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Kernel functions and conformal mapping1)
by

S., Bergman and M. Schiffer

To our teacher, Erhard Schmidt,
on the occasion of his 75th birthday

Introduction.
The concept of a kernel function has found increasing ap-

plication in the theory of functions which satisfy certain linear
differential equations in a fixed domain. It has permitted a
unified treatment of different important theories in analysis.
A particular role is played by the reproducing kernel of the class

of functions considered which can easily be constructed by means
of a complete orthonormal system in this class and is, on the other
hand, closely related to such important domain functions as
Green’s and Neumann’s functions. This kernel was originally
introduced in the study of pseudo-conformal mapping by means
of pairs of analytic functions of two complex variables (Berg-
man [1]). Its usefulness for the classical theory of analytic functions
of one complex variable was soon realized (Bergman[2]) and,
finally, its connection established with Green’s function and the
canonical map functions (Schiffer[3]). Its role was also studied
from a general point of view by stressing its reproducing property
in a linear function space with hermitian metric. Most of these
results were extended to the theory of partial differential

equations of elliptic type and a new approach to the boundary
value problems was obtained (Bergman-Schiffer [1 ] [2] [3]). The
dependence of the kernel functions upon the basic metric and
its significance were investigated (Garabedian [1], Schiffer [5]).
At this occasion it became clear that certain other kernels

should also be taken into consideration which are closely related
to the reproducing kernel but have important properties of their

1) Work done at Harvard University, Cambridge, Mass. U.S.A., under Navy
Contract N5 ori ?’6-16, NR 043-046. The present paper was accepted on
April 11, 1949, for publication in the Duke Mathematical Journal. For technical
reasons it was transferred to this journal.
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owii. It is the purpose of this paper to study such an additional
kernel in great detail for the theory of analytic functions of one
complex variable. We show how this new kernel leads to important
inequalities for the reproducing kernel which is still considered
as the fundamental one. From these inequalities numerous

estimates for the coefficients of univalent functions in a given
domain are derived and it is shown that Grunsky’s necessary and
sufficient conditions for univalence (Grunsky [1]) are an imme-
diate consequence of the theory of thèse two kernels.

Since our new kernel does not have the reproducing property
we are naturally led to study those functions which are repro-
duced by it cxcept for a constant factor. This introduces a homo-
geneous integral equation the eigen values and eigen functions
of which are to be determined. It appears that this integral
equation is closely related to the classical one used in the treatment
of boundary value problems by integral equations; thus, a con-
nection is established betwecn these different approaches to the
theory of conformal mapping.

Using formal identities betwcen the two kernels we cstablish
a quickly convergent series for the reproducing kernel which
seems to us of great importance for the numerical side of the
theory of mapping of multiply-connected domains upon canonical
domains.

Finally, we cstablish variation formulas which show the

dependance of some of the quantities discussed upon the domain
of definition if the latter varies. All our formulas show a great
symmetry and simplicity which seems to justify the introduction
of the new concepts.

1. Generalities and notations.

We consider in the complex z-plane a finite domain B which
is bounded by n closed analytic curves Cv(v = 1, 2, ... n) ; we

11

denote the boundary S Cy of B by C. If a complex-valued function
v=1

F(x, y ) is differentiable in both arguments for every point
x + iy = z E B, we can define two complex differential operators
on F:

Analytic functions f(z) are characterized by the Cauchy-Riemann
condition
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while anti-analytic functions f(z’) satisfy correspondingly

Let f(z) and g(z) be analytic in the closed region B + C; by
means of (1.2) and (1.2a) we may establish the following simple
rules on integration by parts:

Here and in the following the contour integration on C will be
understood to be in the positive sense with respect to B.
We shall denote the complement of B + C ,in the z-plane by

B, and Bv will be that component of B which is bounded by Cl1.
We assume that C is given in a parametric form z(s) where s

-dz
is the length parameter on C; , thus z’ =dz/ds represents in each

]d3

point of C the tangential unit vector. C has at each point z(s)
a 
...

a normal and we denote by F 
the differential operator in the

n,
direction of the interior normal with respect to B.

In the following we shall often write a(z)t instead of [a(z)]t.

2. Green’s function.

Green’s function g(z, Ç) of B is defined in the usual way by its
three fundamental properties:

(a) g(z, C) is harmonie in z, for eE B fixed, except for z = Ç.
(b) g(z, C) + log Iz - CI is harmonic in the neighbourhood of

z = C.

(c) g(z, Ç ) = 0 for z E C and C e B.

The symmetry of g(z, C) in z and e follows easily from these
properties; our assumptions on the analyticity of C ensure the
harmonicity of Green’s function even on the boundary C of B
as the two argument points z and t stav apart.
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From the identity

we derive by differentiation with respect to s:

where fis a real-valued function of its arguments.
We now define the two functions

They are both analytic in their arguments which easily follows
from the harmonicity of Green’s function. From (2.2a) and (2.3)
we conclude

The function K(z, ct) is for fixed eE B regular in the closed
region B + C; the logarithmic pole of Green’s function has been
destroyed by the particular process of differentiation leading
to K. The function L(z, c), however, has a double-pole for z = C
and may be written in the form

where l(z, e) is, for C e B, regular for z E B + C.
We further notice the symmetry relations which follows from

the definitions:

For instance in the case of the unit-circle Izl  1 we have

The functions K and L play a central role in the theory of
logarithmic potential and conformal mapping and it is the

principal aim of this paper to investigate their properties and to
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show their applications. The following result (Schiffer [3]) illus-
trates their importance:

Let 22 be the class of all functions f(z) which are analytic in B
and for which the Lebesgue integral

For each I(z) E 22 we have the identities

Both integrals are to be understood in the Lebesgue sense, and
the improper integral in (2.10) is the limit of an integral over
the domain Be.. which is obtained from B by elimination of a
circle around z with radius e.

3. The kernel functions.

We shall call K(z, et) and 1(z, e) the kemel functions of the
first and second kind with respect to the class 21, since they
appear as kernels of certain integral operators applied to the
class; K(z, et) might also be called the reproducing kernel of the
class because of (2.9). The significance of l(z, C) follows from
the identity

which is a conséquence of (2.5) and (2.10). We see that l(z, C)
is a kernel of the class £2 which has on each function f(x) e 22 the
same effect as the important but singular kernel [n(z - Ç)2]-1.
Numerous applications of this fact will be given in the following.

