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On zeros, poles and mean value of
meromorphic functions

by

R. P. Srivastav

In this paper, 1 have studied some of the properties of mero-
morphic functions. The results obtained have been divided into
three sections. Section One contains some of the properties of
Nevanlinna’s characteristic function T(r) and the function

N(r; a ). The notation adopted is the same as that of Nevanlinna.
Section Two contains some of the results on the zeros and poles of
meromorphic functions which have been given in the form of
theorems. Section Three contains some of the properties of mean
value of a meromorphic function, defined as in the case of integral
functions ([1], p. 31).

Section I

Let f(z) be a meromorphic function of finite and positive order p
and n(r ; a ) the number of zeros of f(z) - a, f(0) ~ a, for | z | ~ r.
Let

where

We prove the following:
THEOREM 1

and

(1.3)
THEOREM 2
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PROOF OF THEOREM 1

where k &#x3E; 1.

Since n(r) is a nondecreasing, positive function of r, therefore,

and taking limits, we get

Also

and therefore taking limits, we get

Putting = 1 in (1.6) and (1.9) we get

Further, putting = c/d in (1.7), we obtain

Next we put k = exp(c - d/c) in (1.8). This gives

Combining the inequalities (2.1), (2.2) and (2.3) the results
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(1.1) and (1.2) follow. (1.3) is easily obtained on putting k = e in

(1.8).
PROOF OF THEOREM 2:

We know that

Adding p - N(r ) on both the sides, we obtain

Similarly, we have

Dividing by rP and taking the limits, the results follow.

THEOREM 3. Il f(z) be a meromorphic function, f(0) =1= 0; n(r; 0)
be the number of zeros of f(z) for 1 z 1 ~ r, then for any two values of r,
say rl and r2, f or which 1 j(rei8) be greater than 1,

PROOF:
We have

and so,

and

i.e.

Hence

and

COR. 1. If ce &#x3E; 1 and f(z) satisfies the condition of Theorem 3,
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then

where 0  0  1.

Taking the reciprocals and proceeding to limits, the result follows.

COR. 2:

THEOREM 4. Let f(z) be a meromorphic function, f(0) =1= oo,
n(r; ~) the number o f poles of f(z) for 1 z 1  r, then, for any two
values r, and r2 for which | f(rei03B8) be less than 1,

The method of proof is the same as that of Theorem 3. Corollary
1 and 2 hold in this case also.

Section II

THEOREM 1. Let f(z) be a meromorphic function of order p  1,
with all its zeros and poles real and negative and L1 (t) be the excess of
zeros o f f(z) over its poles, for 1 z 1  t. I f

then

PROOF:
Let

Then

and therefore, for real values of z,
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Further, we have, for t &#x3E; to = to (e),

(03BB - 03B5)t03C1  0394(t)  (03BB + 03B5)t03C1.
Hence

The first term on R.H. S, is obviously bounded. In the second
term we put t = px, and therefore, the second integral becomes

Similarly, we can show that

hence the result.

Making an appeal to analytic continuation, this result can be
extended for complex values of z, by taking a suitable determination
of log f(z); thus we have for | arg z |  03C0, if

L1 (t) 1 Atp,
then

THEOREM 2. Il f(z)[f(0) ~ ~] is a meromorphic function, real
for real z, of order less than 2, with positive and real zeros and poles,
an and bn arranged according to increasing moduli, then the zeros
of fl(z) in the half plane RI z  (al + bl)/2 are all real provided
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PROOF:
Let

where k is a positive integer or zero and c, a, an bn, are all real and
an and bn are positive for all values of n. Logarithmic differentiation
leads to

which under the condition stated can vanish only if y = 0, for,
the quantity within the brackets is positive.
THEOREM 3. Let f(z) be a cubic,

all of whose zeros are real; and let ~(w) be a meromorphic function o f
genus zero or 1, which is real for real w and has all the zeros and poles
- oc,., and - Pn real and negative. Then the cubic

also has its zeros real, if 03B1n  03B2n f or n = 1, 2, ...

PROOF:
Let

Condition that all the zeros of g(z) be real is

We know that since all the roots of f(z) = 0 are real

Hence, if
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all the zeros of g(z) are real.
Now, since

and therefore,
[~(1)]3 &#x3E; ~(3)[~(0)]2.

Hence the result.

Section III

DEFINITION: Let f(s) be an anal ytic function and

log- a = min (log ce, 0), a &#x3E; 0.

We define

Unless otherwise Itated, we write C(r, f ) = C(r), in general.
The following are the direct consequences of the definition:

where is any finite number.

(ii) If ’a’ is finite and non-zero, we have

(iii) Let f(z) be a meromorphic function and oc, 03B2, 03B3, 03B4 finite

complex numbers, independent of z, of the type that

then

If y = 0, 03B1 ~ 0, ô e 0, (iii) follows directly from (i) and (ii).
Otherwise we write
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and observe that C(r, f ) = C(r, 1/f)
(iv) If i(z) is an integral function, for 0  r  R,

First part of the inequality follows readily from the definition.
Using the Poisson-Jensen formula,

where a,’s are the zeros of f(z). Choosing 0 such that log | f(rei03B8)| l =
= log M(r), we obtain

(v) In view of (iv), the order of an integral function f(z) can be
defined as

converge and diverge simultaneously. Also

tend to the same, zero, finite or infinité limits.

DEFINITION: Let f(z) be a meromorphic function of order p,
were

il(z) being of order p and P(z) of order 03C11( p). Then

That the above definition is equivalent to that of Borel follows
easily from the following lemma.
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LEMMA: Let f1(z) and f2(z) be any two given integral functions
and let

Then

where a = ± 1.
The proof follows directly from the definition.
From (A) we have

Here, either C(r, Il) is greater than C(r, P) for all values of

r &#x3E; ro or else there is a sequence of values of r tending to infinity
for which C(r, fl) is less than C(r, P).

Obviously C(r, f ) cannot be of order greater than p. Since

and

C(i-, f ) is always greater than or equal to the higher of the two,
viz. C(r, il) and C(r, P) and hence the result.
We know ( [3], p. 82) that the order of the derivative of a mero-

morphic function is the same as that of the function itself. Here
we give an alternative proof of this.

THEOREhi: The order of the derivative of a meromorphic function
is the same as that of the function.
PROOF: Let f(z) be a meromorphic function of order p and f’(z)

its derivative*. Then

Thus f’(z) is also of order p.
1 ivish to thank Dr. S. K. Bose for his suggestion of this problem

and guidance in the preparation of this paper.
Department of Mathematics &#x26; Astronomy,

(Oblatum 2-1-57). University of Lucknow; India.

1) The order of f’(z)/f(z) has been obtained by the author [2] for integral
functions and the same can easily be extended for meromorphic functions.
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