates from which one cannot escape by a def-
inition of the form P(a) == (E03B1)(x)R(a, oc, x ) with R recursive
and the functions recursive in the predicates of the class as basis. 4)
A definition of the form P(a) ~ (E03B1)(x)R(a, oc, x ) with a class C of

functions as basis is of course not the same as a definition of the form

P(a) ~ (E03B1)03B1~C(x)R(a, ex, x), i.e. P(a) == (E03B1) [03B1 ~ C &#x26; (x) R(a, oc, x)],
with C as the range of the variable a, since (2) is required to hold
for the former. In the definition with C as basis rather than merely
as range, the class C enters only as a lower bound; the definition
meanS the same to persons with various universes of functions,
so long as each person’s universe includes at least C (of which he
may have no exact conception). In the definition with C merely
as range, the class C enters exactly; to prove P (a ), it is then in-
sufficient to derive a contradiction from the supposition that
(x)R(a, 03B1, x) for some function (x, but one must show rather that
any such oc 0 C.
The définition P(f, a ) ~ (E03B1)03B1~HA(x)T03B11(f, a, x), with the (one-

place) hyperarithmetical functions as the range of 03B1, leads outside
the class of the hyperarithmetical predicates. For by § 2, each
hyperarithmetical predicate P(a) ~ P(f0, a) for some f0; so

P(a, a), and hence P( f, a) and P(a, a) (~ (E03B1)03B1~HA(x)T03B11(a, a, x))
are not hyperarithmetical.

3) The theorems below are stated and proved without using Spector’s [9, Theorem
5], which enters only in some of the discussion.

4) A predicate or function is recursive in (the predicates or functions of) a class C,
if it is recursive in some finite list 03A8 of members of C. In this paper "recursive,"
means general recursive except where otherwise indicated.
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By Lemma 1 below with [5, Lemma 1], (E03B1)03B1~HA(x)T03B11(a, a, x)
~ (03B1)(Ex)T03B11(~(a), 99(a), x) with a recursive 99; so (E03B1)03B1~HA(x)
T03B11(a, a, x ) is recursive in (E03B1)(x)T03B11(a, a, x). We do not know
whether (E03B1)(x)T03B11(a, a, x ) is recursive in (E03B1)03B1~HA(x)T03B11(a, a, x ).
Another open problem is whether (E03B1)(x)T03B11(a, a, x) is expressible
as (E03B1)(x)R(a, 03B1, x ) with a recursive R and a basis (closed under
relative recursiveness) less than the functions general recursive in
that predicate itself (cf. [5, 5.5 (5)]).

Quantification of function variables ranging over segments of
the hyperarithmetical hierarchy is considered in § 3. This we relate
to the ramified analytic hierarchy, in which to the 0 level belong
the arithmetical predicates, to the 1 level the predicates expressible
using besides quantification of number variables also quantifica-
tion of variables ranging over the arithmetical functions (i.e. ex-
pressible as analytic predicates under [5, 2.1] except restricting
the range of the function variables to be the arithmetical functions ),
to the 2 level those expressible using also quantification of varia-
bles ranging over the functions of the 1 level, etc. 5) Using in one
direction the result of § 2, we find that each level corresponds
precisely to cv levels of the hyperarithmetical hierarchy. Thus in
the union of all the finite levels are exactly the hyperarithmetical
predicates located below ro2; but when all transfinite levels, in-
dexed by members y of 0 (or via Spector’s [9, Theorem 5] by
ordinals Iyl  col), are included also, we get precisely all the hyper-
arithmetical predicates. Here quantification of predicate variables
can replace quantification of function variables; thus exactly the
hyperarithmetical predicates located below m2 are expressible in
Church’s ramified second-order arithmetic A2/6J of level (J) [2, p.
353] under the classical interpretation of the symbolism (rather
than that suggested in his Footnote 577). In expressing a predicate
in these ramified hierarchies, it suffices to use (besides number
quantifiers) a single higher-type quantifier (either existential or
universal as we choose), with the one-place functions or predicates
of a lower level not merely as range but also as basis.

1. Predicates expressible with the hyperarithmetical
functions as basis

1.1 THEOREM 1. Il P(a) ~ (E03B1)(x)R(a, ce, x) with recursive R

5) R. O. Gandy asked what one obtains thus (without specifically mentioning
transfinite levels) in a letter to us dated November 14, 1955, and the present answer
was given in our reply dated December 24, 1955.
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and the hyperarithmetical functions as basis, then P(a) is hyper-
arithmetical.
PROOF. Applying (2b) with C = HA and the following lemma,

the conclusion follows under the second definition of "hyperarith-
metical predicate" [7, p. 210].
. 1.2 LEMMA 1. For any recursive R,

with a recursive S.
PROOF. (E03B1)03B1~HA(x)R(a, 03B1, x)

~ (Ey)(E03B1)[y ~ 0 &#x26; {03B1 is recursive in Hy} &#x26; (x)R(a, a, x)] (by
the first definition of "hyperarithmetical predicate" [7, p.
210]) 2)

~ (Ey)(Ee)[y ~ O &#x26; {e is a Gôdel number from Hy of a total
function 03B1e} &#x26; (x)R(a, ae, x)]

- (Ey)(Ee)[y e 0 &#x26; (i)(Et)THy1(e, i, t) &#x26; (03B2){(i)(Et)THy1(e, i, p(i»
~ (x)R(a, Ai U(03B2(i)), x)}]

~ (Ey)(Ee)[y ~ 0 &#x26; (i)Hy*(~(e, i)) &#x26; (03B2){(i)Hy*(03C8(e, i, 03B2(i))) ~
(x)R(a, 03BBi U(03B2(i)), x)}] (for some primitive recursive ~ and 03C8,

by [5, Lemma 1]) s)
~ (Ey)(Ee)[(03B1)(Ex)R1(y, 03B1, x) &#x26; (i)(03B1)(Ex)T03B11((03C4(y*))0, ~(e, i), x)

&#x26; (03B2){i)(E03B1)x)T03B11((03C4(y*))1, 03C8(e, i, 03B2(i)) x) ~
(x)R(a, Ai U(03B2(i)),, x)}] (with RI recursive, by [6, Theorem II]
and [5, Theorem 9])

~ (03B1)(Ex)S(a, 03B1, x) (with recursive S, by advancing quantifiers
and applying [5, p. 316, Steps 1-4]).
REMARK 1. This proof is essentially an improved version of the

proof of [7, (2) p. 209]. Substituting this (with T11(03B1(x), a, a),
R(a, a, x) as the R(a, a, x), S(a, a, x)) and continuing as before
gives an improved proof of [7, XXVI].

