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Order in projective and in descriptive geometry
by

Oswald Wyler
Evanston, Illinois

Introduction.

In Hilbert’s system of axioms for geometry ([2]), the axioms
of groups I (incidence), III (congruence), and V (continuity ) are
valid in hyperbolic and elliptic as well as in Euclideari geometry,
while the axioms of group II, the axioms of order, are valid in
Euelidean and in hyperbolic, but not in elliptic geometry. It is
the aim of this paper to give an axiomatic theory of order in
geometry, which serves equally well for all three geometries. As
no metrical concepts are involved, we obtain a unified theory of
order in projective and in descriptive geometry.
Our theory of order is based on Hilbert’s axioms of incidence,

and on seven axioms of order. The axioms of incidence have
been modified in order to obtain axioms for a geometry of any
dimension (§ 1). Separation of two pairs of lines in a pencil as
a primitive relation of order. Six of our seven axioms of order
a.re those of [1], with minor changes (§ 2). Our seventh axiom
of order is needed to prove the fundamental properties of trian-
gles (§ 4).

Half-flats, in particular half-lines and half-planes, are defined
as sets of segments in § 5. This definition has the advantage that
it may be used in projective as well as in descriptive geometry.
Hilbert’s theory of congruence then is valid, practically without
modifications, for elliptic geometry as well as for Euclidean and
for hyperbolic geometry.

In § 6, our axioms and definitions are compared with Hilbert’s
axioms and definitions.

Points are denoted by capital letters, lines by lower case letters,
other flats by small greek letters, and other sets of points by small
german letters. Intersections of sets of points are denoted by the
sign n. The flat consisting of one point P will be identified,
with the point P.
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1. Axioms of incidence. Definitions.

We consider a geometry as a set, the elements of whieh are
called points, and in which two classes of subsets, called the class
of lines and the class of planes, are given. The following eight
axioms of incidence are assumed.

AXIOM BI 1.1. A line is a set o f points, containing ai least two points.
AXIOM 1.2. Il il and B are two distinct points, then there is a

line to which both A and B belong.
Axiom 1.3. Two distinct lines have at most one point in common.
It follows that two distinct points A and B belong to exactly

one line. This line is denoted by A B.
AXIOM 1.4. A plane is a set o f points, containing three distinct

points not on a line.
Axiom 1.5. I f A, B, C are three distinct points not on a line,

then there is a plane to which A, B, and C belong.
Axiom 1.6. Il two distinct points o f a line belong to a plane,

then the line is contained in the plane.
Axiom 1.7. Let a and b be two distinct lines contained in a plane

n, and let P be a point not in n. Il oc is a plane containing a and
P, and i f 03B2 is a plane containing b and P, then the intersection
o f oc and P is a line.
Axiom 1.8. There are three distinct points not on a line, and four

points not on a plane.
It follows from these axioms that three points A, B, C not on

a line belong to exactly one plane. This plane is denoted by A BC.
If Tt is a plane and P a point in n, then the set of all lines in n

and on P is called the pencil of lines Pln with vertex P and
plane n.
The second part of Axiom 1.8 is only needed in the proof of

the following proposition.
PROPOSITION 1.1. Let l be a line, and let A and B be two points

not on l. Il every line of the pencil A /lA intersects l in a point,
then every line of the pencil B11B intersects 1 in a point.
The well-known proof is omitted.
DEFINITION 1.1. A set  of points is called a flat if the following

two conditions are satisfied:

a) If two distinct points of a line 1 belong to , then l is con-
tained in e.

b) If three points not on a line belong to , then a plane con-
taining these three points is contained in .

Lines and planes are flats, and the intersection of a family



62

of flats is a flat. If a is a set of points, then the intersection of all
flats containing a is the smallest flat containing a, and is called
the flat generated by a.
If  is a flat and A a point not in e, then the flat generated

by  and A is denoted by A. If é contains two distinct points,
and if P is a point of p, then QA is the set-union of all planes
L4, where l is a liné on P and contained in to. If é is a flat, if A
and B are two points not in , and if B is in A, then éB = A.

If  is a flat, if A, B, C, ... are points not in p, and if A =
= B = C = ..., then e is called a transversal flat of the

points A, B, C, .... 
A flat is called proper if it is neither empty nor the set of all

points.

