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Potential-theoretic methods in the theory of
functions of two complex variables 1)

by

S. Bergman and M. Schiffer

1. The space of functions of two complex variables.
Basic geometric assumptions.
The fact that the geometry of the space of two complex

variables in contrast to the situation for one variable, differs
from that of the Euclidean space of four real variables, has a
decisive influence on the structure of the theory. This difference
is that many geometrical entities which appear in investiga-
tions of functions of two variables are completely unlike those
with which we usually operate in the Euclidean space. This

results primarily from the fact that a function of one variable
vanishes at a point and the point is the .basic element with the
help of which the manifolds of interest in the theory are gen-
erated, while an analytic function of two complex variables
vanishes only in an analytic surface, and thus the analogous role
is played by an analytic surface (and a segment of this surface).

Therefore, in building up manifolds in the geometry of functions
of two variables, ive have to introduce as elements: analytic
hypersurfaces (one-parameter family of analytic surfaces) and
segments of such hypersurfaces, domains which are bounded by
finitely many segments of analytic hypersurfaces and on the
boundary of which lies the distinguished boundary surface (the
sum of intersections of the above analytic hypersurfaces), etc.
(See [1, 2, 4] ) 2 ). It is natural to associate with the elements of the
space of functions of two complex variables various "measures",
i.e., numbers which describe quantitatively certain properties
of the manifolds arising in this geometry. See [3]. The present
paper is devoted to the derivation of inequalities between certain

1) Paper done under contracts with the Office of Naval Research N5ori ?’6/16
NR 043-040 and N5ori 07867.

2 ) Numbers in brackets refer to the bibliography.
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"measures" which refer to the behavior of analytic functions of
two variables.

Although we shall consider a rather special class of domains,
the methods and procedures developed in the following can be
applied in the case of much more general domains. However, in
order to present more clearly the basic ideas of the methods
which can be developed in the theory of functions of two complex
variables and to avoid the technical difficulties which arise
while considering more general domains, bounded by finitely many
analytic hypersurfaces, we restrict ourselves to the domains
described in the following:
Let h(03B6, z2), 03B6 = e + i~, z2 = x2 + iy2, be a continuously dif-

ferentiable function of the four real variables x2, y2, 1, q for
|03B6| ~ 1, |z2| ~ 1. Let for 1 - 03B5 ~ |03B6| ~ 1, 03B5 &#x3E; 0, and |z2| ~ 11
h(03B6, z2) be an analytic function of the two complex variables.
. We further assume that for every fixed Z2, 1 Z2 | ~ 1,
ZI = h(ei03BB, z2), 0 ~ 03BB ~ 2n is a closed curve which does not in-
tersect itself, i.e., h(ei03BB1, Z2) e h(ei03BB2, z2), for 03BB1 ~ 03BB2 (mod 203C0),
and which includes the origin, z1 = 0, in its interior.
The union of segments of analytic surfaces 3),

is a segment of an analytic hypersurface. The union of segments of
analytic surfaces

also forms a segment of an analytic hypersurface.
The union of segments of analytic surfaces

3 ) The upper index on a manifold indicates the dimension of the manifold.
In the case of four-dimensional manifolds, we omit the upper index 4. The sums
(1.1) and (1.2) are to be understood in the point-set sense. We note that every
segment D2(ei03BB’) + %1(eiÀ) and D2(ei~2) + D1(ei~2) lies in a different surface.
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form a domain. From the continuity of h(ei03BB, z2) considered as a
function of 03BB, x2, y2, and the fact that h1(ei03BB) is a simple closed
curve, it follows that T is simply-eonneeted.
LEMMA 1.1. The boundary of i) is b3 +,43.
PROOF. 1. We shall at first show that in the neighborhood of

every point, say (ZI1, z21), of d3 + ij3, there are interior points
of S). We shall distinguish three cases: a) (z11, z21) E D2(ei03BB);
b) (ZI1, z21) ~ D2(ei~2); c) (Zlll Z21) E" d1(ei~2).

a) The curve [z, = h(eiÂ, z21), 0 ~ 03BB ~ 2n], divides the plane
z2 = Z2I, into two parts, D2(z21) and the exterior of D2(z21). Let
Z10 be an interior point of D2(z21). We wish to show that (ZI0, z21)
is an interior point of T. Since zi° is an interior point of D2(z21)
the distance between z10 and the boundary curve d1(z21) is e,

é &#x3E; 0. From the continuity of h(ei03BB, Z2) it follows that there
exists a neighborhood | z2 2013 z21| ~ 03B5, 1 2013 | z21 | 1 &#x3E; e &#x3E; 0, so

that the distance of the points z, from d1(z21), | z2 2013 z21 | ~ e,
is larger than Q/2. Thus, the bicylinder Il z2 - z21 | :S e,

| z1 2013 z10 | ~ é/2] will consist of interior points of the domain D
and therefore (z10, z21) is an interior point of D.

b) Exactly in the same manner, it can be shown that if

zli,E D2(ei~2), Z21 == ei~2, (ZI1, z21) is a boundary point of 1.
c) Let, finally, z11 = h(ei03BB, ei9’2), Z2 2 = ei~2.

