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Kernel functions and conformal mapping?)
by
S. Bergman and M. Schiffer

To our teacher, Erhard Schmidt,
on the occasion of his 75th birthday

Introduction.

The concept of a kernel function has found increasing ap-
plication in the theory of functions which satisfy certain linear
differential equations in a fixed domain. It has permitted a
unified treatment of different important theories in analysis.

A particular role is played by the reproducing kernel of the class
of functions considered which can easily be constructed by means
of a complete orthonormal system in this class and is, on the other
hand, closely related to such important domain functions as
Green’s and Neumann’s functions. This kernel was originally
introduced in the study of pseudo-conformal mapping by means
of pairs of analytic functions of two complex variables (Berg-
man[1]). Its usefulness for the classical theory of analytic functions
of one complex variable was soon realized (Bergman[2]) and,
finally, its connection established with Green’s function and the
canonical map functions (Schiffer[8]). Its role was also studied
from a general point of view by stressing its reproducing property
in a linear function space with hermitian metric. Most of these
results were extended to the theory of partial differential
equations of elliptic type and a new approach to the boundary
value problems was obtained (Bergman—Schiffer [1][2][8]). The
dependence of the kernel functions upon the basic metric and
its significance were investigated (Garabedian [1], Schiffer [5]).

At this occasion it became clear that certain other kernels
should also be taken into consideration which are closely related
to the reproducing kernel but have important properties of their

1) Work done at Harvard University, Cambridge, Mass. U.S.A., under Navy
Contract N5 ori 76—16, NR 043—046. The present paper was accepted on
April 11, 1949, for publication in the Duke Mathematical Journal. For technical
reasons it was transferred to this journal.
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own. It is the purpose of this paper to study such an additional
kernel in great detail for the theory of analytic functions of one
complex variable. We show how this new kernel leads to important
inequalities for the reproducing kernel which is still considered
as the fundamental one. From these inequalities numerous
estimates for the coefficients of univalent functions in a given
domain are derived and it is shown that Grunsky’s necessary and
sufficient conditions for univalence (Grunsky [1]) are an imme-
diate consequence of the theory of these two kernels.

Since our new kernel does not have the reproducing property
we are naturally led to study those functions which are repro-
duced by it except for a constant factor. This introduces a homo-
geneous integral equation the eigen values and eigen functions
of which are to be determined. It appears that this integral
equation is closely related to the classical one used in the treatment
of boundary value problems by integral equations; thus, a con-
nection is established between these different approaches to the
theory of conformal mapping.

Using formal identities betwcen the two kernels we cstablish
a quickly convergent series for the reproducing kernel which
seems to us of great importance for the numerical side of the
theory of mapping of multiply-connected domains upon canonical
domains.

Finally, we establish variation formulas which show the
dependance of some of the quantities discussed upon the domain
of definition if the latter varies. All our formulas show a great
symmetry and simplicity which seems to justify the introduction
of the new concepts.

1. Generalities and notations.

We consider in the complex z-plane a finite domain B which
is bounded by n closed analytic curves C (» =1,2,...n); we

denote the boundary X C, of B by C. If a complex-valued function
y=1
F(z,y) is differentiable in both arguments for every point

& + 1y = z € B, we can define two complex differential operators
on F:
oF %(aF ,3F) oF %(aF 1,8F

—_— —_— —_— == J—— —_— T_—_— — .
(1) 0z oz ’ay ozt P ’ay)’ FoeY

Analytic functions f(2) are characterized by the Cauchy-Riemann
condition
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of

.2 — =0
while anti-analytic functions f(s') satisfy correspondingly
of
2 =— = 0.
(1.2a) %

Let f(z) and g(z) be analytic in the closed region B + C; by
means of (1.2) and (1.2a) we may establish the following simple
rules on integration by parts:

as) [ [rentae = [t = de,
C

B

as) | [r@eente = — [feeear
B C

Here and in the following the contour integration on C will be
understood to be in the positive sense with respect to B.

We shall denote the complement of B 4 C in the z-plane by

B, and I;, will be that component of B which is bounded by C,.
We assume that C is given in a parametric form 2(s) where s

. dz .
is the length parameter on C; thus 2’ = 7 represents in each
point of C the tangential unit vector. C has at each point z(s)

2
a normal and we denote by — the differential operator in the
%
direction of the interior normal with respect to B.

In the following we shall often write a(z)' instead of [a(z)]'.

2. Green’s function.

Green’s function g(z, {) of B is defined in the usual way by its
three fundamental properties:

(a) g(z,¢) is harmonic in 2, for { € B fixed, except for z = {.

(b) g(z,¢) + log |z —¢| is harmonic in the neighbourhood of
z2=2_¢.

(¢) g(=,8)=0 for zeC and (e B.

The symmetry of g(z,{) in z and { follows easily from these
properties; our assumptions on the analyticity of C ensure the
harmonicity of Green’s function even on the boundary C of B
as the two argument points z and 7 stav apart.
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From the identity
(2.1) g(z(s), ) =0, 3(s)eC, {eB,
we derive by differentiation with respect to s:
g og ag}
/-5 nt o _ ' 51—
(2.2) P + (2') % 28‘{{2 e 0
ie.

0
(2.23) z'(S)'é;g(Z(.S‘), C) = 7:'/(5’ n; 8)’ C = f + iﬂ,

where #is a real-valued function of its arguments.

We now define the two functions

2 0%g(z, {) 2 0%g(z, {)
28) Ki,th=——-—222" L(z{¢)=—— .

(2:8) K= n ozoct (=) n  00¢

They are both analytic in their arguments which easily follows
from the harmonicity of Green’s function. From (2.2a) and (2.3)

we conclude
(2.4) 2'(s) L(2(s), &) = — [2'(s)K(=(s), {1)IY, 2(s)eC, L eB.

The function K(z,¢') is for fixed ¢ € B regular in the closed
region B + C; the logarithmic pole of Green’s function has been
destroyed by the particular process of differentiation leading
to K. The function L(z, {), however, has a double-pole for z = ¢
and may be written in the form

1
2.5 L(z,() = ——— — (3,
(2.5) (6:0) = o — e 0)
where [(3, () is, for { e B, regular for 2 € B + C.

We further notice the symmetry relations which follows from
the definitions:

(2.6) [K(2 ¢t =K(,2"), L(z¢) = L(, 3), Uz L) = U(C, 2).

For instance in the case of the unit-circle Izl < 1 we have

1__1'
6z ¢) = log | -7

z_..

’ K(Z, C?) ==

n(1 — ¢Tz)2
L(z¢) = ;(;1:52, I(z, ) = 0.

The functions K and L play a central role in the theory of
logarithmic potential and conformal mapping and it is the
principal aim of this paper to investigate their properties and to

(2.7)
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show their applications. The following result (Schiffer [38]) illus-
trates their importance:

Let 2 be the class of all functions f(z) which are analytic in B
and for which the Lebesgue integral

(2.8) ”|f(z)|2dr < oo.
For each f(z) € 22 we hI;ve the identities
(2.9) !3 [ K@ &1 (@), = f(z)
and
(2.10) [[ L@ ot(erde, = o.

5

Both integrals are to be understood in the Lebesgue sense, and
the improper integral in (2.10) is the limit of an integral over
the domain B, , which is obtained from B by elimination of a
circle around z with radius e.

3. The kernel functions.

We shall call K(z,¢') and I(z, ) the kernel functions of the
first and second kind with respect to the class 22, since they
appear as kernels of certain integral operators applied to the
class; K(z, £t) might also be called the reproducing kernel of the
class because of (2.9). The significance of I(z,{) follows from
the identity

61 [fin o) feyin = ~ [t 01

which is a consequence of (2.5) and (2.10). We see that I(z, {)
is a kernel of the class 8 which has on each function f(z) € €2 the
same effect as the important but singular kernel [#(z — ()]~
Numerous applications of this fact will be given in the following.

Let w = ¢(2) map the domain B univalently upon a domain B,
with analytic boundary C,. If w = ¢({) and g;(w; w) is Green’s
function with respect to B;, we have the well-known identity

(3:2) &(w, o) = gi(p(2), @(¢)) = gz ¢).

Differentiating with respect to z and { and denoting by K,, L,
and I, the kernels with respect to B, which correspond to K,
L and !, we find in view of (2.3):

(83) Ky(w, ") ¢'(2)[¢' (O] = K (2, {T)
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and
(3.4) Ly(w, 0) ¢'(2) ¢'(¢) = L(=¢).
Hence, in view of definition (2.5)

{ PEPE 1 }
(@) — 9@ (z—0)

This formula is better understood if we introduce the expression

1
(8.5) L(w, 0)p'(z)"(5)=Uz¢) + —

4

(8.6) D(z, ) = ;— log "’(z:—:?@

which is analytic in the closed region B 4 C because of the
univalence of ¢(z). Then we may write instead of (8.5):
v, 0P
(8.52) L(w, 0)¢'(2)¢"(C) = Uz, ¢) + P
We notice the formal identity

2P _ l[d2 o de l(d o d<p)”]_~ 1{ 2)
=t  6mlds? gdz 2\dz gdz T 6xm <p,

020¢
where {p, z} denotes the well-known differential parameter of
Schwarz. This shows the interest of the function @(z, {) of two
complex variables in connection with the conformal mapping
produced by ¢(z).

(8.7)

We now make the following application of the transformation
formulas (3.8) and (8.5a). Ley B, be a simply-connected domain
in the w-plane and let w = ¢(z) be the map of the unit-circle
|| <1 upon B,. Since ¢(z) is still analytic on |z| = 1 we see
from (2.7) that

Ky(w, of) = (79’ ()9’ (2)(1 —T2)*) !