2. Axioms of separation.

Separation of pairs of lines in a pencil is introduced as a pri-
mitive relation, characterized by six axioms. We write ab Il cd,
if two lines a and b separate two lines c and d.
AXIOM 2.1. Il ab j j cd, then a, b, c, d are four distinct lines of a

pencil.
AXIOM 2.2. Il a, b, c, d are four distinct lines of a peiicil, then

e ither ab 1 cd or ac 1,1 bd or bc ~ ad.
AxiOM 2.3. Il ab ~ cd, then ab Il de.
AXIOM 2.4. Il ab ~ cd and bc Il de, then ea Il bc.
Axioms 2.5 aiid 2.6 will be stated later.

PROPOSITION 2.1. Il ab Il cd, then cd Il ab.
PROOF. b, c, d, a are four distinct lines of a pencil by Axiom 2.1,

hence either bc 1/ da or bd Il ca or cd Il ba by Axiom 2.2. Now

ab /1 cd with bc /1 da implies aa Il bc, and with bd Il ca implies
aa ~ bd, by Axioms 2.3 and 2.4, in contradiction to Axiom 2.1.

But then must we have cd Il ba, and hence cd ~ ab by Axiom 2.3.
PROPOSITION 2.2. The three relations ab )) cd, ac Il bd, and

bc ~ ad exclude each other.
PROPOSITION 2.3. Il a, b, c are three distinct lines of a pencil,

and if p and q are lines such that ab ~ pq, then either ab ~ cp or
ab 11 cq, but not both.
The proofs of Propp. 2.2 and 2.3 may be found e.g. in [1
It is convenient to generalize separation as follows.
DEFINITION 2.1. We shall say that 03B103B2 ~ yô, if there are a line

l, a point P not on 1, and four lines a, b, c, d of the pencil P/l P
such that ab cd, and that:
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« is either the line a or a point A common to the lines a and l;
03B2 is either the line b or a point B common to the lines b and l;
y is either the line c or a point C common to the lines c and l;
03B4 is either the line d or a point D common to the lines d and l.
If two of the four flats oc, 03B2, 03B3, 03B4 are lines, then they determine

the pencil P/l P. If two of them are points, then they determine
the line l. If at most one of th e four flats a, 03B2, 03B3, 03B4 is a point,
then the relation 03B103B2 111 yô does not depend on a particular choice
of the line l. If at most one of the four flats is a line, then afl Il 03B303B4
does not depend on a particular choice of the vertex P by Axiom
2.6 below.
Axioms 2.120132.4 and Propositions 2.120132.3 may also be gene-

ralized under suitable hypotheses.
AxiOM 2.5. I f a is a line, B a point not on a, and 1 a line of the

pencil B/aB, then there are points C and D on l such that aB ~ CD.
AxiOM 2.6. Let A and B be two distinct points, let P and P’ be

two points not on the line A B, let c and d be two lines of the pencil
P/A BP, and let c’ and d’ be two lines of the pencil P’/ABP’. If
c ~ A B = c’ n A B, and d r1 A B = d’ ~ A B, then AB ~ cd im-
plies AB 11 c’d’.
Each of the intersections c n A B and d ~ AB is either empty

or a point.
PROPOSITION 2.4. Il A and B are two distinct points, and if

t is a transversal line o f A and B, then there are points C and D
on the line A B such that AB ~ Ct and DA Il Bt.
PROOF. By Axiom 2.5 there are points P and Q on A B such that

Bt il PQ. Then PA 1B Bt or QA Il Bt by Prop. 2.3, and there is a
point D such that DA il Bt. Similarly there is a point C such that
CD Il A B, but this and DA ~ Bt imply A B ~ tC by Axiom 2.4.
COROLLARy. Il a, b, c are three distinct lines o f a pencil, then

there is a line d such that ab ~ cd.
PROPOSITION 2.5. Il A and B are two distincts points, and i f c

and d are lines such that AB ~ cd, then at least one o f the lines c
and d intersects the line A B in a point.

PROOF. By Prop. 2.4 there is a point P on A B such that ABllcP.
If neither c nor d intersect A B, we have AB ~ dP by Axiom 2.6,
contrary to Prop. 2.3.

3. Sectors and segments.

DEFINITION 3.1. If ce, 03B2, y are points or lines, then (ocp), denotes
the set of all points P such that 03B103B2 Il yP.
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DEFINITION 3.2. A set a of points is called a sector, if there are
three distinct lines a, b, c of a pencil such that a = (ab)c.
The lines a and b are called the sides, the vertex a n b of the

pencil is called the vertex of the sector (ab)c. A line through the
vertex and a point of a sector is called a line of the sector. No
sector is empty (Prop. 2.4).