2. Bases for hyperarithmetical predicates
2.1 According to [5, Theorem 9], for each y ~ O, Hv(a) and

Hy(a) are each expressible in the form (E03B1)(x)R(a, a, x) with a
recursive R.
In Part 1 of Theorem 2 we give as a function of y e 0 (with lyl

as in Row 1 of the table) a basis C for the predicate Hy(a), ex-
pressed in the form (E03B1)(x)R(a, oc, x) with a recursive R, which
consists of the functions each recursive in Hwo for some zcy o y

8) In connection with a y e 0 or 3 5z e 0, we use the abbreviations y* for 2y
and zn for {z}(nO), as in [5] and [7]. Continuing from [6, (I)-(XXIII)]:
(XXIV) If a  ob, then a* sp b 0 b*.
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with jzvoj =, or in other cases lwol , a specified ordinal (Row 2).
To do this, we determine an f o such that Hy(a) ~ (E03B1)(x)
Pi (!o, a, x), and, for each a for which H1J(a) is true, find such a wo
and an ce recursive in Hw0 such that (x)T03B11(f0, a, x ). The wo, and the
Gôdel number do from HtJJo of the a, as functions of a, will be par-
tial recursive in Huo for some uo ~o y (with lu,1 as in Row 3).
Part 2 (with Rows 4, 5) provides similar information about H. (a)
expressed in the same form. We obtain these results by defining, by
recursion on y over 0, simultaneously for Parts 1 and 2, the fi and
the Gôdel numbers hj and gj of the aforesaid partial recursive
functions wj and d,. The ordinals Iwl which we obtain are always
less than the ordinal |y| which locates the predicate itself in the
hierarchy, except trivially for Iyl = 0; and likewise in the corollary.

In Parts 3 -5, these basis results are stated to be the best
describable in terms of the hyperarithmetical hierarchy. (We have
not considered whether they could be improved in terms of the
finer structure of Kleene-Post [8].)

TABLE. Bases for Hy(a) and R1J(a).

03BE is a limit ordinal, ~ an arbitrary ordinal,  cul.

THEOREM 2. PARTS 1 AND 2. Let uo(y) = max ((y)0, 1), ul(y) = 1.
Thus i f y E 0, then uj(y) ~o y, and for lyl as in Row 1 o f the table
|uj(y)| is as in Rozv 3+2j (j = 0, 1).

There are primitive recursive functions f(y) and k(y) with the
following properties. For i = 0, 1, let 7)

7) We write {z}(03A8, a) for the {z}03A8(a) of [4, p. 341 ], AqJ for m1,···,ml [4, p.344].
and (with complicated 03A8) T1(03A8, z, a, y) for T i (z, a, y) [4, p. 292].
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(6) Hy, j(a) ~ [dj (y, a) and wj(y, a) are defined, zv;(y, a) ~o y,
for lyl as in Row 1 IWj(Y, a)1 is as in Row 2+2j,
03BBl {dj(y, a)}(Hwj(y,a), l) is completely defined, and
(x)T03B11(fj(y), a, x) is true for oc = Âl {dj(y, a)}(Hwj(y,a), l)].

PARTS 3 - 5. The table is the best possible (of its type) for the results
stated in Parts 1 and 2. Thus (PART 3) for each y E 0, Hy(a) is not
expressible in the form (Ea)(x)R(a, 03B1, x) (R recursive) with a basis
consisting o f the functions each recursive in Hw0 for some Wo ~o y with
IWol restricted to be a smaller ordinal, or to belong to a smaller segment
of the ordinals, than in Row 2. Similarly (PART 4) for H1I(a), IW11
and Row 4. Also (PART 5) with the given restriction on Iwo | (Rozv 2),
no sinaller lu,1 will suffice than that given in Row 3.

2.2 REMARK 2. In Parts 1 and 2, tlie fo(y), f1(Y) play the role of
the (03C4(y)1, (03C4(y))0 of [5, Theorem 9], whieh is reproved in the
process of obtaining the more detailed results stated now. Parts
3-5 are related to the proof of [5, Theorem 7]. 

2.3 PROOF OF THEOREM 2, PARTS 1 AND 2. (Parts 3-5 will be
proved in 2.5.) The demonstration that f(y) and k(y) have the
stated properties is to be by induction on y over 0. We give a
treatment by cases on y (beginning with the more complicated
cases), in which we work out case definitions of f(y) and k(y) that
suffice for establishing their properties in the cases. In the cases,
we write p, q for Gôdel numbers of f(y), k(y). The case treatments 
should be followed by definitions (left to the reader) of f(y) and
k(y), combining the case definitions with the help of the recursion
theorem (as e.g. in the proofs of [5; Lemmas 3-5]). Of course the
combined definitions logically precede the proof of the properties
by induction and cases. 6)
CASE 5: y = b* = c** = d*** where d ~ 0. Then uo(y) = (y)o

= b, and we want w0(y, a) = d = (y)o,o,o and W1(y, a) = c
= (y)o,o (cf. Rows 2,4). So we shall take ho (y) = Hba (y)0,0,0,
h1(y) = AH1a (y)0,0-
PART 1. We reduce Hy(a) to the desired form, thus: Hy,0(a)

~ Hy(a)
(a) ~ (En)(t)(Es)THd3(m, a, n, t, s) (for some m, by [4, Theorem

XI* with (17), and IV*, pp. 285, 292, 295] or [7,
XII* and V*, pp. 197, 198])