Let w = 9(z) map the domain B univalently upon a domain B,
with analytic boundary Ci. If w = 9’(C) and g1(w; w) is Green’s
function with respect to Bl, we have the well-known identity

Differentiating with respect to z and e and denoting by Kl, L,
and ll the kernels with respect to B, which correspond to K,
L and l, we find in view of (2.8):

(8.3) K1(w, rot) /(Z)[’(C)]t = K(z, l’)
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and

Hence, in view of definition (2.5)

This formula is better understood if we introduce the expression

which is analytic in the closed région B + C because of the
univalence of tp(z). Then we may write instead of (3.5):

We notice the formal identity

where (p, z} denotes the well-known differential parameter of
Schwarz. This shows the interest of the function lP(z, Ç) of two
complex variables in connection with the conformal mapping
produced by 99(z). 
We now make the following application of the transformation

formulas (3.3) and (3.5a). Ley B, be a simply-connected domairi
in the w-plane and let w = q;(z) be the map of the unit-circle
Izl  1 upon Bl. Since p(z) is still analytic on Izl = 1 we see
from (2.7) that

are still analytic on the boundary Cl of B1 if w and w are separated.
If w = w, however, Kx becomes strongly infinite while h remains
regular even then. Thus, in the case of a simply-connected domain
l(z, C) is regular in both arguments in the closed region B + C.
We now want to extend this result to the case of an arbitrary

finite connectivity. We choose one bouiidary curve C,, say Cl,
and consider the complement of the domain Bi. This domain
contains our initial domain B as subdomain; let gl(Z, C) be its
Green’s function. gl(Z, C) vanishes on Cl and is still harmonic
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on the curve itself. If g(z, e) is again Green’s function of B, the
term g1{Z, C) - g(z, Ç) is regular harmonie in B and may there-
fore be expressed by its boundary values and g(z, e). In fact,
we have

(3.9)

where V denotes differentiation in the direction of the interiorôn
normal. We notice that the intégration in (3.9) runs over all
boundary components of B except for Cl; the point t E C there-
fore never lies on Ci.
From (3.9) and (2.3), (2.5) we easily deduce

- 1

Now, ll(Z, C) is regular even on Cl since it is the 1-kernel of a

simply-connected domain. In (3.10) the right-hand integral is

regular on Cl since t does not run over this particular curve.
Hence we proved the following theorem:

The f unction Z(z, C) is regular analytic in the closed region B + C.
This property of the 1-kernel will be of of great use for the

general theory; it is one of the main reasons for the importance
of this kernel. The K-kernel with its reproducing proporty and
its simple definition (2.3) attracted the interest much earlier
than the 1-kernel ; it has not, however, the property of regularity
in the closed region B + C and its infinity on the boundary
was of some difficulty in its theory. By establishing a simple
relationship between the two kernel functions we will be able
to overcome this difficulty and to remove the infinity of the
kernel function by addition of an elementary function.

4. Identities and inequalities for the kernel functions.

The functions of the class L2 form a linear space A and we may
introduce into this space a hermitian metric based on the scalar

product between two elements f and g:

Then it is important to determine the various scalar products
between kernel functions.
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From the reproducing property (2.9) of the K-kernel and the
symmetry laws (2.6), we deduce immediately

and

It is a little more difficult to determine the scalar products
between 1-kernels. Using the identity (3.1), we find

By integration by parts of the type (1.3), we transform this into

For z e C, we have by (2.5) and (2.4)

Hence, (4.5) obtains the form

The first right-hand integral may be computed by the residue
theorem; the second integral may be transformed into an integral
over the complement B of B by means of (1.3). Finally, we
arrive at the identity:

with

Menée the scalar product between two 1-kernels leads to a

K-kernel and a F-term. The characteristic property of the latter
is that it can be computed by elementary integration over the
exterior of the considered domain B. It does not depend on the
solution of a boundary value problem in harmonic functions
as do the K- and 1-kernels. We shall call expressions of this type
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geometric quantities and consider a problem in harmonie func-
tions solved if it can be reduced to the computation of such terms.
The geometric quantities are elementary ones as compared with
the function-theoretic terms involving Green’s function.
We now make the following natural application of our identities :

We choose r -f- s points CI, C2, ... . Cr, n1, ... . T/, in B and r + s

arbitrary constants dl ... oc,, P1 ... {JB. We start from the obvious
inequality

and compute the left-hand integral by means of the identities
(4.2), (4.3) and (4.8). We obtain

For A = 0 we obtain the well-known inequality

which is often expressed by the statement that K(z, Ç’) is a

definite kernel. This property is characteristic for any kernel
which has the reproducing property with respect to a certain
Hilbert space, as has been stressed in the abstract theory of such
kernels (Aronszajn [1]); the proof in the general case is also

based on the fact that the norm of every element in a Hilbert

space is non-negative.
We conclude further from (4.11) the inequality

This is a real improvement of (4.lla) since the kernel F(z, ct)
is a positive-definite kernel, too. In fact, we may write

which proves our assertion. By means of (4.12) we can estimate
the hermitian forms connected with the kernel function in terms
of geometric expressions.
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Finally, we obtain from (4.11) the discriminant inequality

If we replace in this inequality each Pp by ppeia, the right-hand
side remains unchanged while the left-hand side varies. The best
possible inequality thus obtained is

Because of the definite character of r(z, ct) this inequality
implies

If we finally choose

Another very important consequence of (4.8) is the identity

Since l(z, Ç) is regular and analytic in the closed region B + C,
we conclude from (4.15) that K(z, zt) - F(z, zt) is bounded
in B + C. This shows that the geometric quantity F(z, zt) has
at the boundary C the same asymptotic behavior as K(z, zt)
and that their difference behaves quite regular. At the same
time, this elementary term provides at each interior point z a
lower bound for K(z, zt).
We have further the important theorem:
The hermitian kernel K(z, ct) - F(z, Ç’) is regular in the

closed region B + C.
The irregular behavior of K(2, Ç’) on C led to the pllenomenon,

that the homogencous integral equation
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had the value Â = 1 as eigenvalue of infinite order so that each
analytic function 99(z) was a corresponding eigenfunction. The
classical theory for regular hermitian kernels is, however, appli-
cable to the regularized kernel K(z, et) - P(z, et) and we shall
later study its eigenvalues and eigenfunctions. The close relation
between the two hermitean kernels K(z, et) and T(z, et) is
illustrated by the easily established fact that K(z, ct) [r(z, ct) ]-1
is invariant with respect to linear transformations of B.
We mention further the special instance of (4.14a)