Let z10 ~ D2(ei~2), such that Z10 -- z11 |  e, and let- us suppose
that the distance between Z10 and bl(eiqJ2) is larger than ,  &#x3E; 0.

From the continuity of h(eiâ, Z2) it follows that for | z2 2013 ei~2 |
sufficiently small, say  y, the distance between Z10 and bl(Z2)
will be larger than e/2, and therefore the point (Z10, Z20), z20 =

(1 2013 03B3)ei~2 will be an interior point of T.

2. We now wish to show that the boundary of 1 consists
only of the points of 53 + 43. Suppose (ZI0, z2°) is an interior, and
(z11, Z21) an exterior point of T. Let further el be an oriented curve
which begins at (z10, z20) and ends at (ZI1, z21), and let (z12, z22)
be the first point of c1 which does not belong to T and whieh
we meet moving along c1 from (ZI0, Z20). Since the interior of S)
is given by the points z1 = h(eeiÂ, reiP2), Z2 = 03C4ei~2, e  1,
i  1, and the curves h( eiÂ, ei~2), Z2 = ei~2 vary continuously,
one of the following three possibilities must hold for (ZI2, z22):
a)  = 1, 03C4  1; b)   1, 03C4 = 1; or c)  = 1, 03C4 = 1. In all
three cases (ZI2, z22) belongs to $3 + d3, which proves our assertion.

Tile intersection of b3 and S3
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forms a closed surface which lies on the boundary of S) and is
called the distinguished boundary surface of D. It follows from
(l.lb) and (1.2b) that

By the transformation

the bicylinder | 03B6 | ~ 1, 1 z21 |  1 is mapped into tlle closed

domain D.
Here the segment [03B6 = ei03BB, | z2 |  1] goes into the segment

D2(ei03BB) = D2(ei03BB) + h1(ei03BB) of D, and [| 03B6 1  11 Z2 = ei~2] goes
lllt0 D2(ei~2).
LEMMA 1.2. The decomposition of a simply-connected segment

of an, analytic hypersurface in a one parameter family of segments
of analytic surfaces is essentially unique. That is

where D2(ei03BB) and L2(ei03BC) = [zi = t(ei03BC, Z2)] are segments of
analytic surfaces, and t(03B6, z2) satisfies the same differentiability
conditions as h(03B6, z2), see p. 214, then Â = Â(p) is a continuotis,
monotonically-increasing (or decreasing) function o f p, and

D2(ei03BB(03BC)) - L2(ei03BC).
PROOF: Let h3x, m = 1, 2, denote open manifolds

Then 43 is divided by D2(ei03BB0) into two disconnected parts, g13
and 423. For every value of 03BB3, where | 03BB3 2013 03BB0| ~ 03B5, e sufficiently
small, )"3  03BB0, there exists a sphere"4) C3(P) with a center at
P E D2(ei03BB3) which lies completely in 43 and which includes in

its interior points of 1)23. The manifold which separates the points
of h13 from those of h23 must be at least a two-dimeiisional ma-
nifold and since it belongs to D2(ei03BB0), D2(ei03BB0) is a two-dimensional
manifold.

Suppose now that D2(ei03BB0) does not coincide with any L2(ei03BC),
0 ~ 03BC ~ 03BC1. Then the intersection with every L2(ei03BC), consists

4) I.e. the set of points of 41, whose distance from P is smaller than e, 

being a sufficiently small positive constant.
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of finitely many points. Let for 03BC = ,uo, the intersection points
be (ZI (0, V), z2(0,03BD), 03BD = 1, 2, ... in(po). Therefore according to
our hypothèses

has for Il = Ilo finitely many solutions, say z2 = z2(0,03BD), 03BD = 1, 2,
... m(po)’ for,vl1ich 1 Z2(O,V) 1  1. Let z2(03BD)(03BC) denote the solution
of the équation (1.7) in the neighborhood of p = ,uo. Obviously
there must exist a smallest n, n &#x3E; 0, for ,vhich hn(ei03BB0) ~ tn(ei03BC0).
Therefore there exists a neighborhood, say [Po 2013 03B5 ~ 03BC ~ po + c],
where hn(ei03BB0) ~ tn(ei03BC). Since

and t is a continuously differentiable function of p, by the
theory of implicit functions, the intersection curve D2(ei03BB0)
with Z2 (eiy), po 2013 03B5  P  Po + e, consists of at most n branches

where Z2(O, v, x)(03BC), for Po e  03BC ~ /lo + B, are continuously
differentiable functions of ¡te

Using the Heine-Borel theorem it follows that the interval

(0, 03BC1) can be divided into finitely many sub-intervals,

[03BC 2013 03B5 ~ 03BC ~ 03BC + c] such that in every sub-interval the inter-

section of D2(ei03BB0) and £ L2(ei03BC) can be represented in the above

described manner. Such a set il of curves cannot fill out a two-
dimensional neighborhood. Since points which lie in 413 + h23
cannot belong to the division manifold of h13 with h23, it follows
that a one-dimensional set il separates h13 from h23, which is a
contradiction, since we have shown that this manifold includes
a two-dimensional set.