If at least two of the flats oc, 03B2, y in Def. 3.1 are lines, and if
the set (03B103B2)03B3 is not empty, then (03B103B2)03B3 is a sector. If at least two
of the flats ex, 03B2, y are points, and if (03B103B2)03B3 is not empty, then

(03B103B2)03B3 is the intersection of a sector with the line joining these
two poinst.

. PROPOSITION :3.1. Il a and b are two lin.es and C and D two points
such that ah ~ CD, then a point of the plane aC is either on a or
on b or in exactly one of the two sectors (ab)c and (ab )D. A point
P is in (ab)c if, and only if, (ab)p = (ab)D.

In other words, two intersecting lines a and b divide their
plane into two supplementary sectors with sides a a.nd b.

Prop. 3.1 follows directly from Prop. 2.3.

PROPOSITION 3.2. Il a, b, c are three distinct lines of a pencil
Pin, then a point of the plane n of the pencil is either on one of the
lines a, b, c, or in exactly one of the three sectors (ab)c, (ac )b’ (bc)a.

This follows directly from Axiom 2.2 and Prop. 2.2.
PROPOSITION 3.3. Let l be a line, P a point not on l, and let a

and b be Two supplementary sectors in the plane lP and with vertex
P. If l meets one o f the two sides of a and b, then l contains points
o f a and points of Ó. Il the two sides of a and b do not intersect l,
then l is either contained in a or contained in Ó.

This follows directly from Axiom 2.5 and Propp. 2.3 and 2.5.
DEFINITION 3.3. Let A, B, C be three distinct points of a line.

The set (AB)C is called a segment with endpoints A and B if every
li ne d, for which AB 11 Cd, intersects the line A B.
A segment with endpoint A shall also be called a segment

at A.

THEOREM 3.4. Let A and B be two distinct points. Il a transversal
line t of A and B does not intersect the line A B, then (AB), is a
segment with endpoints A and B. Il every transversal line of A and
B intersects the line A B in a point, and i f C and D are points such
that AB 11 CD, then (AB)c and (AB)D are supplementary seg-
ments with endpoints A and B.

PROOF. If the transversal line t does not intersect AB, let C
and D be points such that AB 11 Ct and AB ~ CD. Then (AB), =
(AB)D. If u is a transversal line of A and B which does not
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intersect A B, then AB 11 Cu by Axiom 2.6. It now follows from
Prop. 2.3 that every line u, for which A B Il Du, intersects A B.
The second part of the theorem follows directly from Prop. 3.1
and Def. 3.8.

PROPOSITION 3.5. Let A, B. C be points and t a line such that
A B il Ct. I f (AB)t is a segment, then (AC)B and (BC)A are segments
contained in (AB)" and every point o f (A B),, except C, is in

exactly one o f these segments. Conversely, if (AC)B and (BC)A are
segments, then (AB), is a segment.

This follows directly from Propp. 3.1 and 3.2 and from Def. 3.3.
PROPOSITION 3.6. I f A and B are two distinct points, then there

is a segment with endpoint A and containing B.
PROOF. If there is a transversal line of A and B which does

not meet A B, let t be such a line. Otherwise, let t be any trans-
versal line of A and B. If C is a point such that AC ~ Bt (Prop.
2.4), then (AC)t is a segment with endpoint A and containing
B by Theorem 3.4.

4. Triangles.

The exterior domain of an oval quadric in real projective space
is an example of a geometry, which satisfies Axioms 1.120131.8

and 2.1-2.6, but in which three points not on a line are not
always the vertices of a triangle. This example shows that we
need a further axiom in order to obtain the fundamental proper-
ties of triangles.
AXIOM 4.1. Let A, B, C be three points not on a line, and let t

be a transversal line o f the points A, B, C. Il (BC), and (CA), f
are segments, then (AB), is a segment.

This axiom is a special case of the following theorem.
THEOREM 4.1. Let A, B, C be three points not on a line, let a be

a segment at B and C, and let b be a segment at A and C. Then there
is a uniquely determined segment c at A and B, such that any trans-
versal line o f the points A, B, C intersects either none or exactly
two o f the three segments a, b, c.

