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On zeros, poles and mean value of
meromorphic functions

by
R. P. Srivastav

In this paper, I have studied some of the properties of mero-
morphic functions. The results obtained have been divided into
three sections. Section One contains some of the properties of
Nevanlinna’s characteristic function 7'(r) and the function
N(r; a). The notation adopted is the same as that of Nevanlinna.
Section Two contains some of the results on the zeros and poles of
meromorphic functions which have been given in the form of
theorems. Section Three contains some of the properties of mean
value of a meromorphic function, defined as in the case of integral
functions ([1], p. 31).

Section I

Let f(z) be a meromorphic function of finite and positive order p
and n(r; @) the number of zeros of f(z) — a, f(0) # a, for |z | < r.
Let

lim N(r)re = tT} lim n(r)jre = ”},

r—>00 r—>00 d

where
N(r;a)= f‘: n(z; a)lz dz.
We prove the following:

THEOREM 1

(1.1) d=Ser < pT <o
e
(1.2) d < pt gd(l—i-log%) <
and
(1.8) ¢+ d=epT.

THEOREM 2
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(1.4) ept < pT + ed,
(1.5) ¢+ pt =< epT.

Proor or THEOREM 1
rk 1P
N(rkile) = N(ry) + f ™) 4o + f "(‘”)

where & = 1.
Since n(r) is a nondecreasing, positive function of 7, therefore,
k'N(rkl/P) éN(ro) + cte n k- n(rkY/?) log k
k-re re P p-kre

and taking limits, we get
¢+ klogk-c

(1.6) kT <
p
(1.7) p <o Rlogk-d
N P
Also

k .N(rkllf’) gN(ro) +d — e+n(1') ) log k&
k-rf TP P rP P

and therefore taking limits, we get

d log k&
(1.8) kT%i&g_,
P
d+dlogk
(1.9) kt g_i_&
P
Putting k=1 in (1.6) and (1.9) we get
(2.1) pT <c, d=npt

Further, putting & = ¢/d in (1.7), we obtain
(2.2) pt < d(1 + log c/d) < c.
Next we put k = exp(c — dfc) in (1.8). This gives

d + ¢ log efe—d)/e

: >
(2.3) P =— "

b

. c
1.e. pT = —étle.
€

Combining the inequalities (2.1), (2.2) and (2.8) the results
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(1.1) and (1.2) follow. (1.8) is easily obtained on putting k = e in
(1.8).

ProoF oF THEOREM 2:
We know that

(2.4) netle - r) = p J ") da.
r &

Adding p - N(r) on both the sides, we obtain
(2-3) pN(r) + n(e/? -r) Z p- N(e'/? - 1).
Similarly, we have
(2.6) n(r) + pN(r) = p - N(e!/? - 7).
Dividing by 7# and taking the limits, the results follow.

THEOREM 3. If f(z) be a meromorphic function, f(0) # 0; n(r; 0)
be the number of zeros of {(3) for | z | < r, then for any two values of ,
say r, and r,, for which | f(re®) | be greater than 1,

n(r) log 2 < T(ry) — T(ry) < n(ry) log
1 1

Proor:
We have
1 (% "
1) = o= [ toge 11/j0re) 40 + [ "o
2n Jo 0o X
and so,
T(Tz) =f ! ,’_’L@ dw
o
and
70 = [ "
0o
i.e.
T(ry) — T(ry) =f ' ’i(f—)dm.
Hence
T(ry) — T(ry) = n(ry) logryfry
and

T(ry) — T(ry) = n(ry) log 7ofry.
Cor. 1. If « > 1 and f(z) satisfies the condition of Theorem 3,
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then

1
lim

I ) — T

T(ar) — T(r) = n(r)log « + 0[n(ar) — n(r)] log «,
where 0 < 6 < 1.
Taking the reciprocals and proceeding to limits, the result follows.
Cor. 2:
. T(kr)y —T(r)
lm ———— -

. T(kr) —T(r)
<logk < lim ——M—°~.
Lim o Slogk = rlm

00 n(r)

THEOREM 4. Let f(z) be a meromorphic function, f(0) # oo,
n(r; o) the number of poles of f(z) for | z| < r, then, for any two
values r, and r, for which | f(re®®) | be less than 1,

n(ry) log 2 < T(ry) — T(ry) < niry) log —>.
1 1

The method of proof is the same as that of Theorem 8. Corollary
1 and 2 hold in this case also.