Thus, D2(ei03BB0) must coincide with some L2(ei03BC), say L2(ei03BC0).
Consider now three segments D2(ei03BB),  = 2, 3, 4, 0  03BB2 

Â3  03BB4  Âl, (or A2 &#x3E; Â3 &#x3E; 03BB4), and the corresponding images
L2(ei03BC),  = 2, 3, 4. The segment L2(ei03BC3) divides the domain
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S D2(ei03BB) into two parts. Since S D2(ei03BB) is simply connected,

and L2(ei03BC3) = D2(ei03BB3), we have, necessarily, 03BC2  P3  03BC4, i.e.,
p(Â) must be a monotonically-increasing (or decreasing) function
of Â, and vice-versa.

In every  L2(ei03BC), we consider the curve

Let s(03BC) be the length of this curve counted from the point
[t(eille, z2(0,1)), z2(0, 1)]. Obviously s(y) is a bi-continuous function
of IÀ. Thé same holds for s(03BB). Therefore À is a bi-continuous
function of ju. Q. e. d.
A function f(z1, z2) of two complex variables assumes a constant

value, say v, in an analytic surface, say 12 = [f(z1, z2) = v],
and it is of interest to associate certain "measures" with the

intersections of Fv2 with segments of analytic surfaces and hyper-
surfaces. In the following in (1.8)-(1.9) and (1.10)-(1.11) we
shall introduce several quantities of this type:

1) The intersection, Fv2 ~ D2(t2), forms the set 03B1(t2) of points

We shall consider the following "measures" of the set 03B1(t2):

where 03A9(t1, t2), Q(O, t2) = 0, 03A9’(0, t2) &#x3E; 0, is the function mapping
i)2(t2) onto the unit circle, and y the Green’s function of the unit
circle.

(1.8) is the potential defined in D2(t2) at tl of charges at the
points av(t2) which vanishes on the boundary d1(t2).

(1.9) is the sum of the logarithms of the Euclidean distances
from Q(ti, t2 ) of the images of the points OC,,(t2) of the set 03B1(t2).

2) According to Lemma 1.2, a segment, say h3, of analytic
hypersurfaces can be represented in a unique manner as a sum of
segments of analytic surfaces,
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The intersection of Fv2 with the segment h3 = [z1 = h((!eiÂ, z2),
0 ~ 03BB ~ 2n, | z2 |  1], -constant, is the line

which consists of a number of branches h03BD1.
We introduce now the "measures":

and

G(v, t2l QI 039B) represents the average (with respect to the weight
A, see (3.18)) of the potentials (defined in the unit circle) at t2
of charges at the points a03BD(ei03BB) which vanishes on the boundary
of the unit circle.

L is the average (with the weighting function A), of the sum
of logarithms of euclidean distances of the points a,,(eiÂ) from t2.
By analogy with the interior normal of a curve in the case of

functions of one complex variable so in the space of functions of
two complex variables we can distinguish two "normals" with
every point P of the distinguished boundary surface. The respec-
tive intersection of C2 with the lamina D2(ei~2) and D2(ei03BB) are
the curves d1(ei~2), and h1(ei03BB). Both curves pass through the point
P = [z1 = h(eiÂ., ei~2), Z2 = eiqJ2] and we define at the point P
two "nor1nal directions" nl, n2, the first lying in D2(ei~2) and
perpendicular to d1(ei~2) at P, while n2 lies in D2(ei03BB), perpendicular
to h1(ei03BB) at P. If the normal derivatives are directed into the
interior of the respective curves, we shall speak of interior nor-
mals.

Let f(z1, z2) be a function which is defined on and in the neigh-
borhood of C2. In order to simplify the formulas in the present
paper it is convenient to introduce the following symbols:
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If f(z1, z2) is a function for which

exist, we shall call them the derivatives in the first and second
normal directions, respectively.
Our aim is to derive inequalities o f the Nevanlinna type relating

the "measures" o f segments o f the sur f ace f = v = const. and the
quantities (1.13), (1.14), see p. [238] and [239]. See also [3].

Further in § 3 we generalize the relations between the kernel-

function and Green’s functions obtained in [5] to the case of two
complex variables.