PROOF. Let P and Q be points such that a = (BC)p and
b = (AC)Q, and let t = PQ. We prove the theorem for c = (AB)t.
This is a segment by Axiom 4.1. If R is a point of a, we have
BC B1 Rt, and hence BA ~ tp for p = QR. If q is a line through R
and such that AB ~ pq, then (AB)q = (AB)t = c by Prop. 3.1,
and b == (AC)p. If s is a transversal line of A, B, C through R,
then AC 1B ps or A B ~ qs, but not both (Prop. 2.3). It follows

that 9 intersects one of the two segments b and c, but not the
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other. We may prove in the same way that a transversal line

through a point of b or of c intersects exactly one of the other
two segments, completing the proof.

In order to generalize Theorem 4.1 we introduce the following
definition.
DEFINITION 4.1. Let ,,4, B, C be three distinct points, and let

a be a segment at B and C, b a segment at A and C, and c a
segment at A and B. We shall say that a, b, c are the sides o f a
generalized triangle with vertices A, B, C, in symbols: L1 (a, b. c),
if any transversal flat of the points A, B, C intersects either none
or exactly two of the segments a, b, c.

THEOREM 4.2. Let A, B, C be three distinct points, let a be a

segment at B and C, and let b be a segtnent at A and C. There is a

uniquely determined segment c at A and B such that d (a, b, c).
PROOF. If A, B, C are not on a line, and if t) is a transversal

flat, then  ~ ABC is either empty or a transversal line of

A, B, C, and the contention follows from Theorem 4.1.
If A, B, C are on a line, let T be a point such that AB ~ CT.

If T is in a, but not in b, tlieii A is in a, B is not in b, b = (AC)B
is contained in a, and d (a, b, c) for c = (A B)c by Prop. 3.5.

Similarly, if T is in b, but not in a, then a is contained in b, and
4 (a, b, c) for c = (AB)C. If T is neither in anorinb, then 03B1 = (BC)A
and b = (AC)B, so that 4(a, b, c) for c = (AB)T, containing a
and b (Prop. 3.5.). If T is in a and in b, then a Qb = (AB)C,
a n (AB)T = (AC)B. and b ~ (AB)T = (BC)A; hence (03B1, Ó, c)
for c = (AB)T.

COROLLARy. We have d (a, b, c) for c = (A B )c if, and only if,
one of the two segments a, b is contained in the other.
THEOREM 4.3. Let A, B, C be three distinct points, let a be a

segment at B and C, lj a segment at A and C, and c a segment at
A and B, and let  be a transversal flat o f A, B, C. If  intersects
either none or exactly two of the segments a, b, c, then d (a, b, c).

PROOF. We either have d (a, b, c) or d (a, b, b) with b supplemen-
tary to c. In the second case,  intersects either none or two of
the segments a, b, £5, and A B n o is a point. It follows that e
intersects either all three segments a, b, c, or exactly one of them,
contrary to our assumption.

PROPOSITION 4.4. Let A, B, C, D be four distinct points, let a
be a segment at A and D, let b be a segment at B and D, and let c
be a segment at C and D. Il p, q, and r are segments such that
0394(b, c, p), 0394(03B1, c, q), and d (a, b, r), then d (p, q, r).

PROOF. If é is a transversal flat of A, B, C, D which intersects
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b and p, then  does not meet c, and  intersects either r, but

neither a nor q, or a and q, but not r. In both cases 4 (p, q, t)
by Theorem 4.3.
THEOREM 4.5. Let a, b, and c be three segments such that L1(a, 0, c).

If there is a segment p supplementary to a, then there are segments
q supplementary to ú, and r supplementary to c, and we have

L1 ( a, q, r), L1 ( q, b; ), and 0394(p, q, c).
PROOF. If é is a transversal flat of the endpoints of a, b, c,

which intersects a, then e intersects either b or c, but not both,
and we cannot have L1(,p, b, c). It follows from Theorem 4.2 that
0394(q, b, r) for a segment t supplementary to c. Similarly 0394(p, q, c)
for q supplementary to b, and L1 (a, q, r).

5. Half-flats.

DEFINITION 5.1. Let p be a proper flat and P a point of e.
If a is a segment at P, but not in , then e 1 a denotes the set
of all segments p at P such that p is either supplementary to
a, or that there is a segment q intersecting e in a point, and for
which 4 (a, p, q). A set D of segments at P is called a half-flat
with boundary (, P), if there is a segment a at P, but not in e,
such that Sj = e a.