Section 1I

THEOREM 1. Let f(z) be a meromorphic function of order p < 1,
with all its zeros and poles real and negative and A(t) be the excess of
zeros of f() over its poles, for |z | < t. If

A(t) ~ 1+ t°,

then
];1 ((':)) ~ A+ xP1- mp cosec mp.
PROOF:
Let
I ( + 2/a,)
fe) ="0—.

1;[1 (1 + z/b,)

Then

log f(z) = 3 1og (1 + 2/a) — 3 log (1 + 5fb,)

and therefore, for real values of z,



[5] On zeros, poles and mean value of meromorphic functions 223

filz) <
= 1 n 1/z bn
f(Z) ngl /z + “ nzl / +
® ® 1 1
= S nltf + gy — 1+ apd = 3 n| - ]
oo *Cnt1 di Ont1 di
- ﬂzl nJan (Z + t)2 n21 bn (z + t)2
4w,
“Jo (24 12)2

Further, we have, for t > t, = {,(¢),

(A — etP < A(t) < (A + e)te.
Hence

A [ A@) (1 + e)r
o) o wr o) @y

J‘o A(t) — (A + e)tr “(ter

d
0 (z + t)2 t+o (z + t)?

The first term on R.H.S. is obviously bounded. In the second
term we put { = pa, and therefore, the second integral becomes

1+ ot

= (A 4+ €)xP~t - =zp cosec zp.

1)—-1
p(P+ )—

+ P (p+1)+(1 P) dp

Similarly, we can show that

Zl—(f-) > (A — &)xP~L - 7mp cosec np;
f(@) ’
hence the result.
Making an appeal to analytic continuation, this result can be
extended for complex values of 2, by taking a suitable determination
of log f(z); thus we have for |argz| < =, if
A(t) ~ AP,
then
fi(re®)
flre'®)
THEOREM 2. If f(2)[f(0) # o] s a meromorphic function, real
for real 2, of order less than 2, with positive and real zeros and poles,
a, and b, arranged according to increasing moduli, then the zeros
of fA(z) in the half plane R1 z < (a, + b,)/2 are all real provided

PR P

~ AP~V pP-1 . 7y cosec mp.

<
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Proor:
Let

T (1 — 2/a,)erlon
f(z) = cz* e 22

IT (1 — 2/b, )e*/*

n=1

where k is a positive integer or zero and ¢, a, a, b,, are all real and
a, and b, are positive for all values of n. Logarithmic differentiation
leads to

fz) k °°{ 1 1: °°{ 1 l}
ottt A oa e T ATy e
If z=2 + 1y,

1(z ) o 2(a, — b,)x + b2 — a?
m{l—(—)}z—*?’y{z 2+z ( 2 l 2 z}’
1(®) 2 +y*  aal(@z—a,)® + y?][(2—b,)* + y*]
which under the condition stated can vanish only if y = 0, for,

the quantity within the brackets is positive.

THEOREM 3. Let f(z) be a cubic,
f(z) = 2* + 8Hz + G,

all of whose zeros are real; and let ¢(w) be a meromorphic function of
genus zero or 1, which is real for real w and has all the zeros and poles
— «, and — f, real and negative. Then the cubic

g8(z) = 4(3) 2* + 3H. ¢(1) z + G. $(0)

also has its zeros real, if «, <, for n =1,2,...

Proor:
Let

é(w) = ae*® "i‘:{ (1 + -:i”) e—9/an

ﬁ (1 + ﬂ_a;) e—91hn -

n=1

Condition that all the zeros of g(z) be real is

[$(1)
G4+ 4H3  —— " <0
$(3) - [$(0)]
We know that since all the roots of f(2) = 0 are real
G? 4 4H?® < 0.
Hence, if
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[$(1)* > ¢(3)[$(0)]%
all the zeros of g(z) are real.
Now, since
0 <o, <pp

