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Sets of primitive roots

by

L. Carlitz

1. Introduction. As a special case of a more general result
[1, Theorem 1] the writer has proved that if a is a fixed integer
&#x3E; 1, then the number of integers x, 1~x~p-1, such that x and
x-f-a are both primitive roots (mod p) is equal to

where q;(p-1) is the Euler function. The more general result
referred to is concerned with the number of solutions in primitive
roots (mod p) of

It is natural to raise the following question. Let a1,···, ar-1 be
fixed integers &#x3E; 1. We seek the number of integers x (mod p)
such that

are all primitive roots. If Nr denote this number we show that

The proof of (1.4) depends on some results of Davenport [2].
Indeed we can prove rather more. Let

denote polynomials with integral coefficients (mod p); there is
no loss in generality in assuming that each fi(x) is of degree ~1.
Moreover we assume that the fs(x) are relatively prime (mod p)
in pairs and none is divisible by the square of a polynomial
(mod p). If now N, denotes the number of integers x (mod p)
such that all the numbers (1.5) are primitive roots, then again
(1.4) holds.
We also prove that if the polynomials gi(x) satisfy the previous

hypotheses then M" the number of integers x (mod p) such that
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where (a/p) is the Legendre symbol and -, = ±1, satisfies

More generally if f1(x), ···, fr(x), g1(x), ···, gs(x) are polynomials
satisfying the previous hypotheses and Nr,s is the number of in-
tegers (mod p) such that simultaneously all t,(x) are primitive
roots and (1.6) is satisfied, then

It should be noted that in these results the numbers r, s, deg fi,
deg gj are kept fixed as p-+ 00.

Since it is no more difficult, we prove the above results for
arbitrary finite fields GF(q). Moreover in place of primitive roots
we deal with numbers belonging to an exponent e, where |q-1.
For the precise statement of the more general results see the
theorems in §§ 3. 4.

2. Let GF(q), q = pn, denote an arbitrary finite field and
put q -1 = e f . Numbers of GF(q) will be denoted by lower case
Greek letters a, P, 03B3,···, e, ~, 03B6. Let ~(03B1) denote a character of
the multiplicative group of GF(q), and let xo(a) denote the prin-
cipal character. We now define a function 03C9(03BE) by means of

where 03BC(d) is the Môbius function and inner sum is over the dl
character x such that xaf = ~0. Then we have the following easily
proved result.

LEMMA 1. Il e belongs to the exponent e, then 03C9(03BE) = 1; for all
other e, 03C9(03BE) = 0.

It is convenient to transform (2.1) by means of

LEMMA 2. The funetion 03C9(03BE) defined by (2.1) satisfies

where the inner sum is over the ~(z) characters belonging to the

exponent z.
A character X belongs to the exponent k if k is the least integer
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~1 such that xk = Zo. We shall sketch the proof of the equivalence
of (2.1) and (2.2). It is clear from (2.1) that

where X(Z) has the same meaning as in (2.2). In the next place
the right member of (2.3) is equal to

where the innermost sum is over all d satisfying the indicated
conditions. Now put zo = (z, f), z = zozl, f = zofi; z 1 dl is equi-
valent to Zl d. Put d = zlu; then

This evidently proves (2.2).
LEMMA 3. Let Xl’...’ ~r denote non-principal multiplicative

characters and let f1(x), ···, 1,(x) denote quadratfrei polynomials
with coefficients in GF(q) that are relatively prime in pairs and
of degree &#x3E; 1. Put

(2.4)
Then

(2.51

where k = deg f1 +··· + deg fr and

For proof see Davenport [2]. 
As a matter of fact by a theorem of André Weil [3], we may

take 6k = 1 2; however we shall not make use of this deeper result.