(4.17) Il(z, C)12  K(z, zt) . . [K(C, et) - rc, et)
which implies

5. The 1-transforms
The 1-kernel transforms every analytic function f(z) of the

class L2 into a new analytic function T f(z) by means of the
operation

We càll T f the 1-transform of f and want to study the class of all
these transforms. Using Schwarz’ inequality and (4.15), we find

while the same reasoning applied to (2.9) yields

We see from (5.2) that the class of all 1-transforms of 22 forms
a proper subclass of £2 which contains only bounded functions.
One easily sees that all 1-transforms are analytic in the closed
region B + C.
Because of the fundamental property (3.1) of the 1-kernel

we may express the 1-transform of f(z) by means of the improper.
integrals

This representation has the advantage of possessing an elementary
kernel and of admitting simple transformations. Applying for
example the integration rule (1.4) we obtain
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in the case that f(z) is continuous in the elosed region B + C.
Further we way use the représentation (5.3) in order to define
the transform T f(z) in the whole complex z-plane. In each

domain j6y the function T f(z ) then represents an analytic function.
The différent analytic functions T f(z) defined in the domains

B and 1. do not form a continuous function in the whole z-plane.
In order to study their behavior on C let us assume that f(z) is
continuous in B + C, so that the représentation (5.4) holds.
According to a classical theorem by Plemelj (Plemelj [1]) the
function T i(z) has a saltus of the value

(5.5) d (T /(z» = - [/(z) . z t21 t
if we cross at the point z e C from B into the complementary
région B.
Let us illustrafe thèse formulas by the following example.

We have

(5.6) TK(z, rot) ffk(e, wt)t 1(e, z)dtç = l(z, w) for z E B
and 

B

(5.6a) TK(z, wt) -  j j z K(ç ’ zyt )t(ç _ z )-i d - n(z 
1 

w)2 
for z e B.(5.6a) TK(z, wt) 

nB ff 
K(C, Wt)t(e - Z)-2 dr, n(Z 2013 W)2 

for z e B.

The latter result follows from the fact that (e - Z)-2 for x e B
belongs to the class 22 with respect to Ç and that, therefore, the
reproducing property of the kernel function may be applied
hère. The saltus condition (5.5) takes the form

(5.7) - [K(z, W’)Z’2l’ - 1 -- l(z, zv) = L(z, zv)n(Z - W)2
which is just the important boundary relation (2.4).
At this point we notice that (5.6) may also be written in

the form

(5.6b) 1(z, w) = 1 f f K(C’, wt)t (C-z)-2diç for z e B
n B

which shows that 1(z, w) may be computed elementarily, once
the K-kernel has been determined.

Similarly, we have

(5.8) Tl (z, w) ff 1 (e, w)t 1 (C, z)d-r, = K (z, wt)-l’(z, wt) forz e B
and B

(5.8a) Tl(z, W) = 11 j j 1(1, W)t(e - Z)-2 d-rç -
B - 1 2 f( - W)-2) jt(e - z)-2 z e B.n2
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One can show that in this example, too, the saltus condition (5.5)
leads to the boundary relation (2.4) between the two kernels.
If we bring (5.8) into the form

we find that the Kikernel can be expressed by elementary com-
putations in terms of the 1-kernel. One sees that it is sufficient
to find a construction for either kernel and that the other is then

easily obtained.
Now let f(z) and g(z) be a pair of functions of the class 22.

Defining T f and T g by (5.1), we can easily compute by means
of (4.8) the scalar product:

Using the reproducing propcrty (2.9) of the K-kernel and the
definitions (4.9), (5.3), we may bring (5.9) into the elegant form

This result suggests the following concepts. Just as the metric
in the space A was based on the scalar product (4.1), we may
base a metric in the linear space AT of transforms on the metric

In fact, the transforms being defined in the whole complex plane,
it is natural to integrate in their scalar products over this whole
region. In this notation, we now may express (5.10) in the form

The close relation between the linear spaces A and AT becomes
more evident by the following inversion formulas: Given a
function T f E AT, we want to find its generating function f e A.
For this purpose, we determine

Using (4.8) and (5.3), we have
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By virtue of (2.9) and (4.9), this may be written in tlie form

This formula shows the great symmetry existing between the
spaces A and AT; the corresponding elements transform into
each other by an integral operation with the same kernel, ex-
tended in each case over the proper domain of definition only.
The meaning of (5.14) becomes very clear if we transform the

domain integral into a contour integral along C by means of the
integration rule (1.4). We arrive at

where d (T f ) is the discontinuity of T f on C as given by (5.5).
Thus, (5.14) is nothing but the identity

in the case that f(z) is continuous in the closed region BE C.
This transformation shows also clearly that the value of the right-
hand integral in (5.14) has the value zero for zE B.
Each function T f e AT is also a function of A and has a norm

(Tt, ,(Tt)t). We may compare its norm in AT with that in A
and find by (5.11)

There arises the question under what circumstances equality
might hold in (5.16). It is obvious that in this case necessarily

From (5.14) we then conclude that

(5.18) f(z) = T (Tf(z)), for z e B,
i.e. f(z) belongs also to the space AT and is, therefore, analytic in
B + C. Hence we may apply the saltus condition (5.5) to Tf(z}
and since Tf(z) vanishes in B, we simply obtain for the limit
of Tf an interior approach to z E C:
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We write this result in the more symmetric forms

We introduce two real harmonie functions Ql(x, y) and Q2(x, Y)
such that

The formulas (5.19a) and (5.19b) then simply state that on C

Hence Q1 and [)2 are two real harmonic functions in B which are
constant on each boundary curve Cv. Therefore, they may be
linearly composed of the harmonic measure functions

which have the value 1 on Cv and 0 on the rest of C. We introduce
the analytic functions

which clearly satisfy the boundary conditions

Then it follows from our considerations above that

with complex coefficients av.
If inversely f(z) has the form (5.24), it is analytic in B + C

and we may apply the formula (5.4). Because of (5.23a) this
leads to
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We see that in this case (5.17) and (5.18) indeed are fulfilled
and that, therefore the equality sign in (5.16) holds. Since the
harmonic measures have non-vanishing derivatives only in

multiply-connected domains B, we see that equality in (5,16) is
impossible in simply-connected domains, except for identically
vanishing f(z).
We notice finally, that each function

satisfies the condition

and that every solution of (5.27) must necessarily liave tle form
(5.26).