(b) ~ (En)(t)(Es)(Ev){v = 03A0isp(v)ii &#x26; (i)is[{Hd(i) &#x26; (v)i=0} v
{Hd(i) &#x26; (V)i = 1}] &#x26; T13(v, m, a, n, t, s)} (cf. [5, 2.3

and 2.5])
(c) ~ (En)(t)(Er){(r)1=03A0i(r)0p(r)1i, &#x26;(i)i(r)0[{Hd(i)&#x26;(r)1, i=0}V

{Hd(i) &#x26; (r)1,i = 1}] &#x26; T3«r),, m, a, n, t, (r)0)}
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(d) = (En)(t)(Er){(r)1 = 03A0i(r)0p(r)1, ii &#x26; (i)i(r)0(Ej)j2[Hd,j(i) &#x26;

(r)1, i = jJ &#x26; T13(r)1, m, a, n, t, (r)o)}
(e) ~ (En)(t)(Er){(r)1 ~ 03A0i(r)0p(r)1, i i &#x26; (i)i(r)0(Ei)j2[(E03B11)(x)

T03B111(fj(d), i, x) &#x26; (r)l, = jJ &#x26; T3’ «r),, m, a, n, t, (r)0)}
(by hyp. ind., since d o y)

(f) ~ (En)(t)(Er)(E03B12){(r)1 = 03A0i(r)0p(r)1, ii &#x26; (i)i(r)0(Ej)j2 [(x)
T03BBs(03B12(s))i1(fj)(d), i, x) &#x26; (r)1,i = j]  &#x26; T13((r)1, m, a, n, t, (r)0)}
(using (i)ia(E03B1)A(i, 03B1) ~ (E03B1)(i)iaA(i, 03BBs (03B1(s))i),
which is analogous to [4, (19) p. 285])

(g) ~ (En)(t)(Er)(E03B12)(x){(r)1 03A0i(r)0 p(r)1, ii &#x26; (i)i(r)0(Ej)j2
[T03BBs(03B12(s))i1(fj(d), i, (x)j) &#x26; (r)1, i = j] &#x26;

T13((r)1, m, a, n, t, (r),)l (using [4, (20) p. 285])
(h) ~ (E03B1)(t)(x){same scope with n, r, oc2 replaced by (03B1(0))0,

(03B1(t))1, Â8 (03B1(2t · 3s))2} (cf. [5, Footnote 10])
(i) ~ (E03B1)(x){same scope with t, x, fj(d) replaced by (x)o, (x)1,

({p}((y)0,0,0))j}
(j) ~ (E03B1)(x)T03B11(~50(p, y), a, x) (for some primitive recursive ~50,

by [5, Lemma 12]).
Accordingly in this case we shall take fo(y) = ~50(p, y).
To get the basis result for H,,(a), we shall evaluate the existen-

tially-bound variables successively, starting with the n of (a).
Consider any a such that Hv(a). Then (using [5, (11)] twice),

(7) n = nHb(a) = 03BCn(t)(Es)THd3(m, a, n, t, s) = 03BCn(t)Hc(03C8(a, n, t))
= 03BCnHb(~(a, n)) (for some recursive 03C8, x)

is an n for (a), and hence for (b)-(g); i.e. the scope of (En) in (a)
is true when n has this value, and hence the scopes of (En) in
(b)-(g) are also true, since under the method of the reduction
(a)-(g) each of these scopes is equivalent to the preceding.
Now, for this a and n, consider any t. Then

(8) r = r(t) = 03BCr{(r)1 = 03A0i(r)0 p(r)1,ii &#x26; (i)i(r)0)[{Hd(i) &#x26;

(rO. = 0}  (Hd(i) &#x26; (r)l,i = 1}] &#x26; T13((r)1, m, a, n, t, (r)0)}
is an r for (c) and hence for (d)-(g).
For this a, n, t and r, consider any i  (r)o. Then

(9) i = i(i) = 03BCj[{Hd(i) &#x26; j = 0}  {Hd(i) &#x26; j = 1}]
is a j for (d), and hence for (e).
Then also, using the hypothesis of the induction (since d oy),

(10) 03B11 = As 03B11(i, s) = Â8 {dj(j)(d, i)}(Hwj(i)(d,i), s)
is an al for (e). Here
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(11) dj(i)(d,i) = {gj(i)(d)}(Huj(i)(d), ’) = {( {q}(d))0,j(i)}(Huj(i)(d), i),
(12) Hwj(i)(d,i) = 03BBl Hd(03C1(wj(i)(d,i),d,l))
by [5, Lemma 3] since wj(i)(d, i) ~o d (by the hyp. ind.),
(13) wj(i)(d, i) = {hj(i)(d)}(Huj(i)(d), i) = {({q}(d))1,j(i)}(Huj(i)(d),i),
(14) HU/U)cd) = Âl Hd(03C1(uj(i)(d), d, l))
by ([5, Lemma 3] since uj(i)(d) ~o d.
Next

(15) 03B12 = As 03B12(t, s) = 03BBs 1(r(t)0; s)
is an 03B12 for (f) (where i is no longer free in the scope) and hence
for (g).

Finally
(16) oC = AI 2n · 3r(l) · 503B12((l)0,(l)1)

is an a for (h), and hence for (i) and (j).
Combining (7) - (16) (using (12) in (10) before using (13), and

noting that 03BBjy uj(y) is recursive), we can write 03B1(l) =
qlId(nHb(a), q, d, a, 1) with ~Hd(n, q, d, a, 1) partial recursive uni-
formly in Hà. So if we put Pô(n, q, d, a) = Hdl q;Hd(n, q, d, a, l),
do(y, a) = 03B250(nHb(a), q, d, a) where d = (y)o,o,o, and go(y) =
dHba 03B250(nHb(a), q, d, a), we will have what we need for this case
and part.
PART 2. The reduction begins with Hy(a) ~ (t)(Es )T:c(m, a, t, s),

and the rest of the treatment is similar to Part 1, but simpler as
there is no (En).
CASE 4: y = b* = c** where c ~ 0 and Ici is 0 or a limit ordinal.