§ 2. Extended class of functions.
As is well known the real or imaginary part of a function of

two complex variables zl, Z2 satisfies the system of differential
equations

The functions satisfying the above system will be called B-

harmonic functions 5).
As already mentioned in the introduction, the distinguished

boundary surface plays in many respects a role similar to that
of the boundary curve in the case of functions of one complex
variable (see [1, 3, 4]). In one important respect, however, the
analogy fails: If a real, sufficiently smooth function is given on
the distinguished boundary surface, then in general, there need
not be a B-harmonic function (defined in the domain) which
assumes the prescribed values on the distinguished boundary
surface. In order that the boundary value problem shall always
have a solution, it is useful to extend the class of B-harmonic
functions. In the case of a bicylinder, this extension can be carried
out in a natural way, by enlarging the class of B-harmonic
functions to the class of doubly-harmonic functions, i.e., of func-

b) We use this notation rather than biharmonic functions, since the functions
03C8(x, y) which satisfy the equation v = 0 are already called biharmonic
functions.
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tions which satisfy the system (2.1) but not necessarily the system
(2.2). Then the boundary value problem with the boundary
values prescribed on the distinguished boundary surface C2 =
[z1 = h(ei03BB), ei~2), z2 - ei~2, 0 ~ 03BB ~ 2n, 0 ~ q;2 ~ 203C0] always
has a solution. On the other hand the class of doubly-harmonic
functions is not invariant with respect to pseudo-conformal
transformations 6), and we proceed to describe functions of an
extended class which are invariant with respect to pseudo-con-
formal transformation for the domains described in § 1.

We shall consider two possible extensions of this type and
shall denote the corresponding function classes by E = E(L),
(see also [1, 3, 4]) and E = (D), respectively. Each of them
will be appropriate for a spécial type of boundary value problem.

DEFINITION 2.1 Let F(z1, z2 ) be a real-valued function

defined in D. Let L be a subset of 0 ~ 03BB ~ 03C0 and let the set
of values of À, 0 ~ 03BB ~ 2n, which do not belong to 2 be of
measure 0. If Ft(eiÂ, z2) is a harmonic function of x2, Y2 in
1 z21  1 for 03BB ~ L, and F(z1, z2) is a harmonic function of xl, y1 in
1 zl | ~ 1, which assumes the value F(zl, z2) = Ft(ei)w, z2), for

every ~ L then we say F belongs to the class E = E(D).
We now construct a function F(zl, z.) of the class E whicli

on 62 (see (1.4 ) ) assumes the values f(ei03BB, ei~2), in the case that
f(ei03BB, ei~2) is continuous in both variables 03BB, ~2. This will be done

by: first defining F(z1, z2) on the boundary U3 + h3 of % and
then extending this definition to the interior of T.

By (1.2), d3 is a union of segments D2(ei~2), each of which is
bounded by d1(ei~2). For every fixed ~2, we determine that

function which is harmonie in xl, yl in D2(ei~2) and assumes
on d1(ei~2) the prescribed values, i.e., we write

where 03B3(t1, z1; ei~2) is Green’s function of D2(ei~2), and n, and
dsl are the direction of the interior normal and the line element
of d1(ei~2), respectively. By (2.3), F(ZI’ Z2) is defined in h3.

According to (1.5), C2 is the union of curves h1(ei03BB). For every
)1., we determine in Sj2(eiÂ) the function F(z1, z2), so that

6) A transformation of a four-dimensional domain in the (zl, z2)-space by a
pair of analytic functions of two complex variables zvk = wk(z1, z2), k = 1, 2,
~(w1, w2)/~(z1, z2) ~ 0, will be called a pseudo-conformal transformation.
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is a harmonic function of x2, y2 in x22 + y22  1, i.e., we write

By (2.5), F(z1, z2) is defined in h3.
We now proceed to define the function F(z1, z2) inside Z. The

intersection of S) with z2 = z2° is the domain D2(z20) bounded by
the curve d1(z20). According to (1.2b), (1.lb), (1.1), every point
(z10, z20) E d1(z20), lies in ij3, and therefore, according to our

previous considerations, the function F(zl, z2) is determined at

every point of d1(z20). We now determine that function of xl, y,
which in D2(z20) is harmonic in xl, y1 and which assumes on the
boundary curve dl(Z20) the prescribed values. By (1.3), this

procedure defines F(zl, Z2) in i).
We obtain for tl E D2(t2)

where P(eiqJ2, t2 ) is the Poisson kernel, and n, and ds, the interior
normal and line-element of d1(t2), respectively.

Using the theorems of Carathéodory, Courant, and Radô, it

can easily be shown that F(zl, Z2) assumes on the distinguished
boundary surface @2, the boundary values 1(eiÂ, ei~2).
We now proceed to the description of functions of the class

E(D). In order to do this, it is useful to introduce the notion of
a function F*(z1, z2), pseudo-conjugate, to (z1, z2). Let f(ei03BB, ei~2)
have continuous partial derivatives with respect to each argument.
Then there exists a function f*(ei03BB, ei~2) + C1(ei~2), such that
f(ei03BB, e992 and f*(ei03BB, ei~2) + C1(ei~2) are the boundary values of
functions harmonic in D2(ei~2) and (considered as functions of
x, and y1) conjugate to each other there. C1(ei~2) is an arbitrary
function of q;2’ which we shall assume continuous.

REMARK. Let Z = s(z1, ei~2) be that analytic function which
maps the unit circle in the Z-plane onto D2(ei~2). Then

The function f * will be continuous in q;2 for every fixed 03BB.