6. The eigen functions of the 1-kernel
It is natural to ask for those functions in A which coincide

with their 1-transforms except for a numerical factor, i.e. which

satisfy the integral equation

Every multiple of fv(z) will have the same property, since we

may put (6.1) into the form

We use this fact in order to put normalizing restrictions on the
functions Pv(z) which we will consider. It is sufficient to deal

with functions gv(z) for which

and for which the corresponding Â. satisfies the condition

We shall call such a function cp,,(z) an eigen function and the
corresponding value an eigen value of the kernel 1.
At the end of the preceding section we saw that the value 1 is

an eigen value of the 1-kernel in each domain of connectivity
n &#x3E; 1 and that it belongs to the n - 1 linearly independent
eigen funetions i w(z), ... i W:-1 (z). In such a case we say that

the eigen value = 1 is of degeneracy n - 2.
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The study of the integral equation (6.1) may easily be reduced
to the classical theory of integral equations with hermitian

definite kernels. In fact, iterating the integral equation (6.1)
we obtain

which leads because of (4.8) to the new integral equation

Hence every eigen function of (6.1 ) is also a solution of the simpler
integral equation (6.5) and to each eigen value Âv of (6.1) cor-
responds an eigen value Â,’ of (6.5). Now we shall show that the
converse of this statement is also true and derive from this fact

the existence of solutions of (6.1).
The kernel K(z, ct) - r(z, ct) is hermitian, regular in B -t- C

and positive definite, since we have for an arbitrary continuous
function u(z) in B in view of (4.8):

Thus, the existence theorems for such kernels become applicable.
We conclude:

a) There exists a sequence of positive eigen values À; for
the kernel K(z, ct) - T(z, ct).

b) The corresponding eigen functions V,(z) are analytic in
the closed region B + C.

c) We have the orthogonality relation for two eigen functions
y, and y, which belong to different eigen values Â2, Â’:

d) Thc eigen functions y( e) (z) (e = 1, 2, ... m) which belong
to an eigen value Â’ of degeneracy m 2013 1 may be supposed
orthonormalized, i.e.

However, this condition fixes the 1J’(Q), only up to a unitary
transformation.
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To a set 1J’ÍQ)(z) of m eigen functions belonging to the eigen
value we introduce a new set of functions by the definition

In view of the integral equation (6.5) satisfied by ywe&#x3E;, we have
also

One sees easily from the definition (6.8) that the W)?&#x3E;(z) form
an orthonormalized set of eigen functions for the same eigen
value Â2 with respect to the integral equation (6.5). Therefore,
there exists a unitary matrix U = (uea) such that

Introducing this representation for tpa){z) into (6.8a) we obtain

which gives the matrix formula

for the unitary matrix U. Because of the unitary property of U
this is equivalent to the symmetry of U.
Now, it is well-known that every symmetric unitary matrix U

may be expressed by means of a unitary matrix V in the form

(6.11) U = VV’, V’ = transposed matrix of V,
where V is only determined up to a real-orthogonal matrix factor.

If we introduce another orthonormal system 99(e) of eigen
functions for Â2 which is obtained from the system ywe by means
of a unitary matrix W, we see easily that their corresponding
functions 0(e) obtained by a transformation (6.8), evolve from
the 1J1) by means of the unitary matrix wt. One concludes then
immediately from (6.9) that the eigen functions (/)I})(z) and
pv(e)(z) are interrelated by a linear transformation with the

unitary matrix WtUW-1. If we now choose the arbitrary unitary
matrix W by the condition

one sees that we have the identity
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Hence we have proved that each eigen value Â2 of. the integral
equation (6.5) leads to an eigen value Àv &#x3E; 0 o f the integral equation
(6.1). An appropriate complete set o f orthonormalized eigen functions
o f (6.5) can be chose.n such that it is simultaneously a complete set
of orthonorettal eigen functions with respect to (6.1).
The complete equivalence of the two integral equations (6.1 )

and (6.5) is, therèfore, proved.
The set of eigen functions {cv(z)} may be a complete ortho-

normal set with respect to the function space A, i.e. every
£2-integrablefunction f(z) in B may be expressed by the Fourrier
development

which converges uniformly in every closed subdomain of B. In
case of incompleteness there exist functions f(z) e A which do
not vanish identically and are orthogonal to all eigen functions
gv(w). Hence these functions are, also orthogonal to the kernel
l(z, C) and may be considered as eigen functions of (6.1) and
(6.5) to the eigen value Â. = 00. We may then complete our
system {qp,,(z)} by addition of further eigen functions to this
eigen value. We will not exclude in this paper the possibility of
the eigen value Â. = 00 and may, therefore, always assume a
complète orthonormal system of eigen functions {pv(z)}. We
arrange the eigen functions in such order that the corresponding
eigen values Â, form a non-decreasing sequence.
We now may express every function f e A in terms of these

eigen functions. In view of the integral equation (6.1) it is now
exceedingly simple to express the 1-transform Tf of f. In fact,
we have in view of definition (5.1), (6.14) and (6.1):

From (5.10a) and (5.16), we have the inequality

which may be expressed in terms of the Fourier coefficients av as
follows:

As we noticed already in the beginning of this section we
know n -1 linearly independent eigen functions iw;(z) to the
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eigen value ,1, = 1. Let us orthonormalize these n - 1 functions
in the way described before and we obtain the first n - 1 eigen
functions qJv(z). For every function which is linearly independent
of these initial eigen functions the inequality (6.16a) must be a
proper one. Hence we conclude:

All eigen values Àv of 1(z, C) are &#x3E; 1 and only the derivatives
of the harmonie measures belong to the eigen value 1.

Let us now consider an eigen function gv(z) with v &#x3E; n. This
function is orthogonal to all functions w’(z), i = 1, 2, ... n, i.e.

Using the definition (5.23) of w/(z) we obtain by intégration
by parts

Since co,(x, y) = 0 on C except for the boundary component
Ci where w,(x, y) = 1, we may write instead of (6.17a)

In other words: The eigen functions q;v(z) belonging to the eigen
values &#x3E; 1 possess single-valued integrals q)v(z) in B.
The subspace As of A, consisting of all functions with single-

valued integrals, may also be defined as consisting of all functions
f (z ) E A which are orthogonal to all w,(z); this is shown by the
same reasoning which leads from (6.17) to (6.18). Hence it is

evident that the functions qv(z) which belong to the eigen values
Â.v &#x3E; 1 form a complete orthonormal system for this subspace As.

Finally we apply the orthonormal system {Pv(z)} in order to
express our kernel functions in Fourier form. From the repro-
ducing property (2.9) we obtain for the K-kernel the typical form,
valid in every complete orthonormal system:

Using the integral equation (6.1) in order to compute the Fourier
coefficients of the 1-kernel, we obtain the development:
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From (6.20) and (4.8) we conclude next

a result which also follows immediately from the general theory
of positive definite kernels. From (6.19) and (6.21) we derive
further

This shows that the eigen functions pv(z) may also be considered
as belonging to the purely geometric kernel r(z, ct) with the
eigen value (1 - Â-2 ).
The positive definite character of F(z, ct) and the development

(6.22) provide a new proof for the fact that ail A" are greater or
equal to one.