Then u0(y) = (y)o = b, and we take w;(y, a) = c = (y)o,o.
PART 1. Hy,0(a) == H1I(a)

(a) ~ (En)(t)THc2(m, a, n, t)
(b) ~ (En(t)(v){v = 03A0it p(v)ii &#x26; (i)it[{Hc(i) &#x26; (V)i = 0} v

{Hc(i) &#x26; (v)i = 1 ~ 2 m, a, n, t)}
(c) ~ (En)(t)(v){v ~ 03A0it p’ v (Ei)it[Hc(i)  (V)i ~ 0} &#x26;

{Hc(i)  (v)i ~ 1}]  T12(v, MI a, n, t)}
(d) ~ (En)(t)(v){v ~ 03A0itp(v)ii  (Ei)it[{(E03B11)(x)T03B111(f1(c), i, x)

(V)i =1= 0} &#x26; ((E03B10)(x)T03B101(f0(c), i, x) v (v)i ~ 1}] 
T12(v, m, a, n, t)}

(e) ~ (En)(t)(v)(E03B10)(E03B11){v =1= 03A0itp(v)ii (Ei)it[{x)T03B111(f1(c),
i, x) v (V)i =1= 0} &#x26; {(x)T03B101(f0(c), i, x) v (V)i ~ 1}] 
T12(v, m, a, n, t)}.

The reduction is completed substantially as before. For the evalua-
tion, consider any a such that H1I(a). Then
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(17) n = nHb(a) = 03BCn(t)THc2 (m, a, n, t) = 03BCnHb(03C8)(a, n))
is an n for (a)-(f). For this a and n, consider any t, v such that not
v ~ 03A0it p(v)ii v T12(v, m, a, n, t). Then

(18) i=i(t,v)={0 if v ~ 03A0itp(v)ii  T12(v, m, a, n, t),03BCi[(Hc (i)  (v )i ~ 0}&#x26; {Hc (i)  (v )i ~ 1}] otherwise

(cf. [4, Theorem XX (c) p. 837J) is an i for (c)-(d). For this
a, n, t, v and i, if not (v)i ~ sg(j), then

i v ~ 03A0itp(v)ii 
(19) 03B1j = 03BBs 03B1j(t, v, s) = 03BBs T12(v, m, a, n, t) v (v)i ~ sg(j),

{dj(c, i)}(Hwj(c,i), s) otherwise
is an oc; for (d) (j = 0, 1). Then for any t, v (not necessarily such
that not v ~ 03A0it p(v)ii v T12(v, m, a, n, t)), the oc; of (19) for the i
of (18) (whether or not (v); ~ sg(j)) is an oc; for (e)-(f). The
evaluation is completed much as before.
PART 2. Identical with Case 5 Part 2.
CASE 3: y = b* where b = 3 . 5z and b e 0. Then uo(y) = (y)o

= b.
PART 1. The reduction of Hy(a) is further simplified from Case 5

Part 1 and Cases 5 and 4 Part 2, as there is also no (t). After
evaluating r = rHb(a) (for a such that Hy(a)) and j = j(i) (for
i  (r)o), we note that, by the hyp. ind. (since b o y) with
Rows 2 and 4 of Case 2, the numbers wj(i)(b, i) for i  (r)o are
o b. Hence by [6, p. 409], they are linearly ordered by o, and
we choose the highest among them for wo(y, a). Using [6, (XV)
p. 410], then
(20) w0(y, a) = wj((s)0)(b, (s)0) where s = 03BCs{(s)0  (r)o &#x26; (i)i(r)0

[enm([wj((s)0)(b, (s)o)]*, (S)i+1) = w;(i)(b, i)]}.
Corresponding to (11)-(13) (using the formulas for r and j),
for i  (r)o
(21) dj(i)(b, i) = {gj(i)(b)}(H1, i) = {({q}(b))0,j(i)}(H1, i)
= {(~Hb0(q, b, a))i}(H1, i) where ~Hb0(q, b, a) = 03A0i(r)0pi({q}(b))0, j(i),
(22) Hwj(i)(b,i) = Âl Hw0(y,a)(03C1(wj(i)(b, i), w0(y, a), l)),
(23) wj(i)(b, i) = {hj(i)(b)}(H1, i) = {({q}(b))1,j(i)}(H1, i)
= {(~Hb1(q, b, a))i}(H1, i) where ~Hb1(q, b, a) = 03A0i(r)0 pi({q}(b))1,j(i).
Combining (20) and (23) and the formulas for r and j,
(24) w0(y, a) = 1jJHb(q, b, a)
with a 03C8Hb partial recursive uniformly in Hb; so we take h0(y) =
AHba 1jJH"(q, b, a) where b = (y)o. Combining (21)-(24) and the
formulas for r, 03B11, oc2 and 03B1,

(25) 03B1 = 03BBl ~Hw(rHb(a), 1jJHb(q, b, a), ~Hb0(q, b, a), ~Hb1(q, b, a), l)
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for W = wo(y, a), where ~Hw(r, s, to, tl, l) is partial recursive uni-
formly in Hw. So we shall put p3 (r, s, to, tl) = Hwl 9,H-(r, s, to, tlg l),
and go(y) == Hba 03B230(rHb(a), 03C8Hb(q, b, a), ~Hb0(q, b, a), ~Hb1(q, b, a))
where b = (y)o.
PART 2. Simplify from Case 4 Part 1.

CASE 2: y = 3 · 5z and y E 0. PART 1. 6) HlI(a) == Hz(a)1((a)0) ~
(E03B1)(x)T03B11(f0(z(a)1), (a)0, x), etc. Taking wo (y, a) = z(a)1 = [(y)2](a)1,
the evaluation is straightforward (cf. (10)-(14)). PART 2 is
similar. 
CASE 1 : y = 1 or y = 1*. PART 1. Hy(a) ~ (Et)R(a, t) (with a

recursive R) - (Eoc)R(a, 03B1(0)) - (E03B1)(x)R(a, 03B1(0)) -
(E03B1)(x)T03B11(m10, a, x). When Hy(a), then 03BBl 03BCtR(a, t) is an a.

PART 2. Hy(a) ~ (x)R(a, x) ~ (E03B1)(x)R(a, x) ~ (E03B1)(x) T03B11(m11,
a, x). When illl(a), Âl 0 is an oc.