(8.8) 20
b, @) = (¢ @0 (6) 5

are still analytic on the boundary C, of B, if w and w are separated.
If w = o, however, K, becomes strongly infinite while /, remains
regular even then. Thus, in the case of a simply-connected domain
l(z, {) is regular in both arguments in the closed region B + C.

We now want to extend this result to the case of an arbitrary
finite connectivity. We choose one boundary curve C,, say Cj,
and consider the complement of the domain BZ. This domain
contains our initial domain B as subdomain; let g,(z, () be its
Green’s function. g,(2,¢) vanishes on C; and is still harmonic



(7} Kernel functions and conformal mapping. 211

on the curve itself. If g(z, {) is again Green’s function of B, the
term g,(2, ) — g(», {) is regular harmonic in B and may there-
fore be expressed by its boundary values and g(z, {). In fact,
we have

1 0g(t,¢)

Bl 0) — 85, 0) = 5 [l 1) T sy =

(8.9) " 1 dalt, ¢
=0 2 fgl(z, t) g, )ds,
ny¢lc an‘
v

where ai denotes differentiation in the direction of the interior

n

normal. We notice that the integration in (8.9) runs over all
boundary components of B except for C,; the point ¢e C there-
fore never lies on C,.

From (8.9) and (2.8), (2.5) we easily deduce

1 og, (2, t) 02g(t,
©.10)  his 8 — 1 c)=ﬁv§1f —g‘;i ) agyf acQ ¢
t

Now, (2, ) is regular even on C, since it is the l-kernel of a
simply-connected domain. In (8.10) the right-hand integral is
regular on C, since ¢ does not run over this particular curve.
Hence we proved the following theorem:

The function l(2, {) is regular analytic in the closed region B + C.

This property of the l-kernel will be of of great use for the
general theory; it-is one of the main reasons for the importance
of this kernel. The K-kernel with its reproducing proporty and
its simple definition (2.8) attracted the interest much earlier
than the l-kernel; it has not, however, the property of regularity
in the closed region B + C and its infinity on the boundary
was of some difficulty in its theory. By establishing a simple
relationship between the two kernel functions we will be able
to overcome this difficulty and to remove the infinity of the
kernel function by addition of an elementary function.

4. Identities and inequalities for the kernel functions.

The functions of the class % form a linear space 4 and we may
introduce into this space a hermitian metric based on the scalar
product between two elements f and g:

(4.1) (f, &" = [[ fz) (e(a)dr,.
B

Then it is important to determine the various scalar products
between kernel functions.
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From the reproducing property (2.9) of the K-kernel and the
symmetry laws (2.6), we deduce immediately

(4.2) [[K( K@l = [[K(w, 5K (3, ¢z, =K (o, o)
B B
and

(4.3) j jl(z, w)[K(z, t)]dr, = j j'K(c, ') Uz, w)dr, = l(w, ¢).
B B

It is a little more difficult to determine the scalar products
between l-kernels. Using the identity (8.1), we find

1
(4.4) f J' I(z, O)t(z, w)dz, = ~ j j I(z, w)[(z — ¢)-?]t dx,.
B B
By integration by parts of the type (1.8), we transform this into

1 dz
(4.5) fB [tz &)1z, w)dr, = — f e ) o
C

For z e C, we have by (2.5) and (2.4)

1  dz 1 dz
(4.6) I(z, w)dz = P Pa—— L(z, w)dz = = G—w) + [K(3, w')dz]t.
Hence, (4.5) obtains the form
1 (K@Ew), 1t 1 dz
(4.7) LII(Z, Oz, w)de, = [2_—mJ. - dz] T onk [ (z —w)}(z—C)"
c c

The first right-hand integral may be computed by the residue
theorem; the second integral may be transformed into an integral
over the complement B of B by means of (1.3). Finally, we
arrive at the identity:

(4.8) J' j 1z, £)t(z, w)dr, = K(w, ct) — I'w, ¢1)
with ?

o l dr,
(4.9) T(w,¢h) =~ jﬁ [ ik

Hence the scalar product between two Il-kernels leads to a
K-kernel and a I'-term. The characteristic property of the latter
is that it can be computed by elementary integration over the
exterior of the considered domain B. It does not depend on the
solution of a boundary value problem in harmonic functions
as do the K- and l-kernels. We shall call expressions of this type
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geometric quantities and consider a problem in harmonic func-
tions solved if it can be reduced to the computation of such terms.
The geometric quantities are elementary ones as compared with
the function-theoretic terms involving Green’s function.

We now make the following natural application of our identities:
We choose r + s points §;, &py .. 6y Wy --- 4, in B and r+ s
arbitrary constants &, ... o, f; ... f,. We start from the obvious
inequality

(4.10) ”|2‘.«*K z,C*)—i—).Zﬂ”l(z,nﬂ)l’erO A real,

v=1

and compute the left-hand integral by means of the identities
(4.2), (4.8) and (4.8). We obtain

@1) B adKG, cf)+2m{ £ 5wl |+

v, =1 v=1 u=1
2% ﬂvﬂ' (K (my» 1) — L(my, n})] = 0.
v, u=1
For A = 0 we obtain the well-known inequality

(4.11a) ) o« af K(L,, L) =0
v, p=1
which is often expressed by the statement that K(z,(t) is a
definite kernel. This property is characteristic for any kernel
which has the reproducing property with respect to a certain
Hilbert space, as has been stressed in the abstract theory of such
kernels (Aronszajn [1]); the proof in the general case is also
based on the fact that the norm of every element in a Hilbert
space is non-negative.
We conclude further from (4.11) the inequality

(4.12) En B, Bl K(ny, m}) = py By BY T(my, mf)-
U= v, p=1

This is a real improvement of (4.11a) since the kernel I'(z, ¢T)
is a positive-definite kernel, too. In fact, we may write

By

2
dz,
(z—m,)?

(4.18) Z ﬂw BL T(ny,,m},) =

which proves our assertion. By means of (4.12) we can estimate
the hermitian forms connected with the kernel function in terms
of geometric expressions.
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Finally, we obtain from (4.11) the discriminant inequality
r s J2
16 {3 £ w6 n)'s

syz &, ol K(,, 1) - 2: 2 By Bl (K (nys ) — Ty, 1))

If we replace in this mequallty each Bu by By ¢'°, the right-hand
side remains unchanged while the left-hand s1de varies. The best
possible inequality thus obtained is

(4.14a) ) avﬁ,‘l(t,.,n,‘)
y= 1[4=1
g,‘zlm*mcv, 8. 2 B, BLK (nyy nf) — Tlnys )]
v= v p=1

Because of the definite character of I'(z, Cf) this inequality
implies

(4.14b)

S BBl )| =

y=1pu=1

Ela «*K(CV,C*) 2 ﬂvﬂ,‘K(nwn,,)
ﬂ =
If we finally choose r = s, , = B, ¢, = mn,, we arrive at

(4'.14.'0) z a,, o l(Cy,C )l z %“T K(é'v’ t’z)
=1

Another very important consequence of (4.8) is the identity

(4.15) K(z, zt) — I'(z, zt) = ”| Uz ¢)|2dr, = 0.
B

Since I(z, £) is regular and analytic in the closed region B + C,
we conclude from (4.15) that K(z, 2') — I'(z, 2') is bounded
in B + C. This shows that the geometric quantity I'(z, ') has
at the boundary C the same asymptotic behavior as K(z, zt)
and that their difference behaves quite regular. At the same
time, this elementary term provides at each interior point z a
lower bound for K(z, zT).

We have further the important theorem:

The hermitian kernel K(z, C*) — I'(z, Cf) is regular in the
closed region B + C.

The irregular behavior of K(z, {T) on C led to the phenomenon
that the homogencous integral equation

(4.16) p(z) = [[ Kz ¢t p(¢)de
B
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had the value 1 = 1 as eigenvalue of infinite order so that each
analytic function ¢(2) was a corresponding eigenfunction. The
classical theory for regular hermitian kernels is, however, appli-
cable to the regularized kernel K(z,(') — I'(z, (') and we shall
later study its eigenvalues and eigenfunctions. The close relation
between the two hermitean kernels K(z, ¢) and I'(z, ') is
illustrated by the easily established fact that K(z, (1) [I'(z, ¢T)]?
is invariant with respect to linear transformations of B.
We mention further the special instance of (4.14a)

(4.17) Uz 0)|2 < K(z, 2") . [K (¢, 1) — I, )]
which implies
(4.17a) |1z, 2)| < K(z, 2).

5. The Il-transforms

The I-kernel transforms cvery analytic function f(z) of the
class 2% into a new analytic function T f(z) by means of the
operation

(5.1) T/(z) = [ [u(z £) /)" d.
B

We call T f the I-transform of f and want to study the class of all
these transforms. Using Schwarz’ inequality and (4.15), we find

(5.2) |T@)|* < [K(x ") — I 2N)] [[| 10)]2dx,
B

while the same reasoning applied to (2.9) yields

(5.2a) | 1(2)|* < K(z, 2" [[ 1£(¢) |dr.

B

We see from (5.2) that the class of all I-transforms of £* forms
a proper subclass of £2 which contains only bounded functions.
One easily sees that all I-transforms are analytic in the closed
region B + C.