7. Discussion of the eigen functions
The significance of the eigen functions of the integral equation

(6.1) and their connection with a classical problem of potential
theory become clear by the following considerations. In view
of (5.4) we may write the integral equation (6.1) in the form

From Cauchy’s theorem we have, on the other hand, immediately

lBdding these two equations and introducing the harmonic real
function hv(x, y ) for which

we obtain

v

Integrating this equation, we arrive at the integral equation
for hv(x, y)

- fl-I I i
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Now it is well known that

Thus, (7.5) obtains the form

The integral equation (7.7) for hy(x, y ) contains an arbitrary
constant of integration which is evident since the definition (7.3)
of Ay determines this function only up to an additive constant.
Let us now suppose that we know a solution hv(x, y) of (7.7).

The function hv(x, y) + a will also be a solution of the same
integral équation because of the well-known fact that for z E B
we have the identity

Thus, we conclude from (7.7):

We see that for Â, &#x3E; 1 we are able to introduce such a constant

a into our function hv(x, y ) that it satisfies the simpler integral
equation

We may derive from (7.9) an integral equation for the function
hv(s) = hv(x(s), y(s)) considered as a function of the arc length
on C. Using the discontinuity behavior of the dipole potential
on the charged line C, we find

This result gives a clear understanding of the significance of
the eigen functions CJJv(z). The inhomogeneous integral equation
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plays a central role in the boundary value problem of harmonic
functions if treated with the Fredholm theory. Now we see that
our eigen functions gv(z) are closely connected with the eigen
functions of the corresponding homogeneous integral equation
(7.10). Their importance for general theory thus becomes obvious.
To illustrate the theory we shall now determine the eigen

functions qy(z) and, their corresponding eigen values Âv for a few
simple domains.

Let the domain B be mapped by the linear transformation

into a new domain B1. The function O(z, Ç), defined in (3.6), is
in this case

whence

Hence the transformation formula (3.5a) for the 1-kernel now
takes. the simple form

and in view of (6.20) we have the series development

Now it is easily verified that the functions

form a complete orthonormal set of analytic functions in Bl.
Hence

and this clearly shows that the 1J’v(w) are the eigen functions in B,
with the same eigen values Âv. We proved, therefore:

If a domain B is mapped into a domain Bl by a linear transfor-
mation (7.12) the eigen functions of both domains are related by
(7.16) and the eigen values are the same.
For the case of the unit circle we have l(z, C) = 0; hence all

eigen values are infinite and because of the previous theorem this
is true for every circle. We may now also consider domains B
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which contain the point at infinity since we may always trans-
form such domains into finite domains by linear transformation.

Consider the domain Bl obtained by mapping the extcrior of
the unit circle by means of

B1 is the exterior of an ellipse with the principal axes (1 + a)
and (1 - a). Using (3.8), we have immediately a formula for
the 1-kernel of this simply-connected domain:

with

Since the functions

orthonormal system in lzl &#x3E; 1 the ’tPv(w) do the same in Bl. The
representation of the 1-kernel shows that the 1J’v(w) are the eigen
functions of the exterior of the ellipse and we have in this case:

The domain Bl has an interesting extremum property with
respect to the eigen values Âv. Consider an arbitrary simply-
connected domain B which is bounded by a closed analytic curve
C and contains the point at infinity. One shows by a linear trans-
formation that even for such a domain B the development (6.22)
for F(z, ,t) is valid; it is also obvious that Â1 &#x3E; 1 because of the

simple connectivity of B. Hence we derive from (6.22) the
inequality

This inequality assumes a simple meaning if we let z -&#x3E; cc. Let

(7.21) z = d(C + Co + C1C-1 + ...)
be the function which maps the domain ] Ç ] &#x3E; 1 upon B. The
constant d is called the mapping radius of B and plays a con-
siderable role in the conformal gcometry of B. One easily verifies
the limit relations, which follow from (3.8), (7.21) and (4.9):



229

and

where A is the area of the finite complement B of B.
From (7.20), (7.22) and (7.23) we obtain the inequality

It is well known that between the mapping radius d and the
area A of B the following inequality holds:

Hence we can transform (7.24) into

We see that the lowest eigen value Â.1 provides an upper bound
for the excess of nd 2 over A. In the case of a circle we have

Â.1 = oo and id2 = A.
Now it is interesting that the inequality (7.26) is an equality

for all ellipses; these may therefore be considered as the extre-
mum domains with respect to (7.26). In fact we have in the case
of the ellipse Bx : d = 1, A = n(1 - a2) and Â2 = a-2 which
shows that equality holds in (7.26).
Another interesting result may be obtained for the eigen

functions gw(z) of a simply-connected domain B. In this case
the whole plane is divided into two complementary domains
B and B and let Pv(z), À, and qv(z), Tv denote the corresponding
eigen functions and eigen values. The eigen functions gw(z ) of B
have an 1-transform Tgw which is defined in B and in B. In view
of the intégrât equation wc have in B

Hence we may write the identity (5.10) in the form

Because of the orthogonality relations between the eigen functions
we obtain
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Hence the transforms of the eigen functions CPv(z) of B create an
orthonormal system of analytic functions in B:

Because of (7.27) and the saltus condition (5.5) for T gw, we find
for the boundary value of wV(z) at a point z E C:

Wc have, therefore, integrating along C in the positive sense
with respect to B :

The last right-hand intégral vanishes because of Cauehy’s theo-
rem, and using the definition (7.30) of wv(z) we find by means
of (5.4):

This proves that the functions yw(z) are the eigen functions

-;v of B and that the sequences Âv and Â, are identical. Hence
Two complementary simply-connected domains have the same

set of eigen values. This is a very useful result since the deter-
mination of the eigen values of one domain may be much easier
than those of the other. We see for example that the interior
of an ellipse with principal axes (1 + a ) and (1 - a) has the
eigen values a-v; while the mapping function of a circle on the
exterior of this ellipse is an elementary function, the map of the
circle upon the interior of the ellipse is given by quite complicated
elliptic functions. The importance of our result for the conformal
geometry of domains becomes quite obvious from this example.
We understand the last result better if we notice that the

Àv are the eigen values of the integral equation (7.10) which is
defined on C alonc and docs not indicate which adjacent domain
of C is to be considered. For thc same reason the treatment by
intégral equations of the boundary value problem for harmonie
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functions leads to a simultaneous solution for the so-called
interior and exterior problems.