3. Let el’ ..., e,. be integers such that ei q -1 and let Nr denote
the number of ae GF(q) such that /,(ot) belongs to the exponent
ei for i = 1, ···, r; here the 1,(x) are polynomials with coefficients
in GF(q). Extending the definition (2.1) in an obvious way we
define the set of functions 03C91(03BE), ···, co,(e) such that 03C9i(03BE) = 1
if e belongs to the exonent ei, while 03C9i(03BE) = 0 otherwise. Then it
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is clear that

Put eifi = q-1, i = 1, ..., r. Substituting from (2.2) in (3.1)
we get

where X, runs through the ~(zi) characters belonging to the ex-
ponent zi, and

Consider first the terms in the right member of (3.2) cor-

responding to principal characters Xi. Since X, belongs to z, it

follows that all zi = 1 and therefore we get

We now assume that the polynomials f i satisfy the hypotheses
of Lemma 3. Then the remaining terms in (3.2) contribute

by (2.5). In the next place we have

where 03B5&#x3E;0, and therefore the above estimate becomes

Combining (3.2) with (3.3) and (3.4) we get
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This proves 

THEOREM 1. Let 11(x), - - -, 1,(x) denote quadratfrei polynomials
with coefficients eGF(q) that are relatively prime in pairs and of
degree ~1; let el, ..., e, denote positive integers such that Ci q-1,
i = 1, ···, r. Let Nr denote the number of oceGF(q) such that fi(03B1)
belongs to the exponent ei. Then N, satisfies (3.5), where Ok is

defined by (2.6) and k = deg fl +··· + deg Ir.
In particular if all ei = q-1 and k is fixed we get
THEOREM 2. Let f1(x),···, 1,,(x) satisfy the hypotheses ol Theorem

1 and let N,. denote the number of oceGF(q) such that fi(03B1) is a primi-
tive root of GF(q) for i = 1,···, r. Then for fixed k

If we take fi(x) = x+ai, i = 1, ···, r, where the 03B1i are distinct,
then for q = p, (3.6) reduces to (1.4).

4. Let the polynomials fl(x), ..., fr(x) have the same meaning
as in Theorem 1. For q odd we define the character 03C8(03B1), 03B103B5GF(q),
as equal to +1, -1, 0 according as oc is equal to a square, a non-
square, or zero in GF(q). Let 03B5j = ±1, j = 1, ···, r be assigned.
We consider the number of ce such that

If Mr denotes this number then clearly the sum

differs from 2rMr by at most k. Expanding the product in (4.2)
and applying Lemma 3 we obtain
THEOREM 3. (q odd). If the polynomials f1(x), ···, /,(x) satisfy

the hypothesis of Theorem 2 and Bi = :f:1, i = l, ..., r are assigned,
then for fixed k the number of 03B103B5GF(q) for which (4.1) holds

satis f ies

It is clear how the theorem can be extended to d-th powers.
It should be remarked that some hypothesis on the size of k is
necessary. For example when r = 1 one can construct a non-
constant polynomial f(x) such that tp(f(rx) = 1 for q-1 values
of 03B1 and therefore (4.3) does not hold.



70

In the next place it is not difficult to prove a theorem that
includes both Theorem 1 and 3. Let f1(x), ···, fr(x), g1(x), ···, gs(x)
denote polynomials that satisfy the previous hypothesis. Let
el, - - -, e,, be divisors of q-1 and s, = ::i:1, i = 1, - - -, s. We
consider the number of 03B103B5GF(q) such that fi(03B1) belongs to the
exponent ei for i = 1, ···, r and 1p(g;(a.)) = 03B5j for i = 1, ···, s.
If we call this number Nr,s then it is clear that the sum

differs from 2’Nr,s by at most h, where 1 = deg go + ··· + deg gs.
Hence expanding the second product in the right member of (4.4)
proceeding exactly as in the proof of Theorem 1 we get

where 0  1. We may state

THEOREM 4. Let f1(x), ···, fr(x), g1(x), ···, gs(x) denote qua-
dratfrei polynomials that are relatively prime in pairs. Let ei q -1
for i = 1, ’ ’ ’, r; E f = ±1 for i = 1, ..., s. Then Nf’,s, the number
o f oc such that fi(03B1) belongs to the exponent ei and 03C8(gj(03B1)) = Ej,
satisfies (4.5), where 0  1, k = deg f1 + ··· + deg fr,
h = deg gl -I- ... + deg gs . 

In particular if all ei = q-1 and k and h are fixed we get
THEoREM 5. Let f1(x), ···, fr(x), g1(x), ···, gs(x) satis f y the

hypotheses of Theorem 4 and let N’r,s denote the number o f oc such
that fi(03B1) is a primitive root of GF(q) for i = 1, ···, r and

03C8(gj(03B1)) = E; f or j = 1, ···, s. Then for fixed k, h we have
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