Because of the fundamental property (8.1) of the I-kernel
we may express the l-transform of f(z) by means of the improper
integral

(53) Ti) = [ e E— 2 2ds,
B

This representation has the advantage of possessing an elementary
kernel and of admitting simple transformations. Applying for
example the integration rule (1.4) we obtain

(5.4) T 6 = o [ G— 2T
C
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in the case that f(z) is continuous in the closed region B 4 C.
Further we way use the representation (5.8) in order to define
the transform T f(z) in the whole complex z-plane. In each

domain B., the function Tf(z) then represents an analytic function,
The different analytic functions T f(z) defined in the domains

B and Ev do not form a continuous function in the whole z-plane.
In order to study their behavior on C let us assume that f(z) is
continuous in B 4 C, so that the representation (5.4) holds.
According to a classical theorem by Plemelj (Plemelj [1]) the
function T f(z) has a saltus of the value

(5.5) A(T f(z)) = — [f(=) . 221"
if we cross at the point 2 ¢ C from B into the complementary
region B.

Let us illustrate these formulas by the following example.
We have

(5.6) TK(z, wt) = f J'K(C, wh)t (¢, 2)dr, = I(z, w) for z ¢ B
B

and
1 1 -
(5.6a) TK(z w') = = jBJ'K(C, wh)t(¢ — 2)-2dr, = e for z ¢ B.
The latter result follows from the fact that ({—=z)-2 for ze B
belongs to the class £2 with respect to { and that, therefore, the
reproducing property of the kernel function may be applied
here. The saltus condition (5.5) takes the form

(5.7) — [K(z w')2]t =

i — w)’ —(z, w) = L(z, w)

which is just the important boundary relation (2.4).
At this point we notice that (5.6) may also be written in
the form

(5.6b) Uz w) = —nl—j [ K@, wh) (¢ —2)2ds, for z¢ B
B

which shows that l(z, w) may be computed elementarily, once
the K-kernel has been determined.
Similarly, we have

(5.8) Ti(z, w) = [[U¢, w)'U(E, 2)dv, =K (3, wh)—I(3 w') forze B
and B

(5.8a) Tl(z, w) == f f U, w)(¢ —z)2dr, =

=—H [(¢ —w) )M —2)-tdey, z¢B.
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One can show that in this example, too, the saltus condition (5.5)
leads to the boundary relation (2.4) between the two kernels.
If we bring (5.8) into the form

(5.8b) K(z,w') = I'(z, w'") + %_”l(é‘, 2)[( — w)~2]t dv;, 2¢€B,

we find that the K>kernel can be expressed by elementary com-
putations in terms of the l-kernel. One sees that it is sufficient
to find a construction for either kernel and that the other is then
easily obtained.

Now let f(z) and g(z) be a pair of functions of the class {2.
Defining T f and T g by (5.1), we can easily compute by means
of (4.8) the scalar product:

(5.9) [[Tf. (Tg)tdr = [[ [[IK( 1) — IE " NfEYe(n)drydr,

Using the reproducing property (2.9) of the K-kernel and the
definitions (4.9), (5.8), we may bring (5.9) into the elegant form

(5.10) [[rs. (re)tdr = [ fgar.
B+B B
This result suggests the following concepts. Just as the metric

in the space A4 was based on the scalar product (4.1), we may
base a metric in the linear space /A of transforms on the metric

(5.11) [T}, (Tg)'1 = [[ Tf. (Tg)tdr.

B+B
In fact, the transforms being defined in the whole complex plane,
it is natural to integrate in their scalar products over this whole
region. In this notation, we now may express (5.10) in the form

(5.10a) [Tf, (Tg)'] = (', g)-

The chose relation between the linear spaces 4 and A} becomes
more evident by the following inversion formulas: Given a
function Tf € A, we want to find its generating function f e 4.
For this purpose, we determine

(5.12) TT/@)] = [[u¢ ) 16w, ¢) flw)tde,Vdry, =< B.

B B
Using (4.8) and (5.8), we have

d
(s18) J T [ K 8 — T 00116
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By virtue of (2.9) and (4.9), this may be written in the form

z e B.

(5.14)  f=) = j f (TN )2,
This formula shows the great symmetry existing between the
spaces A and Ay; the corresponding elements transform into
each other by an integral operation with the same kernel, ex-
tended in each case over the proper domain of definition only.

The meaning of (5.14) becomes very clear if we transform the
domain integral into a contour integral along C by means of the
integration rule (1.4). We arrive at

dry t dCT

(s1sa) — [ L'r/(cn*(c_z)ﬁ—f [ (T
B+B

where A(Tf) is the discontinuity of Tf on C as given by (5.5).
Thus, (5.14) is nothing but the identity

(5.15) 0 =5 [ Lla
C

in the case that f(z) is continuous in the closed region B e C.
This transformation shows also clearly that the value of the right-
hand integral in (5.14) has the value zero for z e B.

Each function Tf € Ay is also a function of A and has a norm
(T, ‘(Tf)f). We may compare its norm in A; with that in 4
and find by (5.11)

(5.16) [T/, (TH = (Tf, (T + [[ | Tf|2dv = (T4, (THY).
B

There arises the question under what circumstances equality
might hold in (5.16). It is obvious that in this case necessarily
(5.17) T{(z) =0 for ze B.

From (5.14) we then conclude that
(5.18) f(z) = T (Tf(z)), for =ze B,

i.e. f(z) belongs also to the space A and is, therefore, analytic in
B + C. Hence we may apply the saltus condition (5.5) to Tf(z)

and since Tf(z) vanishes in B, we simply obtain for the limit
of Tf an interior approach to z e C:

(5.19) Tf(z) = — [f(z)2'2)!, zeC.
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We write this result in the more symmetric forms
(5.192)  (T/(2) + f(x)s' = — [(Tf(z) + f(x)z']}, ze¢C
(5.19b)  i(Tf(z) — f(2))2" = — [i(Tf(z) — f(z))¥']", =zeC.

We introduce two real harmonic functions 2,(z, y) and 2,(z, y)
such that

02, . QR
(5.20)  Tf(z) + f(z) = =, i(TH(z) —f(z)) = =
03 03
The formulas (5.19a) and (5.19b) then simply state that on C
o, s,
5.21 — = O, — =90
( ) ds ds

Hence 2, and {2, are two real harmonic functions in B which are
constant on each boundary curve C,. Therefore, they may be
linearly composed of the harmonic measure functions

1 [ 0g(z¢) )
(5.22), w2z, y) = P ong ds;, z=ux+ 1y,

Cy

which have the value 1 on C, and 0 on the rest of C. We introduce
the analytic functions

(5.28) w,(z) = 2z (@, y), w,z)= dw,()
03 dz

which clearly satisfy the boundary conditions
(5.28") w, ()2 = — [w,(z)z']".
Then it follows from our considerations above that
(5.24) fe) = X aui(z)

P=

with complex coefficients a,,.

If inversely f(z) has the form (5.24), it is analytic in B 4+ C
and we may apply the formula (5.4). Because of (5.28a) this
leads to

1 . , 1 .o dg
3 %) = -— t HE—z)- =—— i —_—
(5.23) Tf(z) e !Ela,[w,,(C)C] (E—=)ds oy 2[ a,,w,,(C)C .
ie.

(5.25a) Tf(z)

Il

— X d}w, (2) for 2 ¢ B

(5.25b) Tf(z)=0 for z ¢ B.
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We see that in this case (5.17) and (5.18) indeed are fulfilled
and that, therefore the equality sign in (5.16) holds. Since the
harmonic measures have non-vanishing derivatives only in
multiply-connected domains B, we see that equality in (5,16) is
impossible in simply-connected domains, except for identically
vanishing f(z).

We notice finally that each function

(5.26) 1(z) = i Z a, w,(z), a, real
y=1

satisfies the condition

(5.27) /(z) = Tf(z)
and that every solution of (5.27) must necessarily have the form
(5.26).

6. The eigen functions of the l-kernel

It is natural to ask for those functions in A4 which coincide
with their [l-transforms except for a numerical factor, i.e. which
satisfy the integral equation

(6.1) #(2) =4[ [ @,0)" ¢, 2)dz.

Every multiple of ¢,(z) will have the same property, since we
may put (6.1) into the form

(61a)  apy(x) = ha(a™)'[ [lap,(0))UC, 2)dz;.

We use this fact in order to put normalizing restrictions on the
functions ¢,(z) which we will consider. It is sufficient to deal
with functions ¢,(z) for which

(6.2) ”|%(z)|2dr, =1

and for which the corresponding A, satisfies the condition
(6.3) A, =o0.

We shall call such a function ¢,(z) an eigen function and the
corresponding value 4, an eigen value of the kernel .

At the end of the preceding section we saw that the value 1 is
an eigen value of the l-kernel in each domain of connectivity
n =1 and that it belongs to the n — 1 linearly independent
eigen functions 7 w;(z), . .. 4w, ;(z). In such a case we say that
the eigen value 4, =1 is of degeneracy n — 2.
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The study of the integral equation (6.1) may easily be reduced
to the classical theory of integral equations with hermitian
definite kernels. In fact, iterating the integral equation (6.1)
we obtain

©6.4)  g,) = 4 [[4,[ [ o)1, D)de, U, 2)dr,
B B
which leads because of (4.8) to the new integral equation
(6.5) oy(2) = 2 [[[K (3, ) — I(z, )], ().
B

Hence every eigen function of (6.1) is also a solution of the simpler
integral equation (6.5) and to each eigen value 4, of (6.1) cor-
responds an eigen value A2 of (6.5). Now we shall show that the
converse of this statement is also true and derive from this fact
the existence of solutions of (6.1).