If the eigen functions p,,(z) of a simply-connected domain B
are known, we may easily construct the kernel functions and by
their aid map B upon the unit-circle. At the same time, we can

compute by elementary integrations the functions q;,,(z) of the
complementary domain B and determine its kernel functions,
too. Hence knowledge of the p,,(z) permits at the same time the
conformai mapping of the two complementary domains upon the
unit circle. We have the formulas for the kernel functions K(z, ct)
and l(z, C):

We notice also the elegant formula:

which follows easily from

8. The space As and its kernel functions.
Let

be the logarithms of two univalent functions in B which map
this domain on the whole complex plane slit along concentric
eireular arcs around the origin or along rectilinear slits directed
towards the origin, respectively. The points u, v e B shall cor-
respond to the origin and the point at infinity after the map-
ping. The functions F and G are determined by this description
up to an additive constant. On each contour C,, of B, we have

where av and bv are constants and kv(s), lv(s) real-valued functions
of the arc length s.
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Let us define two functions

and

They are both analytic in B, except for two simple logarithmic
poles of Q at u and v. On each C, one has because of (8.3) and (8.4)

The functions -P’(s; 1l, v ) and q’ (z; u, v ) (where the dash denotes
the differentiation with respect to the first argument) are both
of the class AB and we want to develop them in Fourier séries
with respect to the complete orthonormal system 9’v(z) with
Âv, &#x3E; 1, i.e. v &#x3E; n. We have by virtue of (1.4)

Llsing (6.18) and (8.7) this may also be written in the form

where 0,,(z) denotes again tlie single-valued integral of ggv(-.).
F’rom (8.6) and the residue theorem we finally find

whcncc the Fourier series

and integrating tiiis identity betwecn z and C, we finally obtain:

It should be noticed that in this dérivation no use was made

of the integral equation satisfied by the 9’v(Z) so that the

representation (8.12) will hold for each complete orthonormal
system qv(z ) with single-valued integrals «Pp(z).

Next, we compute
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Using the definition (8.6) of q and the boundary relation (8.7),
we obtain

The last integral vanishes by Cauchy’s theorem, while the in-
tegral equation (7.1) yields by integration between and v:

Thus, we finally arrive at the Fourier séries

Integrating again betwcen N and Ç, ’vc obtain at last

Most of the important domain functions, as for exainple Green’s and
Neumann’s functions of B and many others may easily be expres-
sed in terms of P and Q (Garabedian2013Schiffer [1]). The formulas
(8.12) and (8.17) show the simple construction of these functions
in terms of the 9B,(z).
Let further

be univalent in B, mapping the domain upon the whole plane slit
along straight segments parallel to the real and the imaginary
axis, respectively. The point z = zc obviously corresponds to

infinity.
Using the well-known relations between fo, go on the one hand

and P, Q on the other, it is possible to show that
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These results could also be obtained directly by applying to f0 and
go the same reasoning as we did before to F and G.
We see, that the kernel functions of the As-space

have an important geometric significancc.
It is of interest to notice that Ks and ls lead to the same

algebra under scalar multiplication as did K and l. In fact, we
clearly have:

and in view of (8.22) and (6.22):

In fact, in the series development (6.22) for F(z, wt) the first
n - 1 eigen functions do not appear. Thus, all inequalities which
we,deduced in section 4 for the kernel functions K and 1 of the

space ll remain valid if we replace those kernels by Ks and l8.
It is also easily verified that KS and ls behave under conformai
transformations just as K and 1 and that analogous formulas to
(3.3) and (3.5) hold for them.

Since tlie developments (6.19) and (6.20) may be expressed
in the form

and

with real coefficients Pik’ we have
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with

It is easily seen that G(z, C) is the real part of the logarithm of a
univalent function which maps the domain B upon the exterior
of a circle which is, slit along concentric circular arcs. The point Ç
corresponds in this map to infinity.
The fact that in the series development for Ks(z, ct) only eigen

functions occur with Â, &#x3E; 1 leads to the following important
application. We define the p-th iterated F-kernel by the formula

Obviously, we have

Hence all kernels I"(L)(z, ct) are geometric integrals and may be
computed elementarily.
Next we consider the kernels

The Aju(z, et) are also elementary expressions being linear com-
binations of the r((!)-kernels. It is obvious that they are positive-
definite kernels.

Finally, wc construct the sum

We see that we can express the kernel Ks (z, Çt) as an infinite
sum of elementary integrals. It is of particular interest that

appears as a sum of positive terms. This leads to an infinity
of inequalities for Ks(z, zt ). Since L1o(z, zt ) = F(z, zt ), we see

that the inequalities

is only the first in a series of improving inequalities for the kernel
function.
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From (8.32) and (6.22) we obtain the inequality

by Schwarz’ inequality we have on the other hand:

Hence we see that the series development (8.33) for the Ks-kernel
converges geometrically. It seems that it leads to a very useful
numerical method in conformal mapping.
Each domain B can be mapped into a canonical domain which

plays a distinguished role with respect to the kernel functions
Ks and ls. It is well known that the function

1
(8.38) h(z, u ) = ![fo(.’ u ) + g0(z, tt)J ==.:: -- + regular termsz --- u

inaps the domain B univalently upoii a doinain B1 ,vhich solves
the following extremum problem: Among all domains whieh are
obtained from B by a conforinal map with a pole of residue
1 at z = u, B, possesses a complement B1, with maximal area

A (Schiffer [1]). BI is a canonical domain for all domains B
which cals be mapped into each other by means of a. univalent

function qJ(z) with the nornialization

In fact, let zv = ç1(z) map our original doiiiaiii B into a new
domain B2. Let f02(W, u), g02(W, u) a.nd h2(w, u) demote analogous
univalent functions with respect to B2 as were f o(z, u), go(z, u)
and h(z, u) with respect to B. We clearly may put

and hence

Hence the same procedure (8.38) leads to the same canonical
domain B1 for all domains B2 whicii are équivalent to B by
means of a function (8.39).
The function

has clearly tlie normalization (8.39) and maps B upon a canonical
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domain D which is more suitable for our purposes. The transition

from D to B, is given by the linear transformation

On the other hand, we have because of (8.38), (8.20) and (8.22)
for each domain B the identity

Thus, in the particular case of the domain D we conclude from
(8.43) and (8.44)

From (8.25) we easily obtain

This shows that in the case of the canonical domain D the series

development (8.83) for K,(’lv, ut) may be stopped after the

first term.
From the series development (8.22) and (8.45) we conclude

that in the case of the domain D all eigen function qJ,,(w) which
do not belong to the eigen value oo vanish at the distinguished
point u. Since F(u, ut) =1= 0 we conclude also that in the case
of the canonical domain D there exists at least one eigen value oc.
We now define the following concept: Let R be a domain in

the z-plane which does not contain the point u. We call the
expression

..

the area of R with respect to u. Clearly, Au(R) represents th e
1

area of the image of R under the linear transformation -.
z - u

From (8.46) we conclude

By definition of D, we clearly have Au(D) = Au. Because of the
behavior of K,(u, ut) under conformal transformation, its value
is the same for all equivalent domains obtained from each other
by means of a function (8.39). From (6.22), vce obtain on tlie
other hand the inequality
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Clearly, F(u, ut) = 244u(B); hence we proved the inequalityn

Beeause of tlie extremum property of B1, mentioncd above, we

always hâve A.u(B)  .t4Jl and hence (8.50) lea.ds to

A somewhat different approach is necessary if thc point u = oo
lies in B. In this case the class of univalent functions with the

normalization

must be considered. Let B1 be that domain obtained from B by
means of a funetion (8.39a) which has a complement B, with
the largest possible area A. This maximum area is related to the

span S of B by means of the identity A = nS. Thc span plays
2

a role in various problems of conformal mapping of multiply-
connected domains (Schiffer [1]). One shows easily that (8.51)
tends for u -&#x3E; oo to the inequality

where A(B) is the area of the complement B of B. This is the
generalization of (7.26) to the case of multiply-connected domains.