If A is the other endpoint of a, then e 03B1 consists of segnients
at P and in 4, but not in p. We shall say that a is a half-
flat on A. A half-flat on a line is called a hal f -line; a half-flat
on a plane is called a hal f -plane.

PROPOSITION 5.1. If  is a proper f lat, P a point o f e, A a point
not in p, and a a segment at P and A, then e a is a non-empty set.

PROOF. There is a segment q at A containing P (Prop. 3.6),
and a segment p such that 0394(a, p, q). ,p belongs to p a.

Let 9 be a proper flat, let P be a point of , let a, b, c be seg-
ments at P, and let A, B, C be the other endpoints of a, b. c,

in this order.

LEMMA 5.2. If b is in e  a, then a is in P ! ( b.
This follows directly from the définition. 
LEMMA 5.3. If b and c are in  a, then c is not in  1 o.
PROOF. If B = C, then a is either supplementary to b and to c,

or there is a segment T intersecting , for which J (a, b, r) and
L1 (a, c, ). In both cases, b = c. If B ~ C, let (b, c, p). If A = B,
and if A (a, c, q), then a and b are supplementary segments. But
then p and q are supplementary, and p intersects q, but not p.
Tr 0394 R r 61-,.P three distinct points. and if (a, c, a) and L1(a, b, r),
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then Lo intersect03C3 q and r. Since 11 (p, q, ) by Prop. 4.4, p does not
intersect P.
LEMMA 5.4. If  is a transversal flat o f A and B, and if b is not

in Q |a, then e a = e 1 o.
PROOF. If A = B, then a = o. Otherwise, let (a, 0, t). t does

not meet e. If C = A, and if L1 (b, c, p), then e is supplementary
to a if, and only if, p is supplementary to r, that is if, and only
if,  intersects p. If A, B, C are three distinct points, and if

 c, p) and 0394(a, c, q), then 0394(p, q, r) by Prop. 4.4, so that 0
intersects p if, and only if, é intersects q. In each case, c is in

 a, if, and only if, c is in  1 o.
THEOREM 5.5. Il  is a proper flat, P a point of , A a point

not in , a a segment at P and A, and b a segment of é a, then a
segment c at P and in QA is either contained in  or belongs to exactly
one of tlie Two half-flats e 1 a and e 1 Ó with boundary (, P). Il c
is in e 1 a, then  | c = |b, and if c is in  | b, then  | c = e 1 a.

In other words, there are exactly two half-flats on A and with
boundary (, P). Two lialf-flats in this position are called com-
plementary half-flats.

PROOF. Let c be a sement at P and in eA, but not in p. If e

does not belong to  a, then  1 c =  1 a by Lemma 5.4.; hence
c is in  1 0 by Lemma 5.2. If c is in e 1 a, then c is not in  1 Ó by
Lemma 5.3, and  | c =  | b by Lemma 5.4.
COROLLARY. I f c and b are two supplementary segments at P and

in eA, but not in e, then one of the two segments c, b is in é a,
the other in  1 Ó.

PROPOSITION 5.6. Let  be a proper flat, P a point of , A a point
not in e, and a a segment at P and A. Il a is a flat contained in 9
and containing P, then a a is the set o f all segments belonging
to Q 1 a and contained in aA.

This follows directly from Def. 5.1.
PROPOS.ITION 5.7. Two segments at a point P are in the same

half-line with boundary (P, P) i f , and only i f , one of the two seg-
ments is contained in the other.

This follows directly from the Corollary of Theorem 4.2.
PROPOSITION 5.8. Let e be a proper flat containing two distinct

points P and Q, let p be a segment at P and Q, let a and b be two

segments at P, but not in e, and let c and b be segments at Q such
that 0394(a,p,c) and L1(o,.p, b). If b is in  a, then b is in 9 | c.

PROOF. If b is supplementary to a, then b is supplementary
to c. Otherwise there is a segnlent t intersecting  and such that
L1 (a, Ó, t). But then L1 (c, b, t) by Prop. 4.4, and b is in  c.
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Prop. 5.8 establishes a one-one correspondence between seg-
ments at P and segments at Q, which maps half-flats with boun-
dary (, P) on half-flats with boundary (p, Q).
PROPOSITION 5.9. Let a, b, c, d be four distinct lines of a pencil

Pln, let c be a segment at P and on c, and let b be a segment at P
and on d. ab Il cd if, and only if, b is in one of the Two half-planes
a 1 c and b c, but not in the other.