The kernel K(z, () — I'(z, ¢1) is hermitian, regular in B + C
and positive definite, since we have for an arbitrary continuous
function u(z) in B in view of (4.8):

(66) [f [[TK (st — (e )] e (e, dry =
B B
[ ][] 1w, dr, = o.
B B

Thus, the existence theorems for such kernels become applicable.
We conclude:

a) There exists a sequence of positive eigen values 42 for
the kernel K(z, {t) — I'(z, ¢1).

b) The corresponding eigen functions y,(2) are analytic in
the closed region B + C.

c) We have the orthogonality relation for two eigen functions
y, and y, which belong to different eigen values i}, 3:

(6.7) J' f pyhdr=0 if 2 #£2
B

d) The eigen functions y{(z) (¢ = 1, 2, . . . m) which belong
to an eigen value A2 of degeneracy m — 1 may be supposed
orthonormalized, i.e.

(6.7a) [ 2 ()1 dr = 8.

B
However, this condition fixes the @, only up to a unitary
transformation.
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To a set y{@(z) of m eigen functions belonging to the eigen
value 42 we introduce a new set of functions by the definition

(6.8) PR(z) = 4, [ [ WO, 2)dry, 4, > 0.
B

In view of the integral equation (6.5) satisfied by {2, we have
also

(6.82) (@) = 4,[[ PIOQ) U, 2)dv.

One sees easily from the definition (6.8) that the ¥{@)(z) form
an orthonormalized set of eigen functions for the same eigen
value A2 with respect to the integral equation (6.5). Therefore,
there exists a unitary matrix U = (uy,) such that

(6.9) PO (z) = I upe yi(2).

o=1 "
Introducing this representation for ¥{°)(z) into (6.8a) we obtain
(6.92) W) = 2 ul ¥ (3)

o=

which gives the matrix formula
(6.10) U.U'=E, E = unit matrix,

for the unitary matrix U. Because of the unitary property of U
this is equivalent to the symmetry of U.

Now, it is well-known that every symmetric unitary matrix U
may be expressed by means of a unitary matrix V in the form

(6.11) U=TVV', V'’ = transposed matrix of V,

where V is only determined up to a real-orthogonal matrix factor.

If we introduce another orthonormal system (@ of eigen
functions for A2 which is obtained from the system {@ by means
of a unitary matrix W, we see easily that their corresponding
functions @{@), obtained by a transformation (6.8), evolve from
the @ by means of the unitary matrix W*. One concludes then
immediately from (6.9) that the eigen functions ®{¢)(z) and
¢p§‘-’)(z) are interrelated by a linear transformation with the
unitary matrix WIUW-1, If we now choose the arbitrary unitary
matrix W by the condition

(6.12) W=V

one sees that we have the identity

(6.13) ®0)(z) = 1”” PN UL, z)dry = ¢@(2).
B
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Hence we have proved that each eigen value A2 of. the integral
equation (6.5) leads to an eigen value A, > 0 of the integral equation
(6.1). An appropriate complete set of orthonormalized eigen functions
of (6.5) can be chosen such that it is simultaneously a complete set
of orthonormal eigen functions with respect to (6.1).

The complete equivalence of the two integral equations (6.1)
and (6.5) is, therefore, proved.

The set of eigen functions {¢,(z)} may be a complete ortho-
normal set with respect to the function space A4, i.e. every
L2-integrable function f(z) in B may be expressed by the Fourrier
development

(6.14) 1) =ZanG)y 4= [[ @),
r=1 s

which converges uniformly in every closed subdomain of B. In
case of incompleteness there exist functions f(z) e 4 which do
not vanish identically and are orthogonal to all eigen functions
9,(z). Hence these functions are, also orthogonal to the kernel
l(z, ¢) and may be considered as eigen functions of (6.1) and
(6.5) to the eigen value 4 = 0. We may then complete our
system {p,(2)} by addition of further eigen functions to this
eigen value. We will not exclude in this paper the possibility of
the eigen value 4 = oo and may, therefore, always assume a
complete orthonormal system of eigen functions {g,(2)}. We
arrange the eigen functions in such order that the corresponding
eigen values 4, form a non-decreasing sequence.

We now may express every function fe A in terms of these
eigen functions. In view of the integral equation (6.1) it is now
exceedingly simple to express the I-transform Tf of f. In fact,
we have in view of definition (5.1), (6.14) and (6.1):

(6.15) Tf@) = 3 ~ato(z).
v=1 }'v
From (5.10a) and (5.16), we have the inequality
(6.16) (T, (THY = (1)
which may be expressed in terms of the Fourier coefficients a, as

follows:

(6.16a) )M a,|* < ) |a, |2
y=1 y=1

1

=
14
As we noticed already in the beginning of this section we
know 7 — 1 linearly independent eigen functions iw,(z) to the
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eigen value 4 = 1. Let us orthonormalize these n — 1 functions
in the way described before and we obtain the first » — 1 eigen
functions ¢,(z). For every function which is linearly independent
of these initial eigen functions the inequality (6.16a) must be a
proper one. Hence we conclude:

All eigen values 2, of l(z,{) are = 1 and only the derivatives
of the harmonic measures belong to the eigen value 1.

Let us now consider an eigen function ¢,(z) with v = n. This

function is orthogonal to all functions w;(z), ¢ =1,2,...n, i.e.

(6.17) j [#,(z)w} (2)'dz, = 0.

B
Using the definition (5.28) of w,’(z) we obtain by integration
by parts

(6.17a) f¢v(z)wi(w, y)dz == 0.
c

Since w;(z,y) = 0 on C except for the boundary component
C, where w,;(z, y) =1, we may write instead of (6.17a)

(6.18) ®,(3)dz = 0.
I

In other words: The eigen functions ¢,(z) belonging to the eigen
values 1, > 1 possess single-valued integrals @,(z) in B.

The subspace 4, of A, consisting of all functions with single-
valued integrals, may also be defined as consisting of all functions
f(z) € A which are orthogonal to all w),(z); this is shown by the
same reasoning which leads from (6.17) to (6.18). Hence it is
evident that the functions ¢,(z) which belong to the eigen values
A, > 1 form a complete orthonormal system for this subspace 4,.

Finally we apply the orthonormal system {g,(z)} in order to
express our kernel functions in Fourier form. From the repro-
ducing property (2.9) we obtain for the K-kernel the typical form,
valid in every complete orthonormal system:

(6.19) K(s ) = é 7,(@)p, (O

Using the integral equation (6.1) in order to compute the Fourier
coefficients of the Il-kernel, we obtain the development:

o0

(6.20) 150 = 3 - wER0)

v=1
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From (6.20) and (4.8) we conclude next

©21)  K@)—IE0 =3 a0
v=1%
a result which also follows immediately from the general theory
of positive definite kernels. From (6.19) and (6.21) we derive
further
@ 1
(©.22) It = 5 (1= 2w
y=1 v
This shows that the eigen functions ¢,(3) may also be considered
as belonging to the purely geometric kernel I'(z, {t) with the
eigen value (1 — 4;%).
The positive definite character of I'(z, {t) and the development
(6.22) provide a new proof for the fact that all 4, are greater or
equal to one.

7. Discussion of the eigen functions

The significance of the eigen functions of the integral equation
(6.1) and their connection with a classical problem of potential
theory become clear by the following considerations. In view
of (5.4) we may write the integral equation (6.1) in the form

A
(1) we) =32 [ € —a g0
Cc

From Cauchy’s theorem we have, on the other hand, immediately

(7.2) Aoe) = 22 [ € — g0
[+

Adding these two equations and introducing the harmonic real
function k,(z, y) for which

0
(7.3) ?y(2) = % h,(z, y)
we obtain
_ Ay dh,(& ) Ay h,(, n)
(74) ¢y(a) = 2mi(1 + 4,) ([ t—z  2mi(l1+4,) .C[((:— z)de'

Integrating this equation, we arrive at the integral equation
for h,(z, y)

2
(7.5) h,(w, y) = m [h,,(f, "7) :’R {"&(C_C———;). }dSC + const.
[



226 S. Bergman and M. Schiffer. [22]

Now it is well known that

0 1 ot
(7.6) 4 loglc_ 7] —ER{’L,——————(C_Z)}.

Thus, (7.5) obtams the form

1
(7.7) bz, y) = S +1 ) ley(é, 17) (Iob = I)dsg + const.

The integral equation (7.7) for h,(z, y) contains an arbitrary
constant of integration which is evident since the definition (7.3)
of h, determines this function only up to an additive constant.

Let us now suppose that we know a solution &, (z, y) of (7.7).
The function h, (2, y) + a will also be a solution of the same
integral equation because of the well-known fact that for 2z e B
we have the identity

(7.8) 2n fan ( C—z]) =1L

Thus, we conclude from (7 7):

(7.7a) h’v(w’ 3/)+a = (1+1 [ (A (E’ )+(l] (Iogl — l)dss‘ +
1—4,
1+ 2.,,

We see that for 4, > 1 we are able to introduce such a constant
a into our function h,(z, y) that it satisfies the simpler integral
equation

0 1
(7.9) h(z,y) = (1+l) [h e_'.-',r) ( °|C—-z[)dsc’ z € B.

+ a + const.

We may derive from (7.9) an integral equation for the function
h,(s) = h,(x(s), y(s)) considered as a function of the arc length
on C. Using the discontinuity behavior of the dipole potential
on the charged line C, we find

(7.10) hy(s, f hy(s¢)5— (10g T 1 I)ds;.

This result gives a clear understanding of the significance of
the eigen functions ¢,(3). The inhomogeneous integral equation

(T11)  f(s,) = o(s,) — f‘P(Sc) (1°g|(;lz|)d85’
C
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plays a central role in the boundary value problem of harmonic
functions if treated with the Fredholm theory. Now we see that
our eigen functions ¢, (z) are closely connected with the eigen
functions of the corresponding homogeneous integral equation
(7.10). Their importance for gcneral theory thus becomes obvious.

