Higher-dimensional field theory. I. The integral closure of a module
Compositio Mathematica, Tome 13 (1956-1958), pp. 1-15.
@article{CM_1956-1958__13__1_0,
     author = {Snapper, E.},
     title = {Higher-dimensional field theory. {I.} {The} integral closure of a module},
     journal = {Compositio Mathematica},
     pages = {1--15},
     publisher = {Kraus Reprint},
     volume = {13},
     year = {1956-1958},
     mrnumber = {83172},
     zbl = {0072.02901},
     language = {en},
     url = {http://www.numdam.org/item/CM_1956-1958__13__1_0/}
}
TY  - JOUR
AU  - Snapper, E.
TI  - Higher-dimensional field theory. I. The integral closure of a module
JO  - Compositio Mathematica
PY  - 1956-1958
SP  - 1
EP  - 15
VL  - 13
PB  - Kraus Reprint
UR  - http://www.numdam.org/item/CM_1956-1958__13__1_0/
LA  - en
ID  - CM_1956-1958__13__1_0
ER  - 
%0 Journal Article
%A Snapper, E.
%T Higher-dimensional field theory. I. The integral closure of a module
%J Compositio Mathematica
%D 1956-1958
%P 1-15
%V 13
%I Kraus Reprint
%U http://www.numdam.org/item/CM_1956-1958__13__1_0/
%G en
%F CM_1956-1958__13__1_0
Snapper, E. Higher-dimensional field theory. I. The integral closure of a module. Compositio Mathematica, Tome 13 (1956-1958), pp. 1-15. http://www.numdam.org/item/CM_1956-1958__13__1_0/

E. Snapper [1] Integral closure of modules and complete linear systems, to be published in the Princeton Symposium Volume in honor of Professor S. Lefschetz.

O. Zariski [2] Some results in the arithmetic theory of algebraic varieties, American Journal of Mathematics Vol. 61 (1939) pp. 249-294. | JFM | MR | Zbl

B.L. Van Der Waerden [3] On Hilbert's function, series of composition of ideals and a generalization of the theorem of Bézout, Neder. Akad. Wetensch. Vol 31 (1928) pp. 749-770. | JFM