2.4 REMARK 3. In Cases 5, 4, 1, a simpler treatment can be
given when Idj, Ici, |y|, respectively, = 0. If lwol be increased to the
present luol in Cases 3, 4 and 5, then the luoi can be made 0.

2.5 PROOF OF THEOREM 2, PARTS 3-5. CASE 5. PART 3.

SUBCASE 1: Idl is a limit ordinal, i.e. d = 3 - 5-. The next stronger
restriction on lwol would make the functions each recursive in H 8
for some e o d a basis for Hy(a) expressed in the form

(E03B1)(x)R(a, oc, x) with a recursive R ; here of course R(a, a, x) can
be R((x), a, x) with this R also recursive, by [4, Theorem, IV*
p. 292 with uniformity]. Each e o d is o zn for some n (by
[6, (VI) p. 408]), so He is recursive in Hzn (by [7, XIV]); and for
any n, Zn o d. Now, for any predicate P(a) so expressed with
such a basis, P(a) ~ (En)(E03B1)[{03B1 is recursive in Hzn} &#x26;

(x)R((x), a, x)] ~ (En)(Em)[{m is a Gôdel number from Hzn of
a total function 03B1m} &#x26; (x)R(m(x), a, x)] - (En)(Em)(x)(Ev)
[(i)ixT1(Hzn, m, i, (v)i) &#x26; R(03A0ix pU((v)i)i, a, x)] - (En) (Em)
Hzn**(03C8(m, a)) (with a recursive y, by using [5, Lemma 1] twice)
- (En)(Em)Hzn+2(03C1(zn**, zn+2’ 1p(m, a))) (by [5, Lemma 3] with
(XXIV) 6)) - (En)(Em)Hd(203C1(zn**,zn+2, 03C8(m, a)). an+2) - H .(cp(a))
(with a recursive 99). This is absurd when P(a) ~ Hy(a) (where
y = c**), since HlI is of higher degree than Hc (by [8, (11)] or [7,
XIV]). SUBCASE 2: Idl is a successor ordinal, i.e. d = e* ~ 1. A
stronger restriction on |w0| would make the functions recursive in
He a basis for Hv(a) expressed in the form (E03B1)(x)R((x), a, x)
with a recursive R. For any P(a) so expressed with such a basis,
proceeding similarly to Subcase 1 but without the (En), P(a) ~
(Em)(x)(Ev)[(i)ixTHe1(m, i, (v)i) &#x26; R(IIixpiU((v)i), a, x ~
Hb(~(a)) (with a recursive ~), which is absurd when P(a) ~
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Hy(a) (y = b*). SuBCASE 3: Idl is 0, i.e. d = 1. Immediate, as no
further restriction on lwol is possible.
PART 4. Were the functions recursive in Hd a basis for Hy(a)

expressed in the form (E03B1)(x)R((x), a, x) with recursive R, we
would have as in Part 3 Subcase 2 (with d, y instead of e, b),
Hy(a) ~ Hy(~(a)). This is absurd; for then Hy(a) and 17,(a) would
each be of the form (Ex)RHb(a, x) with an RHb(a, x) recursive in
Hb, which by [4, Theorem VI* (c) p. 292] would make Hy recur-
sive in Hb.
PART 5. Were uo = c instead of b, we would have Hy(a) ~

(Et)THc1(g0(y), a, t) &#x26; (t){THc1(g0(y), a, t) ~ (x)(Ev)[(i)ix
Ti d (U(t), i, (V)i) &#x26; T11(03A0ixpiU((v)i), fo(y), a, 0153)]} j7,,( (a» (with
a recursive 99), whence Hy(a) ~ Hy(~(a)), which is absurd (as
in Part 4).
CASE 4. PARTS 3 AND 4. SUBCASE 1: Ici I is a limit ordinal. Like

Case 5 Part 3 Subcase 1 with c, b in place of d, c (and for Part 4
il1J in place of the H1J). SUBCASE 2: Ici = 0. Immediate. PART 5.
Like Case 5 Part 5 with c, c in place of d, c.
CASE 3. PART 3. Increasing the restriction on lwol would mean

the functions recursive in He for some f ixed e o b are a basis for
Hy(a). We could then argue as in Case 5 Part 3 Subcase 2 with
e, e*** in place of e, b. PART 4. Like Case 5 Part 3 Subcase 1 with
Hy(a), b, y in place of Hy(a), d, c; the contradiction is then as in
Case 5 Part 4.
PART 5. If we had as uo an e o b = 3. 5z, then we would have

e o zn for some n, and Hy(a) ~ (Et)THe1(g0(y), a, t) &#x26; (Es)
[THe1(h0(y), a, s) &#x26; U(s) o b] &#x26; (m)(t)(s){THe1(g0(y), a, t) &#x26;

THe1(h0(y), a, s) &#x26; m ~ n &#x26; U(s) o zm ~ (x)(Ev)[(i)ix
T1(03BBl Hzm(03C1(s), zm, 1», U(t), i, (v) ) &#x26; T11(03A0ix p7((v)t), f0(y), a, x)]}. 8)
Replacing the first two He’s by 03BBl Hzn(03C1(e, zn, l)) and the last two
by Âl Hzm(p(e, zm, l)), and o by 03BBab (Ex)V(a, b, x) with a re-
cursive Tl given by [6, (32), (VII) and (VIII), p. 408], this ex-
pression for H1J(a) comes by [5, Lemma 1] to the form Hzn*(03C8(a))

8) The propositional connectives and quantifiers, when applied to partial pred-
icates, are to be understood in the strong senses [4, pp. 334, 336, 337]. Substitutions

using the 03BB-operator do not lead outside the class of functions and predicates which
are partial recursive (partial recursive in 03A8); i.e. [5, 1.3] holds reading "partial
recursive (partial recursive in 03A8)" in place of "general recursive", by [4, Lemma VI
p. 344 with Theorem XVII (a) p. 329]. Here a function or predicate which is general
recursive (general recursive in 03A8) for total functions as values of its function
variables can always be extended to one that is partial recursive (partial recursive
in W) when partial functions are ahowed as values, by choosing some particular
system E for [4, p. 275] and employing it as on [4, p. 326].
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&#x26; (m)Hzm**(~(m, a)) with recursive 1p and X, and thence, replacing
H Zn * by Âl Hb(203C1(zn*,zn+1,l) · 3n+1) and similarly with m, to the
form Hy(~(a)) with a recursive 99, which is absurd.
CASE 2. PARTS 3 AND 4. Like Case 3 Part 3. PART 5. Immediate.
2.6 REMARK 4. The partial recursive 03BBa dj(y, a) is not in

general completely defined. Thus if Âa do(y, a) were completely
defined in Case 5 (or 4), the method used in Case 5 Part 5, omitting
the existence condition and with d, b (or c, b) in place of d, c,
would give Hy(a) ~ Hy(~(a)) with a recursive 99.