To illustrate the theory we shall now determine the eigen
functions ¢,(2) and their corresponding eigen values 4, for a few
simple domains.

Let the domain B be mapped by the linear transformation

az + B
yz + 0

into a new domain B;. The function @(3, (), defined in (8.6), is
in this case

(1128) B(3, ) = —{log (xd—Fy)—log (yz +8)—log (4% + )}

whence

(7.12) w = @) =

20 _
a2

Hence the transformation formula (8.5a) for the Il-kernel now
takes- the simple form

(7.14) L(w, w)g'(2)9'(§) = Uz, {),
and in view of (6.20) we have the series development
x 1
7.15 Lw, 0) =% —
15 hme)=F -
Now it is easily verified that the functions
(7.16) vy(w) = @,(3(w))¢’ (3(w))™?

form a complete orthonormal set of analytic functions in B,.
Hence

(7.18)

(@, ()" (2)7] . [@,(0)e"(£)11.

a0
(7.150) Lo, @) = 5 29, 0) w(0)

y=1 (]
and this clearly shows that the y,(w) are the eigen functions in B,
with the same eigen values 4,. We proved, therefore:

If a domain B is mapped into a domain B, by a linear transfor-
mation (7.12) the eigen functions of both domains are related by
(7.16) and the eigen values are the same.

For the case of the unit circle we have I(z, ) = 0; hence all
eigen values are infinite and because of the previous theorem this
is true for every circle. We may now also consider domains B
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which contain the point at infinity since we may always trans-
form such domains into finite domains by linear transformation.

Consider the domain B, obtained by mapping the exterior of
the unit circle by means of

a
(7.17) w=<p(z)=z—|—?, a <l1.
B, is the exterior of an ellipse with the principal axes (1 + a)

and (1 —a). Using (8.8), we have immediately a formula for
the l-kernel of this simply-connected domain:

(118) hw,0)=(@EP )T s = 5 @)
- v=1
with
v
(7.18a) py(w) = i‘/; 27 (2)71, W = g(z)

v
Since the functions iV—z—(”“) (»¥=1,2,...) form a complete
7

orthonormal system in |z| > 1 the y,(w) do the same in B;. The
representation of the I-kernel shows that the y,(w) are the eigen
functions of the exterior of the ellipse and we have in this case:
(7.19) A, =a.

The domain B; has an interesting extremum property with
respect to the eigen values 4,. Consider an arbitrary simply-
connected domain B which is bounded by a closed analytic curve
C and contains the point at infinity. One shows by a linear trans-
formation that even for such a domain B the development (6.22)
for I'(z, ¢1) is valid; it is also obvious that 4, > 1 because of the
simple connectivity of B. Hence we derive from (6.22) the
inequality

(1.20) I o) = (1— })il ne) = (1— )RG5 )

This inequality assumes a simple meaning if we let z — co. Let

(7.21) z=d(l+c+elt+..0)
be the function which maps the domain |{|>1 upon B. The
constant d is called the mapping radius of B and plays a con-

siderable role in the conformal gecometry of B. One easily verifies
the limit relations, which follow from (8.8), (7.21) and (4.9):

1
(7.22) lim | 2|t K(z, 2") = — d?
z—>0 T
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and
1
(7.28) lim | z|¢ I'(z, ') = < 4
T
Z—>0

where A4 is the area of the finite complement B of B.
From (7.20), (7.22) and (7.28) we obtain the inequality

1
(7.24) A= (1 — F) nd?.
1

It is well known that between the mapping radius d and the
area A of B the following inequality holds:

(7.25) nd® = A.

Hence we can transform (7.24) into
nd?

7.26 B ——.

We see that the lowest eigen value A, provides an upper bound
for the excess of nd? over A. In the case of a circle we have
A, = oo and =d* = 4.

Now it is interesting that the inequality (7.26) is an equality
for all ellipses; these may therefore be considered as the extre-
mum domains with respect to (7.26). In fact we have in the case
of the cllipse B;:d =1, 4 = a(1 —a?) and A} = a~2 which
shows that equality holds in (7.26).

Another interesting result may be obtained for the eigen
functions ¢,(z) of a simply-connected domain B. In this case
the whole plane is divided into two complementary domains
B and B and let @,(2), 4, and ;,,(z), 7,, denote the corresponding
cigen functions and eigen values. The eigen functions ¢, (z) of B
have an Il-transform Tg, which is defined in B and in B. In view
of the integral equation we have in B

1
(7.27) Te,(2) = T ?,(2) for z € B.

4

Hence we may write the identity (5.10) in the form
(7.28) ff Ty, . (Ty,) )idr —|— .” o, d-r = _” @} @, dr.
B

Because of the orthogonality relatlons between the eigen functions
we obtain

(7.29) U Te,(Tp,)! dr = (1 —%)a
B



230 S. Bergman and M. Schiffer. [26]

Hence the transforms of the eigen functions ¢, (z) of B create an
orthonormal system of analytic functions in B:

I3

1\1 -
(7.80) () = i(l ——ﬁ) Te,(z) for z ¢ B.

(4
Because of (7.27) and the saltus condition (5.5) for T¢,, we find
for the boundary value of y,(z) at a point z € C:

: 1\7#1 :
(7'31) '/)v(z) =1 (1 _ﬁ) I:T (p,‘,(Z) - ((p,”(Z)Z 2)1.:|, z e C.
. (4 14
We have, therefore, integrating along C in the positive sense
with respect to B:
mOT_ (1) { 11 ([p@d)_

[ 2 T'E&%C t—z

14

BN YT
c

27 {—=z

The last right-hand integral vanishes because of Cauchy’s theo-
rem, and using the definition (7.80) of y,(2) we find by means
of (5.4):

A [ [w()dc]’
(7.33) 1/),,(2) = 2_'7; J 2_ = = 1,‘, T'pv(z)°

This proves that the functions w,(z) are the eigen functions

;,, of B and that the sequences 4, and 7,, are identical. Hence

Two complementary stmply-connected domains have the same
set of eigen values. This is a very useful result since the deter-
mination of the eigen values of one domain may be much easier
than those of the other. We see for example that the interior
of an ellipse with principal axes (1 + @) and (1 — a) has the
eigen values a~”; while the mapping function of a circle on the
exterior of this ellipse is an elementary function, the map of the
circle upon the interior of the ellipse is given by quite complicated
elliptic functions. The importance of our result for the conformal
geometry of domains becomes quite obvious from this example.

We understand the last result better if we notice that the
4, are the eigen values of the integral equation (7.10) which is
defined on C alone and docs not indicate which adjacent domain
of C is to be considered. For thc same reason the treatment by
integral equations of the boundary valuc problem for harmonic
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functions leads to a simultaneous solution for the so-called
interior and exterior problems.

If the eigen functions ¢,(z) of a simply-connected domain B
are known, we may easily construct the kernel functions and by
their aid map B upon the unit-circle. At the same time, we can

compute by elementary integrations the functions ;,,(z) of the

complementary domain B and determine its kernel functions,
too. Hence knowledge of the ¢,(2) permits at the same time the
conformal mapping of the two complementary domains upon the

unit circle. We have the formulas for the kernel functions K (2, 1)

-

and I(z, {):
(1.36) K@) =% 01— 527 Te,()[Te,0)T,

y=1

7.85) 1&l)=—3 (4 — i) e, () . Te, ().
v=1

We notice also the elegant formula:

(7.86) Tz ¢1) = 2 Tg, (3) [T, 0"

which follows easily from (6.22) and (7.80).

8. The space A, and its kernel functions.

Let
(8.1) F(z; u,v) = log f ___: + regular terms
and ’
(8.2) G(2; u, v) = log z: ” + regular terms

be the logarithms of two univalent functions in B which map
this domain on the whole complex plane slit along concentric
circular arcs around the origin or along rectilinear slits directed
towards the origin, respectively. The points #, v € B shall cor-
respond to the origin and the point at infinity after the map-
ping. The functions F and G are determined by this description
up to an additive constant. On each contour C, of B, we have

(8.8) F(z;u,v) = a, + 1K,(s), z2€C,,
(8.4) G(z;u,v) =1,(s) +1b, zeC,

where a, and b, are constants and k,(s), [,(s) real-valued functions
of the arc length s.
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Let us define two functions

(8.5) P(z;u,v) = %{F(z; u, v) — G(=; u, v)}

and
2—1Uu

(8.6) Q(z;u,v) = —;;{F(z;-u, v) + G(3u,v)} = —;—log —q(z; u,v).

3—v
They are both analytic in B, except for two simple logarithmic
poles of Q at wand v. On each C, one has because of (8.3) and (8.4)

(8.7) P(z; u,v) = — Q(z; u, v)t + ¢, 3eC,.

The functions P’(3; u, v) and ¢’'(2; u, v) (where the dash denotes
the differentiation with respect to the first argument) are both
of the class 4, and we want to develop them in Fourier series
with respect to the complete orthonormal system ¢,(z) with
2, >1, i.e. ¥ =n. We have by virtue of (1.4)

1
(8.8) ffP’(z; 4, v)p,(3) dr, = — i fP(z; u, v)[p,(z)dz]".
B c
Using (6.18) and (8.7) this may also be written in the form

; t
69 f (06 V) ()T = | o ] 0'(ss 0 ), (2)e |

where @, (z) denotes again the single-valued integral of ¢,(z).
From (8.6) and the residue theorem we finally find

(8:10) [[ Pz u, v)g,2) dr, = [@,(u) — &, ()]t
B

whenee the Fourier scries

(8.11) P'(z; u,0) = 3 ¢,(2)[@,(u) — B,(0)]'

and integrating this identity between z and {, we finally obtain:
(8.12) P(z;1,0v)—P(L;u,v) = X [D,(z) — D(C)] . [D,(u)—D,(v)]'.
y=n

It should be noticed that in this derivation no use was made
of the integral equation satisfied by the ¢,(z) so that the
representation (8.12) will hold for each complete orthonormal
system ¢, (z) with single-valued integrals @,(z).