We may then determine the function F*(z1, z2) of E(D) which
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assumes the values f*(ei03BB, eUp2) on C2. For each Z20, let (z1, z20) +
C2(z2°) be conjugate to F*(z1, z2°), considered as a function

of xl, Yi- 

It is clear that (z1, ei~2) is, to within a tunetion of q;2’ that
harmonic function of xl, yi, in D2(ei~2) which assumes the boun-
dary values f(ei03BB, e’W2 ). Thus, by proper choice of C2(z20), we may
insure that F(z1, z2° ) has the boundary values f(ei03BB, ei~2) on
C2 ~ [z20 = ei~2] and that C2(Z2) is a harmonic function in

| z2 |  1 which assumes the boundary values C2(ei~2). Applying,
then the theorems of Carathéodory, Radô, and Courant, it is

possible to show that f(Zl, z2) assumes on C2 the boundary
values f(ei03BB, ei~2).

DEFINITION 2.3. (z1, z2), which has been obtained in the

above manner, will be denoted as "the function of the class (D)
corresponding to f(ei03BB, ei~2)." F*(z1, z2) + C1(z2) is a funetion of
the class E(D). It will be called pseudo-conjugate to P(Zl, z2).
For every fixed Z2, they are conjugate, considered as functions
of x1, y1.

We wish to prove a property of i(Zl, z2) which leads to a new
possibility of a determination of (z1, z2) ~ (D), important in
some applications. Since, in a sufficiently small neighborhood of
03B6 = ei03BB, h(03B6, z2 ) is an analytic function of 03B6, ~(ei03BB, z2 ) and
F*~(ei03BB, z2 ) + C1(z2) are (considered as functions of log  and
03BB) conjugate to each other. Therefore

holds, the right-hand side existing for p = 1 by definition of the
class E(D). By construction F*~(ei03BB, Z2) is a harmonic function

in X2, y2. Therefore, there follows

LEMMA 2.1. The function (z1, z2) ~ (D) is harmonie in
xl, y, in every D2(z2), | z2 | ~ 1, and possesses the property that in
| z2 | C 1, the derivative D1[~(ei03BB, Z2)J is a harmonic function of
x2, y2.

REMARK. If on the other hand D1[(ei03BB, z2)] is prescribed,
then obviously F is determined only within an arbitrary func-
tion C(z2).
The above property leads to another construction of F(zl, z2).

Let (ei03BB, ei~2) be given as before, i.e., have continuous partial
derivatives with respect to both variables. We determine that
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harmonie function (z1, e92) which on d1(ei~2) assumes the values

~(ei03BB, ei~2) = (ei03BB, ei~2). Let, further ~(z1, ei~2) be the values
of the normal derivative, which, in view of our assumptions,
exist for every ~2 and 03BB. For 1 2013 03B5 ~ | 03B6 | ~ 1, h(03B6, Z2) is

analytic in 03B6, and therefore

According to Lemma 2.1, D1[F~(ei03BB, z2)] is a harmonic function

of X2, Y2. Let y(Â, z2), 03BB fixed, be that harmonic function in x2,
y2 which assumes the boundary value X(Â, ei~2) for’ Z2’ | = 1.
We determine now for every z20, | z20|  1, that harmonic func-
tion (z1, z20), Z, E D2(z20), which, on the boundary bl(Z20),
satisfies the condition

In order that this is possible, we have to show that

The mapping z, = h(03B6, z2), z2 = const. is conformal on the

boundary curve d1(z2), and we have, in particular, the relation

where d03BB denotes the line element ’of the unit circle | 03B6 1 = 1.
Therefore, it suffices to show that

for 1 Z21 | ~ 1.
We remark at first that for every z2 = eiqJ2, 0  ~2 ~ 203C0, 

is a harmonie function of xl, yi, and therefore we have the iden-

tity 

We may write, in view of (2.9), this identity also in the form
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or

Thus, the required identity has been proved for | z2 | =1. But
the left-hand integral in (2.14a) is a bounded harmonic function
of Z2 for | z2 |  1, and since it vanishes on the boundary of the
unit circle, it must vanish identically. This proves our assertion.
Since (2.13 ) is fulfilled, we are able to solve the boundary valu
problem required, and to détermine the harmonic function

F(zl, z2) with a prescribed normal derivative on bl(Z2). In this

procedure, (z1, z2) is determined within a function C2(z2). If we
require in addition that C2(z2) is a harmonie function of x2, y2,
then botli determinations lead to the same funetiom (z1, z2) of
the class E(T) corresponding to a given f(ei03BB, ei~2).

In the special case where IZ is a bicylinder 58, the cla sscs E(B)
and (B) become doubly-harmonic functions 7).