9. Applications to the theory of univalent functions:
We proved in section 4 inequalities of the type (4.14a) between

the kernel functions K and 1; exactly the same inequalities can
be derived from (8.2320138.25) for the kernel functions Ks and 1, of
the class As. Since the functions K and 1 show a very different
behavior under conformal transformation these inequalities
represent also important inequalities for the univalent mapping
functions in the domain.
Let w = q;(z) be univalent and analytic in the closed region

B + C. It maps B upon a domain B, of the same type as B and
we have, therefore, between the kernels Kl and 11 the following
inequalities in analogy to (4.14):
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for every choice of the complex numbers av and points cw E Bl.
Now let Cv be the point in B corresponding to co., i.e. cvv = p(Cv).
Using the transformation formulas (3.3) and (3.5a) for the kernel
functions, we obtain

If we assume our domain B and its kernel functions well-known
and fixed, we have in (9.2) an important condition on all univalent
functions in B.
We illustrate our result by considering special cases of (9.2).

Let B be the unit circle 1 z [  1. In this case K and l are given
by (2.7). Hence we have the inequality

Specializing further to r = 1, we obtain the interesting necessary
condition for univalence in the unit circle, expressed in terms of
Schwarz’ differential parameter (3.7) For a similar sufficient

condition see (Nehari [1]): 

We may generalize this result to the case of multiple connectivity
by use of (9.2) for r = 1:

Let S be a closed rectifiable curve in B and p(s) a complex-
valued function of the length parameter on 1; we obtain from
(9.2) by a limit process

Let us now assume that the analytic functions l, U, K are de-
veloped into power series of their variables around the origin 0
which we suppose in B:
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Because of the symmetries of these three functions, we find for
their coefficients

We now choose for E a curve in the common domain of con-

vergence of ail three developments (9.5) which surrounds the
origin. Let

We clearly have

and

Hence the inequality (9.4) leads to relations between certain

quadratic and hermitian forms which are connected with the
coefficient matrices of the kernel fllnctions:

Similar inequalities are obtained for the coefficient matrices of
the kernels in the As-space. These inequalities were first discovered
by Grunsky (Grunsky [1]) who gave them a somewhat different
formulation. Compare also (Schiffer [4]).
Grunsky showed also that when the necessary conditions (9.9)

are satisfied for every N and every choice of the ay, the univalence
of the function 99(z) considered is ensured; i.e. all conditions (9.9)
are a sufficient condition for univalence. We want to give here a
new and shorter proof for this fact which is based on an important
result concerning the kernel function. We first announce the
following theorem:

Let V(z, C) be symmetric and analytic in both arguments in a
neighbourhood o f the origin; let

be the series f or V and the K-kernel around the origin. Il f or every
complex vector oco, a1, ... aN

then V(z, C) is analytic in the whole domain B.
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In order to prove this theorcm we introduce a complète set of
orthonormal functions yv(z ) which is very useful in dealing with
power séries developments. Each xy(z) has around the origin
the séries development

r - 

The condition that the matrix (Pvu) be triangular détermines
the set xv(z) in a unique way (Bergman [2]) Since the K-kernel
can be expressed in the forms

we conclu de from (9.12) the identities

Since Beu = 0 for e &#x3E; u, the matrix (kuv) consists of finite com-
binations of p-terms. consists of finite com-
The relation (9.12) between the zu and X,(z) can easily be

inverted:

The matrix (bvu) is of the same triangular form as its inverse ({J.p).
Introducing (9.15) into (9.18) and comparing the coefficients of

xu(Z)xv(C)f, we find 

again, all sums (9.16) are only of finite range.
We rearrange formally the series (9.10) for V(z, e) by means

of (9.15) and obtain

We do not know if and where the second sum (9.17) converges.
But the series for tpp are finite expressions and well-defined.

Introduce an arbitrary complex vector a,(v = 0, ..., N ) and let

Consider now the expression
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Using thé assumption (9.11 ) of our theorem, we find by vir!’uc
of (9.16) and (B.1S)

for arbitrary ehoiee of thc complex vector av.
From (9.20) we dérive casily for any two vectors a v and av

llolcls. 
Now let 1J’ be a closed subdomain of B. In this domain tlie

kernel function K(z, Nt) is iiiiil’oriiily bounded, say by tlie con-
stant M. ircncc, io vicw of’ (9.13), (9.20a) leads to the inequality

for arbitrary choicc of z and C in B’. Hcncc the functions

arc nniforn1ly boundcd in B’ aiid form a normal family tlmre.
Thercfore we can sélect subsequences of our set winch converge
iiiiiformly in cach closcd subdomain of B’. But in view of (9.17)
and (9.22) the limit functions w’ill always coïncide with V(z, C)
in the neighbol1rhood of tlie origin. IIence tlic whole séquence
V N(Z,C) possesses thc same liinit and converges iiiiiforinly in

each closcd subdoinaiii of B’. Tlie liiiiit function is tlie analytic
continuatiol of thc power series V(z, () ovcr tlie BBlK)]c domain.
Hence our theorem is proved.

’rlie application of this result to thé theory of univalent

fuiictioiis is immediate. Grunsky’s conditions (9.9) gua.rantec
the regularity of tlle function U(z, C) in B, winch shows that
O(z, C) is regular is B and tliat cxcept for z = Ç we ncvcr have
cp(z) = q;(C). This is just thc univalenee property required. It is
rcmarkable how closely thé proof of neeessity and suffieicncy
of (9.9) is conncctecl with thé kernel functions.