Next, we compute

1
(8.13) }[fq'(z; u, v)p,(2)ldr, = — % fq(Z; w, v)[@,(z)dz]".
c
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Using the definition (8.6) of ¢ and the boundary relation (8.7),
we obtain

(8.14) [[g'(xs v o)y (e)dr, =
27nJ‘10g [(pV(z)d ]t [] J‘P(z u, v)‘pv(z)dz]f
(o}

The last integral vanishes by Cauchy’s theorem, while the in-
tegral equation (7.1) yields by integration between u and v:

(8.15) ¢,,(u)—--¢,,(v)— Iloor — [% (z)dz]".

Thus, we finally arrive at the Fourler serics

a0

;vm)(cb (1) — D,(v)).

Integrating again betwcen 3 and {, we obtain at last

(817) 4(ss w,0)— (¢ %, 0) = B -(B,(2) — 2,(0))(B, ()~ (v)).

y=n

(8.16) ¢ (zu,v) =

Most of the important domain functions, as for example Green’s and
Neumann’s functions of B and many others may easily be expres-
sed in terms of P and Q (Garabedian—Schiffer [1]). The formulas
(8.12) and (8.17) show the simple construction of these functions
in terms of the ¢,(3).

Let further

1
(8.18) fo(z, #) = —— 4 regular terms,
T—u

1
oz, u) = + regular terms

ZT—U

be univalent in B, mapping the domain upon the whole plane slit
along straight segments parallel to the real and the imaginary
axis, respectively. The point z = w obviously corresponds to
infinity.

Using the well-known relations between f,, g, on the one hand
and P, Q on the other, it is possible to show that

dfo(2,
(819) 5 U w) il ul=En@nw,  fieu= fo(z W,
and
(8.20) —[fo(z, W) + g )] + —— = 5 Lo @), (w).

Az —u)  y=n A
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These results could also be obtained directly by applying to f, and
g, the same reasoning as we did before to F and G.

We see. that the kernel functions of the A ,-space

(8.21) Kz ¢t = i} #(2)@, ()1
and )
(8.22) L) =5 g6 a(0)

have an important geometric significance.

It is of interest to notice that K, and [, lead to the same
algebra under scalar multiplication as did K and l. In fact, we
clearly have:

(8.28) f f K (z (K, (¢, whdr, = K, (2, w'),

(8.24) “K 2, 1) (6, w)dry = L(z, ),

and in view of (8.22) and (6.22):

(8.25) j [1(z 0 (G, w)tdey = K (2, wh) — I(z, wl).

In fact, in the series development (6.22) for I'(z, w') the first
n — 1 eigen functions do not appear. Thus, all inequalities which
we .deduced in section 4 for the kernel functions K and [ of the
space A remain valid if we replace those kernels by K, and I,.
It is also easily verified that K, and /, behave under conformal
transformations just as K and ! and that analogous formulas to
(8.83) and (8.5) hold for them.

Since the developments (6.19) and (6.20) may be expressed
in the form

2 9%(z,¢) "

L) P —— = W, ()t t
(8.26) K(z,¢") ol i’k2=lp,kw,(z)wk(¢') + K, (2, (1)
and

B 1 2 0%(x¢) St o ,
(8'27) l(z, C) = m ; 9z aC - -_i,k2=lpik @Dy (z)wk(C) + ls(zy C)
with real coefficients p,., we have
. 2 9%G(z, {) 1 2 0%G(z,¢)

(8'28) K (Z, c ) - ;t— a" 3@* ’ ls(Z, C) - YZ(Z, ’:)z _i" ';‘ 62 3&'
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with
n—1
(8.29) G(2,8) = g(2, C) + 27 X puoy(3)o(l).
k=1

It is easily seen that G(z, {) is the real part of the logarithm of a
univalent function which maps the domain B upon the exterior
of a circle which is,slit along concentric circular ares. The point ¢
corresponds in this map to infinity.

The fact that in the series development for K,(z, ') only eigen
functions occur with 4, > 1 leads to the following important
application. We define the p-th iterated I-kernel by the formula

1\¢
(8.80) Iz, ¢ty = (1 —/1_) 7,(2)e, ()L
y=n (4
Obviously, we have

(8.81) I'e*1)(z, ¢t) j j '@z, wt) M(w, tt)dr,, FW(z, tt) =I(z,¢1).

Hence all kernels I’(Q)(z, 1) are geometric integrals and may be
computed elementarily.
Next we consider the kernels

(8.82) A,‘(z, Cf) = f‘, (— 1)e(g)p(e+1)(z, ety =
0=0

® 1\ 1
- En(l —‘ﬁ)ﬁ Py (Z) Py (C)T-

The 4,,(z, 1) are also elementary expressions being linear com-
bmatlons of the I'®-kernels. It is obvious that they are positive-
definite kernels.

Finally, we construct the sum

(833) B 4,0 = 2 g,@n0) = K. ).
n=0 v=n

We see that we can express the kernel K,(z, (') as an infinite
sum of elementary integrals. It is of particular interest that

(8.84) K, (3, 2") = 2 4,(z, z')

u= 0
appears as a sum of positive terms. This leads to an infinity
of inequalities for K(z, z). Since 4,(z, 2t) = I'(z, 51), we see
that the inequalities

(8.85) K (z, 2") = I'(3, z7)

is only the first in a series of improving inequalities for the kernel
function.
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From (8.32) and (6.22) we obtain the inequality
(8.86) 4,z 2" < l%‘ I'(z 2);
by Schwarz’ inequality we have on the other hand:
(8.37) |4,z I [? < 4,6 5 4,6 ¢1) = %,F(z, ) I, o).

Hence we see that the series development (8.88) for the K,-kernel
converges geometrically. It seems that it leads to a very useful
numerical method in conformal mapping.

Each domain B can be mapped into a canonical domain which
plays a distinguished role with respect to the kernel functions
K, and I, It is well known that the function

1
(8.38) h(z, u) = £[fo(s, u) 4+ (=, #)] = —— 4 regular terms

IS—u

maps the domain B univalently upon a domain B; which solves
the following extremum problem: Among all domains which are
obtained from B by a conformal map with a pole of residue
1 at 5 = u, B, possesses a complement El with maximal area
A, (Schiffer [1]). B, is a canonical domain for all domains B
which can be mapped into each other by means of a univalent
function @(2) with the normalization

(8.39) ¢(u) = u, ¢'(v) = 1.

In fact, let w = @(z) map our original domain B into a new
domain B,. Let foo(w, u), go2(w, u) and hy(w, u) denote analogous
univalent functions with respect to B, as were fy(3, ), go(s, u)
and A(s, ) with respect to B. We clearly may put

(8.40) for(p(2), u) = fo(3, u),  Goa(p(2), u) = &u(3, u)
and hence
(8.41) hy(p(=), u) == h(z, u).
Hence the same procedure (8.88) leads to the same canonical
domain B, for all domains B, which are equivalent to B by
means of a function (8.39).
The function
(8.42) w = H(3,u) =u+ h(s, u)?

has clearly the normalization (8.89) and maps B upon a canonical
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domain D which is more suitable for our purposes. The transition
from D to B, is given by the linear transformation

(8.43) hp(w, u) = (w —u)~L

On the other hand, we have because of (8.88), (8.20) and (8.22)

for each domain B the identity
1

(x—w)¥
Thus, in the particular case of the domain D we conclude from
(8.48) and (8.44)

(8.45) l(w, u) == 0, weD.

(8.44) B(z, w) = ml(z, u) —

From (8.25) we easily obtain
(8.46) K, (w, u') = I'(w, ut).

This shows that in the case of the canonical domain D the series
development (8.88) for K,(w,u') may be stopped after the
first term.

From the series development (8.22) and (8.45) we conclude
that in the case of the domain D all eigen function ¢,(w) which
do not belong to the eigen value oo vanish at the distinguished
point u. Since I'(u,u') # 0 we conclude also that in the case
of the canonical domain D there exists at least one eigen value oc.

We now define the following concept: Let R be a domain in
the z-plane which does not contain the point u. We call the
expression

(8.47) A, (R) = j [, E

the area of R with respect to u. Clearly, 4,(R) represents the

dr,

—uft

area of the image of R under the linear transformation
Z—u

From (8.46) we conclude
1 -
(8.48) K (u, u') = I'(u, u') = =4.(D).
n

By definition of D, we clearly have A,,(E ) = 4,. Because of the
behavior of K,(u, u') under conformal transformation, its value
is the same for all equivalent domains obtained from each other
by means of a function (8.39). From (6.22), we obtain on the
other hand the inequality

(8.49) I'(u,u') = (1 ——%)K(u, ut) = 112(1 -%,,)A,,.
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1 -
Clearly, I'(u, u') = —-4.4(B); hence we proved the inequality
T

(8.50) A (B) = (1 —/,1—2)44,,.

‘u
Because of the extremum property of B;, mentioncd above, we
always have 4,(B) = 4, and hence (8.50) leads to
4,
Au —4 u(B )
A somewhat different approach is necessary if the point u = o

lies in B. In this case the class of univalent functions with the
normalization

(8.89a) @(o0) = oo, ¢'(c0) =1
must be considered. Let B; be that domain obtained from B by

(8.51) A2

I

means of a function (8.89a) which has a complement B; with
the largest possible area A. This maximum area is related to the

span S of B by means of the identity 4 = g—S. The span plays

a role in various problems of conformal mapping of multiply-
connected domains (Schiffer [1]). One shows easily that (8.51)
tends for v — oo to the inequality

A . 7s
A—A(B) ns—2A4(B)

where A(E) is the area of the complement B of B. This is the
generalization of (7.26) to the case of multiply-connected domains.