Indeed, if the values of F on z, = eiqJl, Z2 = c’9’2 are f(ci~1, eiqJ2),
we obtain for the functions E(B) the représentation

whére y is Green’s function for the unit circle. If, further, for

 ~ (B)

then we obtain

Since in (2.15) and (2.16), in the integrals on the right-hand
sides, the f and y are multiplied with two factors, the first of which
is harmonic in ae2, y2, and the second, in ae1, yi, the functions

F(z1, z2 ) are in both cases doubly harmonic.
If the domain IZ is a pseudo-conformal image of a bicylinder

7) It should be stressed however that the function F and F corresponding to
the same f(ei03BB, ei~2) need not be identical.
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(in particular if S) is a product domain), the classes E and E
coincide: they are pseudo-conformal transforms of doubly har-
monic functions.

If the general case (i.e., if S) is not a pseudo-conformal image
of a bicylinder E(Z) differs from (D). The corresponding func-
tions F E E(D) and F E (D), with the same values on C2, coincide
if F(zl, z2)(= (z1, z2 ) ) is a B-harmonic function.

§ 3. Représentation of functions of the class E(D) and

E(D) by means of generalized Green’s functions in terms
of boundary data on 62.

In analogy to the procedures of [5] in the present paper, we
shall consider two different boundary value problems for func-
tions of the class E(D) namely by requiring

1.1) that the value of .

1.2) that the values of

are prescribed on C2. In an analogues way, we shall consider the
following two boundary value problems for functions belonging
to E(D) by requiring

2.1) that the values of

2.2) that the values of

are prescribed on C2. In the present section we shall assume
that fnk(03BB, qJ2) are continuous functions of 03BB and q;2. Naturally,
the prescribed boundary data fnk(03BB, q;2) must satisfy the following
conditions:

In the case 1.2): Since F~(ei03BB, z2), is supposed to be a har-
monic function of x2, y2,

In the case 2.1): Since F(zl, Z2) is a harmonic function of
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for every q;2.

In the case 2.2): P(Zl, z2) is a harmonic function of xi, y1 for

every Z2 = 7:eiqJ2, and therefore

for every r and q;2. Differentiating the last expression with

respect to 1’, we obtain

for every qJ2.

Since

is a harmonic function of x2, y2, for every 03BB, we have

for every 03BB.
On the other hand, if the above conditions are satisfied in the

case of the problems 1.2), 2.1), and 2.2), the functions F and j7
are only determined up to certain functions. We exclu de this

ambiguity by introducing a normalization in the classes E and E.

is a function which is defined almost everywhere 8) on the dis-
tinguished boundary surface C2. The functions F, of the classes
E and E, respectively, will be normalized by the following
requirements:

1. To a given F1 E E(Z), we form first the harmonic function.

8) We remind the reader that according to our definition, functions ut’ té

class E and F exist almost everywhere on C2.
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and define

Qbviously, S1 E E and consequently F2 E" E.
We now determine a second function S2(z1, z2) which has the

property that it is harmonic in xl, yl in every intersection D2(z2),
z2 = const., and for ZI = h(ei03BB, z2 ), Z2 = z2, 03BB = const., assumes
the values

i.e., we détermine

where y (Z, z1; z2) is the Green’s function of D2(z2). Since S2
is constant in every lamina D2(ei03BB), S2 E E(D). Thus

(3.9) F = F2 S2 = F1 2013 S1 2013 52 E" E == E(D).
The function F obtained in this manner is said to be normalized.
The totality of functions of E which are normalized form the
class En. 9)
REMARK 3.1. S1(z1, z2) ~ S1(z2) is constant in every inter-

section Z2 const. and the same harmonic function of x2, y2 in every
lamina d2(ei03BB) = [z1 = h(eÂ, z2), 1 Z2( | ~ 1]. S2(Zl, z2) is constant
in every lamina e2(e’Â) and harmonic in every intersection i)2(Z2)’
Z2 = const. We note further that

for every 03BB, since, according to (3.8), the corresponding expres-
sions for F2 and S2 coincide.

Hence

9) The reader should note that this is a different normalization from that wliieb
i s described in § 2.
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for every q;2. Therefore, for every Z2 we can determine a function

T(zl, z2) which is harmonic in xl, yi, such that

Indeed,

and therefore such a function exists. Obviously TE E(D).
Let

We form now the function

where l(z2) dénotes the length of d1(z2). This function belongs

to E, for it is constant in every D2(z2), and therefore ~S1 ~n1 and
a fortiori ~ ~ S1(z2) = 0. The function 

is said to be a "normalized function of the class (D)", and the
subcla-ss of such functions will be denoted by En(D).
REMARK 3.2. From (3.14) and (3.15), it follows that for

.F e En(D), we have

and from (3.12), (3.13), and the fact that S1(z2) is independent
of aeI’ y1, (and therefore (~S1/~) = 0) it follows that

for every 03BB.