PROOF. Let 0394(c, b, p), and let a be the sector with sides c and
d containing p. ab ~ cd if, and only if, exactly one of the lines a,
b is a line of a, hence if, and only if, exactly one of the lines a, b
intersects the segment p, and thus if, and only if, b is in one of
the two half-planes a c and b c, but not in the other.

If a and b are two distinct lines through a point P, if a is a
segment on a and at P, and if b is a segment on b and at P,
then the intersection of the half-planes b a and a b is called
an angle with sides P a and P b and with vertex P. It follows
from Prop. 5.9 that the segments of an angle with sides on a
and on b are contained in a sector with sides a and b. The segments
of supplementary angles are contained in supplementary sectors;
the segments of opposite angles are contained in the same sector.

6. Descriptive geometry.
THEOREM 6.1. Il there is a line l and a point P not on l such that

every line o f the pencil P11P intersects the line l in a point, then
two lines in a plane always intersect in a point.

PROOF. Let A and B be two distinct points, and let C and D
be two points on l and different from A and from B. It follows
from Prop. 1.1 that every transversal line of C and D intersects
1, and hence from Theorem 3.4 that there are two supplementary
segments c and b at C and D. Let p be a segment at A and C
and q a segment at B and D. By Theorem 4.5, we have 0394(c, p, r)
and 0394(b, p, p) for supplementary segments r and S, and hence

0394(q,  a) and L1(,p, e, b) for supplementary segments a and b at
A and B. But then every transversal line of A and B intersects

AB, proving the theorem.
An incidence geometry may be called a descriptive geometry

if, for any two distinct points A and B, there is a transversal
line of A and B which does not intersect the line A B. It follows
from Theorem 6.1 that a geometry satisfying our axioms is either
a projective geometry or a descriptive geometry in this sense.
DEFINITION 6.1. Let A, B, C be three distinct points. We say

that C is between A and B, in symbols : (ACB), if there is a line t
not intersecting the line A B and such that A B ~ Ct.



70

If tliere are points A, B, C such that (A CB ), then our geometry
is descriptive. There is a unique segment with endpoints A and
B, and Theorem 3.4 implies the following proposition.
PROPOSITION 6.2. Let A and B be two distinct points. Il there

is a point C such that (ACB), then the segment with endpoints A
and B is the set of all points P such that (A PB).

In other words, Def. 3.3 is equivalent in a descriptive geometry
to the usual definition of segments in terms of betweenness.

Hilbert’s axioms of order are easily verified for a descriptive
geometry satisfying our axioms. If (A BC ), then A, B, C are three
points on a line by definition, and (ABC) implies ( C BA ) by
Axiom 2.3 and Prop. 2.1. This proves Hilbert’s Axiom II.1.
If A and B are two distinct points, then there is a point C such
that (ABC) by Prop. 2.4. The relations (BAC), (ABC), and
( A C B ) exclude each other by Prop. 2.2. This proves Axioms II.2
and II.3. Axiom II.4, the Axiom of Pasch, is an immediate con-

sequence of our Theorem 4.1.

Conversely, separation of lines in a. pencil in descriptive geo-
metry may be defined in terms of betweenness as follows: ab ~ cd
if, and only- if, a, b, c, d are four distinct lines of a pencil Pln,
such that there are points A and E on a, B on b, C on c, and
D on d, for which (ACB), (BDE), and (APE).
With this definition, our Axioms 2.1-2.6 become consequences

of Hilbert’s axioms of order, and so does Axiom 4.1 for segments
in the sense of Prop. 6.2. The first part of Theorem 3.4 remains
valid for segments in this sense, but our Def. 3.3 is equivalent
to the usual definition of segments (by Prop. 6.2) only if, for

any two distinct points A and B, there is a transversal line of A
and B which does not meet the line A B. This is not a. con-

sequence of Hilbert’s axioms of order, as is well known.

If  is a proper flat in descriptive geometry and A a point
not in , then the hal,f- f lat |A is usually defined as the set of all
points B such that the segment A B intersects the flat  in a

point. If P is a point of p and a the segment at P and A, then
elA is the set of all second endpoints of the segments of é a,
as defined in § 5.
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