(8.52) 2 <

n =

9. Applications to the theory of univalent functions:

We proved in section 4 inequalities of the type (4.14a) between
the kernel functions K and /; exactly the same inequalities can
be derived from (8.28—8.25) for the kernel functions K and !, of
the class 4,. Since the functions K and ! show a very different
behavior under conformal transformation these inequalities
represent also important inequalities for the univalent mapping
functions in the domain.

Let w = @(z) be univalent and analytic in the closed region
B + C. It maps B upon a domain B, of the same type as B and
we have, therefore, between the kernels K, and [, the following
incqualities in analogy to (4.14):

r

r
(9.1) | = %, oty by (0, w’u)] = _lcx,,otLKl(w,,, w;)

v, u=1 Ly
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for every choice of the complex numbers «, and points w, € By.
Now let , be the point in B corresponding to w,, i.e. w, = ¢p(L’ )
Using the transformation formulas (8.8) and (8.5a) for the kernel
functions, we obtain

(9.2) |z%°‘ [l(lwf?)+U(CwC)]|<2am K(,, ¢h)
with nat a
_ 0%*D(z, {)
(9.8) Uz, ¢) = ot

If we assume our domain B and its kernel functions well-known
and fixed, we have in (9.2) an important condition on all univalent
functions in B.

We illustrate our result by considering special cases of (9.2).
Let B be the unit circle | 2| <1. In this case K and I are given
by (2.7). Hence we have the inequality

r 1
(9.2a) L,%:f”a"U(c"’ L)l = -'—v E_ oo, A—ag

Specializing further to r = 1, we obtain the interesting necessary
condition for univalence in the unit circle, expressed in terms of
Schwarz’ differential parameter (8.7) For a similar sufficient
condition see (Nehari [1]):

6
(9.2b) {p 2} = ==

We may generalize this result to the case of multiple connectivity
by use of (9.2) for r = 1:

(9-2¢) | U(z, 2) — 51; {p, 2} | < K(z,2").

Let X be a closed rectifiable curve in B and p(s) a complex-
valued function of the length parameter on X; we obtain from
(9.2) by a limit process

04) | [ [0aO+UEDIPEIR(sds| <[ [K( (s, p(sy)tds,dsy

zeX [eX zeX (eX
Let us now assume that the analytic functions I/, U, K are de-
veloped into power series of their variables around the origin 0
which we suppose in B:

(05) U = e,  Unl) =2 l,#0,

n, v= 0 p,v=0

K(z,tt) = 2 Ky, 2 (18

By v= 0
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Because of the symmetries of these three functions, we find for
their coefficients

(9.5a) Cov=Cop by =ly k= k;r,,.
We now choose for 2 a curve in the common domain of con-
vergence of all three developments (9.5) which surrounds the
origin. Let

1
(9.6) q(z) = ——2 o, 2, p(s) = g(2(s)) 2'(s)-

278 0
We clearly have

N
(9-7) [[[,0) + Uz 0)Ip(s.)p(sp)dsadsy = 2 (e + Lup)otu
snlexX wy=0
and

(9.8) [[ &z (s )p (sg)*d&,dsc 2: Ky %, 5.

nieX =0
Hence the inequality (9.4) leads to relations between certain
quadratic and hermitian forms which are connected with the
coefficient matrices of the kernel functionS'

(9.9) Iyi( L)ooy | < 2‘. k,,, o, o
Similar inequalities are obtained for the coefficient matrices of

the kernels in the 4,-space. These inequalities were first discovered
by Grunsky (Grunsky [1]) who gave them a somewhat different
formulation. Compare also (Schiffer [4]).

Grunsky showed also that when the necessary conditions (9.9)
are satisfied for every N and every choice of the «,, the univalence
of the function ¢(z) considered is ensured; i.e. all conditions (9.9)
are a sufficient condition for univalence. We want to give here a
new and shorter proof for this fact which is based on an important
result concerning the kernel function. We first announce the
following theorem:

Let V(2,L) be symmetric and analytic in both arguments in a
neighbourhood of the origin; let

-4 -
(9.10)  V(2¢) = X dp,2™t", K(2¢1) = T k2™
m, n=0 m, n=0
be the series for V and the K-kernel around the origin. If for every
complex vector o, al, ce. Oy

(9-11) Ide,. maISZan..

m, n=0 m, n=0

then V (3, ) is analytic in the whole domain B.
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In order to prove this theorem we introduce a complete set of
orthonormal functions y,(z) which is very useful in dealing with
power series developments. Each y,(z) has around the origin
the series development

(9.12) () =X B,,7 v=01,2 ...

p=v
The condition that the matrix (ﬂm) be triangular determines
the set y,(2) in a unique way (Bergman [2]) Since the K-kernel
can be expressed in the forms

(9.18) Kz = 2 x,(z)x»(C W =2 kb, #)
ﬂ.v-
we conclude from (9.12) the identities
(9.14) kyy = Z Bou By
e=0

Since f,, = 0 for ¢ > u, the matrix (k,,) consists of finite com-
binations of f-terms.

The relation (9.12) between the z* and yx,(z) can easily be
inverted:

(9.15) 2 byuzu(®) v=0,1, ...

p=v
The matrix (b,,) is of the same triangular form as its inverse (f,,).
Introducing (9.15) into (9.18) and comparing the coefficients of

2u(2)2,(0)Y, we find

(9.16) _Zk b,, b}

Oy oy 00 You %ovi

again, all sums (9.16) are only of finite range.
We rearrange formally the series (9.10) for V(z,{) by means
of (9.15) and obtain

017) X d =31 b 2@ B0 b = Zd,,,,,b,,,,,b,,,

m, n=0 W v= m, n=0
We do not know if and where the second sum (9.17) converges.
But the series for t,, are finite expressions and well-defined.
Introduce an arbitrary complex vector a,(» =0, ..., N) and let

(9.18) @, = 2 ,.,, a,.
Consider now the expressxon

9.19 a,a,= 2‘. @ Xy Xe
( ) M, v-=0’" B m, n=0
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Using the assumption (9.11) of our theorem, we find by virtuc
of (9.16) and (9.18)
(9.20) | z ,,,, a, | <2]a |2
o r=0 =0

for arbitrary choice of the complex vector a,.

From (9.20) we derive casily that for a,ny two vectors a, and a,,

X
(9.20a) | X 1/,,,(1 a,| < 2. I a,|? -+ L | a,|?
nor- r=0

holds.

Now let 73 be a closed subdomain of B. In this domain the
kernel function K(z, 2') is uniformly bounded, say by the con-
stant M. Hencee, in view of (9.13), (9.20a) leads to the inequality

(9.21) | z b () 20(8) | = 2M
M, v=:0

for arbitrary choice of = and ¢ in B’. Hence the functions

(9’22) N ("7 ‘5) - }J 1/41' /,u( )x;v(é
M”y =

arc uniformly bounded in B’ and form a normal family there.
Therefore we can scleet subsequences of our set which converge
uniformly in each closed subdomain of B’. But in view of (9.17)
and (9.22) the limit functions will always coincide with V(z, {)
in the neighbourhood of the origin. Ilence the whole sequence
Va(z, £) possesses the same limit and converges uniformly in
each closed subdomain of B’. The limit function is the analytic
continuation of the power series ¥ (3, &) over the whole domain.
Hence our theorem is proved.

The application of this result to the theory of univalent
functions is immediate. Grunsky’s conditions (9.9) guarantec
the regularity of the function U(z, £) in B, which shows that

D(z, {) is regular is B and that except for z == { we never have
@(z) = @(£). This is just the univalence property rvequired. It is
remarkable how closcly the proof of nceessity and sufficiency
of (9.9) is connceted with the kernel functions.

Finally we want to study the extreinum problem, for which
functions the Grunsky inequalitics (9.9) may become equalitics.
Since these incqualitics have been devived from the more general
inequalities (4.14¢) it will be sufficient to determine these domains
B for which cquality can hold in (4.14¢) under an appropriate
choice of points {, and constants «,,. If' we go hack in the derivation
of these incqualities we sce that they can only become preeise



39 Kernel functions and conformal mapping. 243

if the corresponding non-negative integral (4.10) vanishes, i.e. if
there exists a real constant A such that

(9.29) EaTK(~,CT)+}»Zal(z, {,) =0 for z¢B.

v=1
In proceeding from (4.14a) to (4.14c) we furthermore neglected
the term

(9.30) 3, a*I(CwC*)=—”|

v,ul

% 2dx,.
c,' K

This integral can only vanish if the area of B is zero, ie. if B is
a slit domain. It is true that we developed our theory only for
domains B which are bounded by closed analytic curves; at this
stage, however, the consideration of more general domains
becomes inevitable. Using the continuity of K and [ in dependence
of their domain of definition B it can be shown that the identities
(4.2), (4.3) and (4.8) hold in the most general case. For slit
domains, the term I' is to be taken as zero in (4.8).

We multiply (9.29) with l(w, s)' and integrate the identity
over all z ¢ B. Using (4.8) and (4.8), we obtain

(9.292) X efl(w, ) + 21X o, K(w, ) =0 for we B.
v=1 v=1

From (9.29) and (9.29a) we conclude the identity

(9-31) T [ K(z L)) + o, Uz ¢,)] =0
y=1
In view of (2.5) this may also be written as
‘ T Ty =
(9.81a) E [al K(2,&8) — o, L(3,£,)] + nvzl (z_“ = 0.