2.7 COROLLARY. PART 1. For each y e 0 with ’yl as in Rozv 1 of
the table, if P(a) is recursive in H1J’ then P(a) is expressible in the
form (E03B1)(x)R(a, a, x) (R recursive) with a basis consisting of the
functions each recursive in Hw for some w o y with 1 w | = |w1| as in
Rozv 4. PART 2. This result is the best possible (of its type), Hy(a)
being a P(a) for which it cannot be improved (by Part 4 of the theo-
rem ).
PROOF. PART 1. By the following lemma with Theorem 1 Parts 1

and 2 (and [7, XIV]), since the restriction on lwol in the table
(Row 2) is always at least as strict as on IW11 (Row 4).

2.8 LEMMA 2. 1 f a class C closed under recursive operations is a.
basis for each of Q(a) and Q(a) expressed in the form (E03B1)(x)R(a,
03B1, x) with a recursive R, then it is a basis for any predicate P(a)
recursive in Q expressed in that forme
PROOF. Say e is a Gôdel number of P(a) from Q. Then P(a)

(a) ~ U(03BCsTQ1(e, a, s)) = 0
(b) ~ (Es)(Ev)[v = 03A0is Pi(v)1 &#x26; (i)is[{Q(i) &#x26; (V)i = 0} v

{Q(i) &#x26; (V)i = 1}] &#x26; T11(v, e, a, s) &#x26; U(s) = 0] (since for
each Q, e and a, TQ(e, a, s) for at most one s)

(c) ~ (Er)[(r)1 = IIi«r)o p(r)1,i i &#x26; (i)i(r)0(Ej)j2[Qj(i) &#x26; (r)l,i
= iJ &#x26; Tll«r),, e, a, (r)o) &#x26; U«r)o) = OJ (where Qo(i) ~
Q(i), Qui) ~ Q(i))

(d) ~ (Er)[(r)1 = IIi«r) o p(r)1,i i &#x26; (i)i(r)0(Ej)j2[(E03B11)(x)
Rj(a, 03B11, x) &#x26; (r)l,i = j] &#x26; T11(r)1, e, a, (r)o) &#x26; U «r)o)
= OJ (with a recursive Ri, by hypothesis),

etc. as for Theorem 1 Case 5 Part 1. For a such that P(a), after
evaluating r and j (for each i  (r)o), the hypothesis gives for each
such i an 03B11 = Às OC1 (i, s) E C for (d), and thence we get an
a = Âl 2r - 3;1«r)O; 1) E C for the final expression (g).

2.9 REMARK 5. Using additional details from the theorem in
the proof of Lemma 2 with Hy(a) as the Q(a), functions f(e, y),
g(e, y), h(e, y), d(e, y, a), w(e, y, a) can be obtained which for the
P(a) in the corollary recursive in Hv with Gôdel number e are anal-
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ogous to the fj(y), gj(y), hj(y), dj(y, a), wj(y, a) for the I-I,, , (a)
in the theorem. By the present method, u ( y ) = y simply, which we
do not know to be the best result.

3. The ramified analytic hierarchy
3.1 The ramified analytic hierarchy is to consist of a class An,

of number-theoretic predicates and functions for each y E 0. A
function shall E An., if its representing predicate [4, p. 199] E Any.
A predicate shall E An,, if it ist expressible explicitly in terms of
(general) recursive predicates of number and function variables
and the operations of the predicate calculus with quantification of
number variables and of function variables each ranging over (the
one-place number-theoretic functions which E ) An. for a respective
u o y.

3.2 Clearly z o y - An., C Any. By the technique of [5, 2.3
and 2.5] or by Theorem 3 below, the class of the predicates of An,,
is closed under recursive (or indeed, arithmetical) operations; so
the functions of Any are equivalently those recursive in predicates
of An.. Furthermore, by Theorem 3 below with [7, XIV],
z o y - Anz ~ An,. By Theorem 3 with Spector’s [9, Theorem
5], Any is actually determined by Iyl, so we may write An, also
as An|y|. By Theorem 3 and Theorem 3 relativized with [7, p. 210
lines 6-4 from below], no more predicates become definable, if
after reaching any level of the hierarchy we relativize the ordinal
notations for defining higher levels to any predicate of that level;
i.e. for each u e 0, every AnQ defined as above except using OQ,
QO for some Q E Anu instead of 0, o will be an Any for some
yEO.