Finally W’c want to study tlie cxtrcmum problem, for wliieli
functions tlie Grunsky incquahtics (9.9) may bccomc equalities.
Since these inequalities have becn derived from tlm more general
inequalities (4.14c) it will be sufficient to determine these domains
B for which cquality can hold in (4.14e) under an appropriatc
choice of points Cv aid constants el),. If we go bnck in the dérivation
of thcsc ilcqual itics we see that they can only beeon1c précise
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if the corresponding non-negative integral (4.10) vanishes, i.e. if

there exists a real constant ), such that

In proceeding from (4.14a) to (4.14c) we furthermore neglccted
the term

This integral can only vanish if the area of B is zero, i.e. if B is

a slit domain. It is true that we developed our theory only for
dolnains B which are bounded by closcd analytic curves; at this
stage, however, the consideration of more general domains

becomes inevitable. Using the continuity of K and 1 in dependence
of tlieir domain of definition B it can be shown that the identities

(4.2), (4.3) and (4.8) hold in the most general case. For slit

domains, the term 7" is to be taken as zero in (4.8).
We multiply (9.29) with l(w, s)t and integrate the identity

ovcr all z E B. Using (4.3) and (4.8), we obtain

From (9.29) and (9.29a) we conclude the identity

In view of (2.5) this may also be written as

we want to study this expression at the boundary C of B;
howcvcr, this boundary may be a very complicated one and we
hrefer, therefore, to map B upon an auxiliary domain B1 with
smooth boundary C1. Let z = f(w) give the map of B, into B. We
multiply (9.31a) with f’(w) and have by virtue of (3.3) and (3.4)

(9.32 ) £ r t t -,4Li(w, wv )] + - i £ r rJw",f’ ( W ) 
= 0, w e B1(9.32) [..4)’[{1(U, (ù",)-.i4",L1(w,ro",)] + - 2 = 0, z(9.32) v=l [AKl(u,, 1, (ot)-A ’y v L1(w,co V)l n",= 1 (f(w) - e",) 0, we B1,

where ev = f(wv) and Av, = rJwV[f/(roV)-lJ. Let w’(s ) be the tangent
vector at the point we Cl; multiplying (9.32) with w’ (s) and
using the boundary relation (2.4) between K and L, we obtain
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Integrating with respect to s, we find at last

This proves that C consists of analytic slits with the algebraic
equation (9.34).

It is evident that the same treatment leads to the extremum

domains in the particular case of Grunsky’s coefficient inequa-
lities (9.9).

10. Variation formulas for the eigen functions o,(z).
We now want to study the dependance of some of the important

domain functions on the varying domain B. Let v(s) bé con-
tinuous on C and ev(s) denote the shift of each boundary point
z(s),e C along the interior normal direction at this point. This
defines a deformation of the boundary C = z(s) into a new curve
system C* with the parametric representation

C* is the boundary of a new domain B* which differs very little
from B for small a. We may choose the deformation function v(s)
in such a way that C* is a system of closed analytic curves.

Let g*(z, e) be Green’s function of B*; according to a classical
formula by Hadamard (Hadamard [1], Lévy [1]), we have

where i’e(z, e) is bounded and harmonie in each closed subdomain
af B. Using the definitions (2.3) and (2.5) for the kernels K and l,
we obtain from (10.2) by differentiation the following formulas
for their first order variations:

and

Further it is easily seen that
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Using this identity in (10.3) and (10.3a) we find

Let now Ck(V = 1, 2, ..., r ) be an arbitrary set of points of
B and ot,,(v = 1, 2, ..., r ) a set of complex numbers. We have by
virtue of (10.5) and (10.5a)

If the domain B decreases under variation, 00, 2 0 on C and we
see from (10.6) and (10.6a) that the expressions

increase with decreasing domain. The terms of the inequality
(4.14c) have, therefore, the following behavior; if the domain

decreases, the bigger term increases quicker than the smaller
term and the inequality becomes continually stronger.
We now want to determine the Fourier coefficients of the

functions ôK and 6l with respect to a given orthonormal system
in B. For this purpose, we have to prove the identity (2.9) for
the case that the analytic function f(z) is continuous in the

closed region B + C and for z e C. In this case, we may apply
the boundary condition (2.4) and we obtain

Because of (2.5), we liave

Using the définitions (5.1) and (5.3), the regularity of 1(z, C) in
the closed region B + C and elementary proporties of improper
integrals, we have
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Because of the saltus condition (5.5) we find therefore
.

and lience from (10.8):

Hence tlie identity (2.9) lias been extended to tlie closed region

The eigeii fUllctions Pv(z) are continuous in the closed region
B + C and form a complete orthonormal system in B. Using
(10.5), (10.5a) and (10.12), wc compute thc following identities:

From the définition of the cigen functions 9’-’v(z) as solutions of the
integral équation (6.5) it can easily be shown that each gg,(z)
varies continuously with the domain B, if it does not belong
to a degenerate eigcnvalue Ã.v; its first order variation is of the

class L2 in B and we put:

We denote further the first order variation of the non-degenerate
eigen value Av by ôÂv.

In view of (6.19) and (6.20), tlie notation (10.14) leads to
the formulas: 

Introducing these expressions into (10.13) and (10.13a) respecti-
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vely and using the orthonormality of the system {p,,(z)}, we find
thc following equations for vvp and âÂ.:

These equatioms determine completely the variation of an eigen
function cp,(z) and its corresponding eigen value Âv provided that
Àv is non-degenerate.
From (10.16) and (10.16a) v-c conclude

We may Write

If wc ititrodlice iii the complementary domain P the function V,(z)
dcfined by (7.30) we may express the variation formula (10.17) by
means of (10.18) and (7.31) in the form

C

Since ive proved in section 7 that in the case of a simply-connected
domain B the function "Pv(z) is an eigen function of the com-

plementary domain B with the same eigen value Âve the great
symmetry of (10.19) is obvious.

Further interesting formulas appear when the type of variation
(10.1) is specialized. The following kind of variation has been of
great use in the general theory (Schiffer [2]); let zo be an arbi-
trary fixed point in B. Let the boundary C be subjected to the
variation

which is for e small enough of the type (10.1). One sees im-
mediately that the normal shift of a point t e C is given by
the formula
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Under this particular variation the formula (10.17) may be
transformed into

A slight rearrangement of this formula and the residue theorem
yield

Now wc reinember that the function Ttp" is regular in each

complementary domain BQ and has the boundary values

9’.(t) - (9’.. t2)t. Hence the integrand of thé intégral (10.23) is
A,

regular inside each boundary curve C. and the iiitegral vanishes.
Therefore, finally:

This is a variation formula of the "interior" type where all boun-
dary integrals have been eliminated.
A similar result is obtained if the point z. in the variation

(10.20) is chosen in a complementary domain Ba. One finds
easily by the same consideràtions

where the function V,,(zg) is connected with the 1-transform

Tq, by (7.30).
It is not difficult to determine the variation of the eigen

functions q&#x3E;,,(z) under a variation (10.20). The corresponding
formulas for the kernels K and 1 have been given in (Schiffer [3J).
Formulas of this type arc of particular use if one extends the

définition of the functions and funetionals considered to domains
of tlie most general type; in this case, the boundary C may be so
involved that a description (10.1) of the domain variation be-
comes impossible.
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