We want to study this expression at the boundary C of B;
however, this boundary may be a very complicated one and we
prefer, therefore, to map B upon an auxiliary domain B, with
smooth boundary C,. Letz = f(w) give the map of B, into B. We
multiply (9.31a) with f'(w) and have by virtue of (3.8) and (8.4)
13 uft)
wy=1 (f(w) —¢,)?
where {, = f(w,) and 4, = «,[f'(w,)]. Let w’(s) be the tangent
vector at the point w e C;; multiplying (9.832) with w’(s) and
using the boundary relation (2.4) between K and L, we obtain

d a

14

%Emmm—a

(9.82) 3 [A1K; (e, o) —A4,L,(w,,)] + =0, weB,
=1

(9.88) = real, w(s)eCi.
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Integrating with respect to s, we find at last

r
(9.84) 3{ p o }: const. on C.

v=12—0,
This proves that C consists of analytic slits with the algebraic
equation (9.34).

It is evident that the same treatment leads to the extremum

domains in the particular case of Grunsky’s coefficient inequa-
lities (9.9).

10. Variation formulas for the eigen functions ¢ (z).

We now want to study the dependance of some of the important
domain functions on the varying domain B. Let »(s) bé con-
tinuous on C and ev(s) denote the shift of each boundary point
3(s) € C along the interior normal direction at this point. This
defines a deformation of the boundary C = z(s) into a new curve
system C* with the parametric representation

(10.1) 2*(s) = 2(s) + 43'(s) . ev(s) = z(s) + 12'(s)dn(s).

C* is the boundary of a new domain B* which differs very little
from B for small e&. We may choose the deformation function »(s)
in such a way that C* is a system of closed analytic curves.

Let g*(z, {) be Green’s function of B*; according to a classical
formula by Hadamard (Hadamard [1], Lévy [1]), we have

9g(z, t) ag(t {)

“on, o, ———0n(t)ds,+ e%y,(2, {)

(10.2) g*(z, &) =g(z C)—-
c

where y,(z, {) is bounded and harmonic in each closed subdomain
of B. Using the definitions (2.8) and (2.5) for the kernels K and [,
we obtain from (10.2) by differentiation the following formulas
for their first order variations:

1 9%z, t) 9%(2, C)
ty —
(10.3) 8K (s, 1) = J' 5500, o,
C
and
2 2
(10.82)  8l(z,¢) = Fe=t) 76t 0) 5, s,

0zon, 0n,0C

Further it is easily seen that
dg(z,t) 2 0g(z t)t, 2 ag(z, t)

10.4 ==
(10.4) on, i ot Tt

()"
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Using this identity in (10.8) and (10.8a) we find

(10.5) 8K(z,ct) = [ K(z, tK(t, tt)on,ds, = fL(z, t)L(t, £)tén, ds,

C C

(10.52) 4l(z, ¢) = f L(z, t) L(t, {)t'20n,ds, = I K(z, tY K (¢, t1)(t®) on.ds
' c

= — fL(z, t) K(¢, t)on, ds, = — IK(z, t) L(t, )on,ds,

Let now {,(» =1,2,...,7) be an arbitrary set of points of
B and «,(» =1,2,...,7) a set of complex numbers. We have by
virtue of (10.5) and (10.5a)

(10.6) 6{ Z_ o, ol K(Z,, t;f,)}= j]f: of, K(t, 1) [2on, ds,
v, u=1 pA pn=1

v, u=1

r 2
(10.6a) 6{ ) % 1, c,,)} f (Zla,,K(c ,t*)) (t%)t on, ds,.
I‘=
C

If the domain B decreases under variation, én, = 0 on C and we
see from (10.6) and (10.6a) that the expressions

(10.7) 3 ayafK (G, 0h) £ 12 2 %a,l(L G|

v, u=1
increase with decreasing domain. The terms of the inequality
(4.14c) have, therefore, the following behavior; if the domain
decreases, the bigger term increases quicker than the smaller
term and the inequality becomes continually stronger.

We now want to determine the Fourier coefficients of the
functions 6K and 6l with respect to a given orthonormal system
in B. For this purpose, we have to prove the identity (2.9) for
the case that the analytic function f(z) is continuous in the
closed region B 4+ C and for z € C. In this case, we may apply
the boundary condition (2.4) and we obtain

(10.8) f J'K(z, ¢ty f()dey = — [z'zj J’L(z, ¢) f(¢)ldz,)t, zeC.
B B
Because of (2.5), we have
(109) f[L6 ) f0)1ae; = j [.L (z drC -JJi 0yt

Using the definitions (5.1) and (5.3), the regularity of l(z,{) in
the closed region B 4 C and elementary proporties of improper
integrals, we have
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(1010) [Jie—oran = lim T, weB,

(10.10a) f f HOT Uz, £)drp = lim Tf(w), weB
s -

Because of the saltus condition (5.5) we find therefore

(10.11) [ L&) HOtdr = — (1), zeC

and hence frorﬁ (10.8):

(10.12) j f K(z, N f(0)de = f(z), z2eC
B

Hence the identity (2.9) has been extended to the closed region
B+ C.

The eigen functions ¢,(z) are continuous in the closed region
B + C and form a complete orthonormal system in B. Using
(10.5), (10.5a) and (10.12), we compute the following identities:

(10.18) [[ [[oK (e 00 pu(cMrade = [ 0,01t 1) omads,

C

t

(10.13a) J' f f f 8U(z, &)y (2) T, (0)d T dry = [fw,(t)¢"(t)t’2mtds,].
B "B .

From the definition of the cigen functions ¢,(z) as solutions of the
integral equation (6.5) it can easily be shown that each g¢,(z)
varies continuously with the domain B, if it does not belong
to a degenerate eigenvalue A,; its first order variation is of the
class €2 in B and we put:

(10.14) dp,(z) = Zlv,,” Pu(?)-
P

We denote further the first order variation of the non-degenerate
eigen value 1, by d4,.

In view of (6.19) and (6.20), the notation (10.14) leads to
the formulas: '

(1015) 3K(sth = £ olyp()pu)! + 2 00,000
»u= nu=

@ 1
(10.16a) 0l(z,¢) = X —0,,@,(2)@,(l) +

v u=1~%4
@

] 1 (Sl
+ = T OPuB)p )—Zlﬁ%(z)%(c )-
nu=17%y y=

Introducing these expressions into (10.13) and (10.13a) respecti-
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vely and using the orthonormality of the system {p,(z)}, we find
the following equations for v,, and 64,

(10.16)  uhy+ v = [ w07 ult) m, s,
C
1 1 o4, " t
(10.162) 70y, + 50 — 53 2o =| | wt)put)ton,ds, | .
14 4 c

These equations determine completely the variation of an eigen
function ¢,(z) and its corresponding eigen value 4, provided that
A, is non-degenerate.
From (10.16) and (10.162) we conclude
(10.17) — fsf_-;-' = 6(}—) == f (m{:p,,(t)zt""}-—l|¢,(t)|2) dn, és.
Vo A, ) 2,

We may write

1 1 A
(10.18) N qv( )i Z ?(};'T' ');) I 7y(t) Iz _ Ev

?,(t)
2

v

—(p,()") )

If we introduce in the complementary domain B the function v,(2)
defined by (7.80) wc may express the variation formula (10.17) by
means of (10.18) and (7.31) in the form

po19) () =54 ~%)f(l%t>ll—|wv(tl )on, ds,.
v ¢

Since we proved in section 7 that in the case of a simply-connected
domain B the function ¢,(z) is an eigen function of the com-

plementary domain B with the same eigen value 4,, the great
symmetry of (10.19) is obvious.

Further interesting formulas appear when the type of variation
(10.1) is specialized. The following kind of variation has been of
great use in the general theory (Schiffer [2]); let z, be an arbi-
trary fixed point in B. Let the boundary C be subjected to the
variation

ag?

(10.20) 0z = » 0<p %eB,
3 —2p

which is for ¢ small enough of the type (10.1). One sees im-
mediately that the normal shift of a point /e C is given by
the formula

1 ag?
(10.21) 6n=§R{,—,—L}.
i t—2,
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Under this particular variation the formula (10.17) may be
transformed into

A slight rearrangement of this formula and the residue theorem
yield

(10.22) 6(1—) = ER{‘-;% ! {(p,t')* + [(o')%]" —1 | %Iz}t__ Py

(10.23) 6(1) = R{nag? (1 —%)%(zo)"‘} +

A
s [ o) 1)

(4
Now wec remember that the function T, is regular in each
complementary domain 1.99 and has the boundary values
(t)
1"
regular inside each boundary curve Ce and the integral vanishes.

Therefore, finally:

(10.24) 6(11) = ?R{ag’n(l — %)q),(zo)’}.

This is a variation formula of the ,,interior’”’ type where all boun-
dary integrals have been eliminated.

A similar result is obtained if the point z, in the variation
(10.20) is chosen in a complementary domain B, One finds
easily by the same considerations

— (@, - t*)!. Hence the integrand of the integral (10.28) is

1

3
where the function ,(z,) is connected with the I-transform
Te, by (7.80).

It is not difficult to determine the variation of the eigen
functions ¢,(z) under a variation (10.20). The corresponding
formulas for the kernels K and ! have been given in (Schiffer [8]).
Formulas of this type arc of particular use if one extends the
definition of the functions and functionals considered to domains
of the most general type; in this case, the boundary C may be so
involved that a description (10.1) of the domain variation be-
comes impossible.

(10.25) a(zl) = ﬂt{agzn(l ) ¥y(%)*}

14
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