3.3 By the method used to define +o in [6, § 22)] (also cf. [3,
p. 18]), we find a primitive recursive function b · oa such that
b ·o 1 = 1 if b ~ 0, 1 ·o a = 1 if a ~ 0, 2z ·o a== (z ·o a) +o a if
z ~ 0, (3. 5") ·o a = 3 5d where (n)[dn ~ zn ·o a] if a # 1, and
b ·oa = 7 otherwise. 6) Using induction on b for the case a &#x3E;o 1

(cf. [6, (XVI)]):
(XXV) Il a, b ~ 0, then ( a ) b ·o a ~ O and (b) (c)[a &#x3E;o 1 &#x26;

c o b ~ c ·o a o b ·o a].
When a, b E 0, |b ·o al = Ibllal with ibl as multiplier and lai as

multiplicand.
3.4 THEOREM 3. Let w E 0 &#x26; |w| w (so f or y E 0, 1 w +o

y ·o w| - w+y|y|w = (1+|y|)03C9). For each y E 0, the predicates of
An. are exactly those each recursive in H v for some v  0 w + 0 y o w.
PROOF, by induction on y over 0. CASE 1: y = 1. By the def,
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inition 3.1, the predicates of An, are exactly the arithmetical
predicates (cf. [5, 2.1] or [4, p. 239 with Theorem VII p. 285]; and
by [7, IV, XI and XII], these are exactly the predicates each re-
cursive in Hv for some v o w = w + 0 1 o w. CASE 2 : y = 2z
where z ~ 0. Consider any expression under 3.1 for a predicate P
of An.. Using the hypothesis of the induction for u ~o z, each of
the function variables in this expression has as range the functions
each recursive in Hv for some v o w +o u ·o w ~o w +o z .0 w
(by (XXV) and [6, (XVI)]). Hence by Lemma 4 (a) below, P
is recursive in H. for some v o (w +o z ·o w) +o w. But

((w +o z ·o w) +ow) ~ (w +o (z ·o w +o w)). 9) and w +o
(z ·o w +o w) = w +o y ·o w. So to each v o (w +o z·o w)
+o w, there is a v with (v ) - (v ) such that v o w +o y ’ ·o w;
and Hv is Hv by [5, 6.5]. Thus P is a predicate recursive in Hv for
some v o w +o y ·o w. Conversely, any such predicate is recur-
sive in Hv (= Hi) for a v (with (v ) ~ (il )) o (w +o z ·o w) -i-o w,
and so by Lemma 4 (b) is expressible explicitly using as the only
function quantification one over the functions each recursive in H.
for some. v o w +o z ·o w, i. e. by the hypothesis of the induction,
over Anz; and so by 3.1, the predicate E An,. CASE 3: y = 3 · 5z and
y E 0. By the definition 3.1 with [6, (VI)], An, = Uk=0,1,2,... Anzk;
and the set of the predicates each recursive in Hv for some

v o w + o y .0 w is likewise the union for k = 0, 1, 2, ... of the
sets of the predicates each recursive in Hv for some v o w +o
zk ·o w. These sets are respectively the same as the sets An,, by
the hypothesis of the induction.

3.5 LEMMA 3. There is a partial recursive function 03C4(u, m, a, b)
such that, if u = 3 . 5z E 0, then Hu(03C4(u, m, a, b ) ) for m = 0, 1, 2, ...
is àn enumeration (with repetitions) o f the predicates P(a, b) each
recursive in Hf’ for some v o u.
PROOF. Suppose P(a, b ) is recursive in H’IJ for such a v. Then

v o zk for some k, so P is recursive in Hzk and hence P(a, b)
== (E’t)P(a, b ) = Hzk*(S2, 11(e, a, b ) ) (for some e, by [5, Lemma 1])6)
~ Hzk+1(03C1(zk*, Zk+1’ S2,11(e, a, b))) (using (XXIV) and [5, Lemma
3]) ~ Hu(03C4(u, m, a, b ) ) upon putting i(u, m, a, b ) =
[2 exp 03C1(z(m)0*, z(m)0+1, S2,11((m)1, a, b))] · 3(m)o+1 for z = (u)2, and
m = 2k. 36.
LEMMA 4. Let w ~ O and |w| = 03C9. For any given z &#x3E;o 1:

(a) I f a number-theoretic predicate P is expressible explicitly
9) For any a, b, c e 0, by induction on c, ( (a + 0 b) +o c ) ~ (a +o (b+o c ) ), ,

i.e. (a +o b) +o c and a +o (b +o c) are of the same h-type as notations of 0 [5,
p. 328], though they may not be the same number [6, Footnote ?J].
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in terms o f recursive predicates o f number and function variables and
the operations o f the predicate calculus with quantification o f number
variables and of function variables each ranging over the (one-place)
functions each recursive in H. f or some v o some u specified f or
the variable with 1 0 u 0 z, then P is recursive in H. for some
v o z + 0 w, and (b ) conversely, indeed using in the explicit expres-
sion besides number quanti f iers a single function quantifier (either
existential or universal as we choose) whose u = z, i.e. one over the
functions each recursive in Hv for some v 0 z.
PROOF. (a) Consider an expression as described for a predicate

P(al, ..., an). Bring this expression to prenex form. Consider in
this prenex form a function quantifier with its scope, (E03B1)A(03B1) or
(03B1)A (oc), where oc ranges over the functions each recursive in H 11 for
some v o u. According as u = 211 :A 1 (using [6, (V)] and [7,
XIV]) or u = 3 - 5z (using Lemma 3), (E03B1)A(03B1) is replaceable by

(Em)[(a)(Eb)THx1(m, a, b) &#x26; A (Âa U(03BCbTHx1(m, a, b)))] or

(Em)[(a)(Eb)Hu(03C4(u, m, a, b)) &#x26; A (Âa pbhu (r (u, m, a, b)))]
and (03B1)A(03B1) dually); 8) by [5, Lemma 3], Hx is replaceable herein
by 03BBt Hz(03C1(x, z, t)) and Hu similarly. After carrying out these
replacements, successively for each function quantifier, the general
recursive scope of the prenex form will have been transformed into
a predicate Q(b1,..., bm) partial recursive in H,,. Writing
Q(bi, ..., bm) ~ (Et)Q(bl, ..., bm), we can complete the definition
of the latter by [4, Example 4 p. 337] relativized to Hz to obtain
(Et)R(bl, ..., bm, t) with R primitive recursive in H.. Thus we
finally obtain an expression for P(a1, ..., an ) built by the predi-
cate calculus with number quantifiers only from predicates general
recursive in H,,, i.e. P(al, ..., an) is arithmetical in Hz, and hence
recursive in Hz+OkO for some k (e.g. by [7, IV* p. 197 with XII*
p. 198]. But z +o ko o z +o w by [6, (XVI)].