NOTATION. 03A9(z1, Z2) will denote the analytic function of the
complex variable z1 which transforms the domain D2(z2) into
the unit circle, with 03A9(0, Z2) = 0, 03A9z1(0, z2) &#x3E; 0.
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Let further denote Green’s function

of the unit circle, and let

denote the (normalized) Neumann’s function 10) of D2(z2).
In the following, we shall use the abbreviations

With this notation, (2.6) gives us the following:
THEOREM 3.1. Let F(zl, Z2) E E(D) and possess piecewise con-

tinuous boundary values. Then

THEOREM 3.2. Let F(z1, z2) ~ E(D), and possess piecewise con-

tinuous derivatives

REMARK 3.3. If F ~ En(D), theri, according to (3.10), the last
integral on the right-hand side of (3.2) vanishes.
PROOF. The formula (3.21) is derived in exactly the same

manner as (2.6); we merely have to replace (2.5) by

Applying Green’s formula to (3.22) and proceeding in the same
way as in deriving (2.6), we obtain (3.21 )which proves Theorem 3.2.

THEOREM 3.3. Let (z1, z2) ~ E(i)) and let ~ ~n1 be continuous

10) In the case of the unit circle 03BC(z1, Y) = - log j | (1 2013 z1Y)(z1 - Y)|.
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on 62. Then

where l(t2) is the lengtla of d1(t2).
REMARK 3.4. If F E En(D), then according to (3.16), the last

integral on the right-hand side of (3.23) vanishes.
PROOF. (3.23) is derived exactly in the same manner as (3.22).
Since (z1, z2) ~ E(D), D1[~(ei03BB, z2)] is a harmonic function

of X2, y2 for | z2 |  1, and therefore it can be represented for

1 t2 1  1 and fixed 03BB in the form

According to (2.9), we have

(3.23) follo,vs from (2.9) and

TIIEOREM 3.4. Let (t1, t2) E E(D) and possess continuous

derivatives Then
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where l(t2) is the length of b’(t2), and dt(tl, t2, Â) ils defined in
(3.19).
REMARK 3.5. If F e n(D), then according to (3.17) and

(3.16), the second and third integrals on the right-hand side of
(3.25) vanish. 
PROOF. Since  ~ (D),

is a harmonic function of X2, y2, and therefore

Since, further, (z1, t2) is a harmonic function of xl, yi, we have

Substituting (3.27) into (3.26) we obtain (3.25).
In analogy to the case of one variable, we introduce the func-

tion (see (27) of [5])

defined for | Z | ~ 1, |z2| ~ 1, | T | ~ 1, 1 t21 | ~ 1. Here T is

def ined by ti = h(T, t2). k(Z1, t; t2) is the harmonie kernel func-
tion of D2(t2). g*(Z, Z2; T , t2 ) = g[h(Z, t2), Z2; h(T, t2), t2J,
x = 1, 2, 3, 4, where gl = 03B3(1) 03B3(2), g2 = 03B3(1) 03BC(2), g3 = 03BC(1) 03B3(2),
g4 = 03BC(1) 03BC(2).

In analogy to the case of one variable in formulas (3.20),
(3.21), (3.23), (3.25) the functions g,  = 1, 2, 3, 4, can be

replaced by x*.
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COROLLARY 3.1. Let

Then

and

and

It is of interest to represent the function y* in terms of kernel
functions of one complex variable. See [5].
COROLLARY 3.2. Let 03A9(z1, t2), Q(0, t2) = 0, 03A9’(0, t2) &#x3E; 0, be

the function which maps D2(t2) into the unit circle. Then

where , S(z1, t2) is a harmonic function of xi, y1 such that

log 1 .Q(ZI’ t2) | + S(z1, t2) is Neumann’s function of D2(t2).
PROOF. The function

has a vanishing normal derivative ~/~nz1 at the boundary. It

becomes logarithmically infinite at the points zi = t, and z, = 0.

be Neumann’s

function of D2(t2) with the logarithmic singularity at ZI = 0.

Here S(z1, t2) is a conveniently chosen harmonic function of

xl, y,. The kernel function of D2(t2) is
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Substituting z, = h(z, t2), ti = h(T, t2) and multiplying the resul-
ting expression by 2013(203C0)-1[log(1 2013 t2z2) + log(1 2013 t2z2)] we

obtain (3.31).
REMARK 3.5. The classes En(D), n(D) of functions considered

in the present paper have been normalised by the requirements
(3.10), (3.16). If instead of these normalization conditions, we
consider functions which are normalized by the requirements that
they vanish on surfaces z2 = 0 and z, = 0, then the corresponding
"kernel function" ~*0(Z, z2; T, t2) is invariant with respect to

pseudo-conformal transformation, and we obtain for ~*0(Z, z2; T, t2)
tlle expression on the right hand side of (3.31) with S=0.

4. Inequalities for measures of geometrical objects intro-
duced in § 1.

Thé analogy to the one-dimensional case suggests that we in-
troduce a certain generalization of the classes E(D) and (D).