1 1 1 1
(?“7&)”(?‘@)
9 (L l) 3 (1 1)>0
teabi\a ) T wp\E TR

[$(1)] > $(3)[¢(0)]%

and therefore,

Hence the result.
Section III
DerixiTION: Let f(z) be an analytic function and

log~ « = min (log «, 0), « > 0.
We define

C(r, f) = m(r; o©) 4+ m(r; 0)

1 27 1 27 .
- f log* | f(rei®) | db — — f log- | f(re®®) | d
27 J, 27 J,o

1 p2n )
=—f |log | f(re®®) || df.
27 Jo

Unless otherwise %tated, we write C(r, f) = C(r), in general.
The following are the direct consequences of the definition:

(i) C(r, f) = C(r, | — a) + 0(1),

where ‘a’ is any finite number.
(ii) If ‘@’ is finite and non-zero, we have

C(r, f) = C(r, af) 4+ 0(1).

(iii) Let f(z) be a meromorphic function and «, g, y, é finite
complex numbers, independent of 2z, of the type that

ad — By # 0;
then _
af + B
c (r,yf - a) =C(r,f)+0(1).

If y=0, « 40, 6 £ 0, (iii) follows directly from (i) and (ii).
Otherwise we write
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af—l—f_)’_oz_océ—ﬂy. 1

vite vy oyt
and observe that C(r, f) = C(r, 1/f)
(iv) If f(z) is an integral function, for 0 < r < R,

C(r) < log M(r) < 113 R

C(R).

—r
First part of the inequality follows readily from the definition.
Using the Poisson-Jensen formula,

log | (re) | = o T oE L IR ) | KA 7 9

7w J)o R*— 2Rrcos (0 — ¢) + 72
R* — 4,3
Rz — a,)
where a,’s are the zeros of f(z). Choosing 6 such that log | ]‘(Teiﬂ) | =
= log M(r), we obtain

> logl

lay| <R

R
logM(r)§R+r.C

(R).

-7

(v) In view of (iv), the order of an integral function f(z) can be
defined as

— log C(r)
lim = p.
r>o0 logr

(vi) Jm C(r)dr andfw l—ogﬂf(r) dr

rq+l re 1

converge and diverge simultaneously. Also

— log M (r — C(r

im 28 M) 1d Tm )

rooo  TIFL rooo 701
tend to the same, zero, finite or infinite limits.

DeriNITION: Let f(z) be a meromorphic function of order p,
where
f1(2)

(A) 1(z) = Pe)

f1(2) being of order p and P(z) of order p!(<< p). Then
— log C(r, f)
lim ——— = p.
r>o0 lOg 7

That the above definition is equivalent to that of Borel follows
easily from the following lemma.
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LeEmMA: Let f,(z) and f,(z) be any two given integral functions
and let

$(2) = f1(2) - [fa(2)]"
C(r, ¢) = C(r, f1) + C(r, /o)

Then

where a = + 1.
The proof follows directly from the definition.
From (A) we have

C(r, f) = C(r, /1) + C(r, P).

Here, either C(r, f,) is greater than C(r, P) for all values of
r > 7, or else there is a sequence of values of r tending to infinity
for which C(r, f,) is less than C(r, P).

Obviously C(r, f) cannot be of order greater than p. Since

C(r, 1) = C(r, f) + C(r, P)
and

C(r, P) = C(r, 1) + C(n, /),
C(r, f) is always greater than or equal to the higher of the two,
viz. C(r, f,) and C(r, P) and hence the result.

We know ([3], p. 82) that the order of the derivative of a mero-
morphic function is the same as that of the function itself. Here
we give an alternative proof of this.

THEOREM: The order of the derivative of a meromorphic function
is the same as that of the function.

Proor: Let f(z) be a meromorphic function of order p and f'(z)
its derivative*. Then

1 o .
Clr )~ €O 1) =5 [ Vo flre) a0

~ax |, Vg1 7e®) 110

1 2 ’(ret?
<1 [iog|! ("’.,,) do
27 Jo f(re*)

< A4-logr

Thus f'(z) is also of order p.
I wish to thank Dr. S. K. Bose for his suggestion of this problem
and guidance in the preparation of this paper:

Department of Mathematics & Astronomy,
(Oblatum 2-1-57). University of Lucknow; India.

1) The order of f’(z)/f(z) has been obtained by the author [2] for integral
functions and the same can easily be extended for meromorphic functions.
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