(b) Conversely, suppose P(al, ..., an) is recursive in Hq for
some v o z + o w. Then for some k, P(a1, ..., an) is recursive in

Hz+OkO, hence is arithmetical in Hz, and hence is expressible in
prenex form with number quantifiers only and a scope Q(b1,...,bm)
recursive in Hz. Let Q(a) = Q((a)0, ..., (a).-,). By Corollary
Theorem 2 (since z &#x3E;o 1), Q(a) is expressible in the form

(E03B1)(x)R(a, oc, x) ( R recursive) with basis, and therefore range,
the functions each recursive in Hv for some ro o z. But Q (bl, ...,bm)
== Q(pgl p’- 1). Applying Corollary Theorem 2 to Q(a), a
universal quantifier (a) can be secured instead.

3.6 For each y e 0, a (number-theoretic) predicate shall e Aÿ
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if it is expressible explicitly in terms of the predicates a+b = c,
a · b = c, n-ary predicate variables (n = 0,1, 2, ...) with number
variables as arguments, and the operations of the predicate calculus
with quantification of number variables and of n-ary predicate
variables each ranging over the n-ary predicates of A2u for a
respective u o y.

3.7 It is immediate for |y| ~ (J), and will follow in the general
case from the corollary below with Spector’s [9, Theorem 5], that
A2y depends only on |y|, and so may be written also as A2/|y| For
IYI = 1, 2, 3, ... or (J), the predicates of A2/|y| are exactly the
number-theoretic predicates expressible in Church’s ramified
second-order arithmetic A2/1, A2/2, A2/3,... or A2/03C9, respectively,
under the classical interpretation of the symbolism; and for

Iyl = 0, in his Al [2, pp. 353, 321].
3.8 COROLLARY. Let W E 0 and Iwl = (J). For each y E 0, the

predicates o f A2y are likewise exactly those each recursive in H 11 f or
some v o w +o y ·o w.
From the theorem, by:
LEMMA 5. For each y E 0 : (a) I f a predicate e A:, it E Any, and

(b) conversely, indeed with an expression under 3.6 having besides
number quantifiers only quantijiers with one-place predicate variables
corresponding to, and o f the same respective kinds existential or uni-
versal as, the function quantifiers in an expression under 3.1).
PROOF, by induction on y over 0. (a) Consider an expression

under 3.6 For a predicate R(a1’ ..., an ) of A2y. In this expression,
ignoring for the moment the ranges of the predicate variables, any
existential quantifier with its scope, (EP)A(P), where P is an
n-ary predicate variable, is replaceable for n = 0, n = 1 or n &#x3E; 1
by

respectively, where oc is a 1-ary function variable. In the n = 1
and n &#x3E; 1 cases, given any predicate P for the former, there is a
function oc recursive in P for the latter, and vice versa. Now say
the range of P is the n-ary predicates of Aù, for a fixed u Co y, i.e.
by the hypothesis of the induction (a) and (b), the n-ary predi-
cates of Anu. The set of these predicates is elosed under recursive
operations, by 3.2. So as the range of cc we may take the functions
recursive in predicates of Anu, i. e. by 3.2 the functions of Anu.
Universal quantifiers are handled dually. Upon carrying out the
replacements for all the predicate quantifiers in the given ex-
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pression under 3.6, we obtain an expression under 3.1 for

R(a1,..., an ) as a predicate of Any.
(b) Consider any expression under 3.1 for a predicate

R(a1,..., an ) of An.. Bringing it to prenex form, with ( Et ) or (t)
innermost (inserted redundantly if necessary), and using [4,
Theorem IV* p. 292], we obtain an equivalent (Qb)T(1(t), ...,
m(t), f, al, ..., an, c, t), where T is primitive recursive, and (Qb)
are quantifiers on the function variables 03B11, ..., ce. and the num-
ber variables c, t. Adapting [5, top p. 318], for P a 1-ary predicate
variable, let C(P, a, b) d [P(a) - a = 2(a)0 · 3(a)1 &#x26; (r)[r  (a)1
~. P(2(a)0· 3r)] &#x26; (s)[s  a ~ P(2’. (3 exp 03A0isp(b)ii))]. Then

(a)(Eb)C(P, a, b) ~ {P is Âa a = 2(a)0 · 3((a))0 for some function
03B1}, in which case a = Âa (03BCbP(2a+1 · 3b))a. Now (Ea)(Q03B4, t )
A((t), b, t) ~ (EP){(a)(Eb)C(P, a, b) &#x26; (Qb, t)(Eb)[P(2t · 3b) &#x26;

A (b, b, t)]). Given any oc for the left member here, there is a P
recursive in oc for the right; and vice versa. Using 3.2 and the hyp.
ind., if the function variable oc being replaced ranges over An. for
a u Co y, the resulting 1-place predicate variable P may be taken
to range over Aû. We deal with (a ) dually. To our equivalent of
R (a,, - ..., an ) we apply this method of replacing a function quanti-
fier by a 1-place predicate quantifier repeatedly, each time to the
outermost function quantifier not yet replaced. 1° ) Then the pri-
mitive recursive functions occurring as arguments of a predicate
variable P can be replaced by their representing predicates
(P(2(a)0 · 3’’ ) becoming (Eq)[2(a)0 · 3r = q &#x26; P(q)], etc.), and the
primitive recursive predicates can be expressed in the familiar
way in terms of a+b = c, a - b = c and the predicate calculus with
number quantifiers only.11) Thus we obtain an expression under
3.6 for R(a1,..., an ) as a predicate of A2u.

3.9 REMARK 6. Utilizing the final remarks of Lemmas 4 and 5,
the above treatment shows that for expressing predicates of An,
under 3.1 (of Aÿ under 3.6) it suffices to use besides number quan-
tifiers only a single function quantifier (1-place predicate quan-
tifier), either existential or univorsal as we choose, with its range
also a basis.

The University of Wisconsin.

lo) This is in lieu of making Lemma 5 depend on § 2 via Remark 6 below.
11) Use [4, Corollary Theorem 1 p. 242], replace a +b, a b, 0, 1 as functions by

their representing predicates (cf. [4, Lemma 29 p. 411]), and use 0 = c ~
(x)[x+c=x], 1 = c ~ (x)[x · c = x].
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