DEFINITION. 4.1: Suppose that

(1) F~(ei03BB, z2) for every fixed é, 1 2013 03B5 ~  ~ 1, and for

almost all ), is a harmonic function of Z2 in | z2 |  1, except
at finitely many points, say

where it possesses logarithmic singularities,

(2) F(z1, z2) is a harmonie function of x1, YI in every D2(z2)
except at finitely many points

where it becomes infinite as - (2013 1) log | z1 2013 03B103BD(z2) |.
Here a03BD(ei03BB) and a,.,(Z2) are continuously differentiable

functions of their respective arguments.
Further, on the distinguished boundary surface F(zl, z2) nlay

become logarithmically infinite at finitely many points.
Then F(zl, z2) will be said to be of the class M(D).
The condition which we obtain by replacing F~(ei03BB, z,2 ) in

and log

icill be denoted as condition (1).

Il F satisfies (1) and (2), we say it belongs to the class M(D).
If f(z1, z2) is a quotient of two functions Pl, P2, botli of which
(considered as functions of two complex variables) are regular
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in D, then log 1 f(zI’ z2) 1 belongs simultaneously to the classes

M(D) and M(D).
THEOREM 4.1. Let f(z1, z2) be a function of two complex variables

which is meromorphic in D. Let a03BD(ei03BB), v = 1, 2, ..., M,,
and rt"",(t2)’ l’ = 1, 2, ..., m(t2) be, for  = 1, the zeros, and

for  = 2, the poles of f(h(ei03BB, z2), z2) and o f f(z1, t2), respectively.
We assume that on the distinguished boundary surface C2 there
are only f initely many points, say (03BB(k), ~(k)2), k = 1, ..., n,

where f(z1, z2) vanishes or becomes infinite. Let, further, the point
(tl, t2), t, E i)2(t2), be chosen so that:

1) at (tl, t2) and on the curves [ZI = h(ei03BB, t2), 0  03BB  2n,

Z2 = t2] and [ZI = h(ei03BB, 0), 0  03BB  2n, Z2 = t2] the function
f(z1, z2) is regular and does not vanish;

2) the points t2 and 0 do not lie on the curves [z2 = a03BD(ei03BB),
03BD = 1, 2, ..., M(ei03BB), 0 ~ 03BB ~ 203C0,  = 1, 2].

Then the following relations hold:
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where

and denote the Green

an,d the Neumann functions of D2(t2), respectively.
PROOF. We proceed to the proof of the relation (4.4). (The

proof of (4.3) is somewhat simpler and proceeds exactly in the

same manner). For every

log |f~(ei03BB, z2)| is regular for |z2| = 1, and therefore it holds that

log

Here we use the fact

where

Since log |f(z1, t2)1 is a harmonic function of xl, y,, it holds

(In carrying the integration we omit finitely many points 03BB(k),
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which is obviously admissible). Substituting (4.7) into (4.8),
taking into account that

and that in consequence of 2), can be replaced by

obtain (4.4).
We proceed now to the derivation of (4.5): For every 03BB

(e 03BB(k)) since log |f(z1, z2)| ~ M(D) we have

Further, for every function g(z1) which is harmonie in D2(t2), we
have

where

Substituting

into (4.10), we obtain

Here we use the fact that

constant,

and therefore (since
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Since |f(h(ei03BB, t2), t2) Il 0 ~ 03BB ~ 2n, is finite and does not vanish,
we can replace the intégrais j in the last expression in (4.11)
by 203C0’. Substituting then (4.9) into (4.11), we obtain a formula
,vhich differs from (4.5) only by the fact that instead of integrals
2n 

f2,-r and J2n we have 203C0’203C0 and 203C0’, respectively.

Since the integrand of the double integral becomes infinite of
first order at finitely many points and since by hypothesis 2) the
integrand of the line integral remains bounded, the improper
integrals can be replaced by ordinary ones and (4.5) follows.
COROLLARY 4.1. Let v be a (finite) constant. For every function

[f(z1, z2) 2013 v] satisfying hypotheses o f the Theorem 4.1, we have

See (1.8), (1.10) and (3.18).
PROOF. Substituting log |f(z1, z2) - ro 1, instead of

log |f(z1, z2)|, into (4.3), and using definitions (1.9), (1.12),
we obtain (4.12) in the usual manner. See also [3].
COROLLARY 4.2. Suppose that the function [f(zI’ z2) 2013 v]

where v is a consta.nt, in addition to the hypothesis o f Theorem 4.1,
satisfies the inequalities

where RI = Re, R2 = Im. Then
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See (1.8), (1.11), (1.10).
PROOF. Using definitions (1.8), (1.12), (1.10) and the fact tliat

we have

Replacing in (4.4) log 1 f(z1, z2) 1 by log 1 f(z1, z2) - v 1, and

applying the usual considerations we obtain the inequality (4.14).
COROLLARY 4.3. Suppose that the function [f(z1, z2) 2013 v],

v = constant, in addition to the hypothesis of Theorem 4.1, satisfies
the inequalities

and

PROOF. Using the notation (1.9), (1.10), and (1.12), we obtain
from (4.5) the inequality (4.16).
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REMARK 4.1. It should be noted that modifying slightly the
considerations we obtain lower bounds for the expressions on the
left hand side in (4.14) and (4.16).

(Oblatum 2-7-51).
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