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General projective differential geometry of paths
by

A. D. Michal and A. B. Mewborn

Pasadena, Cal.

Introduction.

In a previous study, Michal 1 ) has outlined a general projective
geometry of paths for the case in which the coordinate Banach
space was assumed to possess a postulated inner product and its
Banach ring of linear functions was assumed to have a contraction
operation. The present study omits these assumptions and
developes the geometry of a space of paths upon the basis of
two assumed elements of structure. These are a linear connection
and a gauge form and their projective laws of transformation.
These laws are a general form of corresponding transformations
obtained by change of representation in the special case 2 ) of
a flat projective geometry. In terms of the above, we define a
projective connection in our new Banach space Bl of projective
coordinates in a way which again is clearly related to a property
of this geometric object in the flat case 2).
We develop the properties of this projective connection under

a restricted coprojective transformation in the second section.
This problem may be regarded in a way as a converse problem
to one we have considered elsewhere 2). In the third section we
define and study the curvature form of the projective coordinate
space Bl.

1. Invariant properties of paths under proj ective trans-
formations.

The space of paths whose geometry we consider in this paper
will be defined in a Hausdorff topological space H with allowable

1 ) Michal (I), (II). Roman numerals refer to the bibliography at the end of
the paper.

2 ) Michal and Mewborn (III), specially theorems 2.4 and 2.5.
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K(3) coordinates 3) in a Banach space B. We shall assume that
there exist in B two classes of projectively related geometric
objects.
DEFINITION 1.1. Linear connection. The components of this

geometric object are functions of class C(1) in x, and symmetric
and bilinear 4) in the contravariant vectors (c.v. ) 03BE1 and 03BE2 which
transform according to 5)

or the equivalent

under allowable transformation of coordinates x = x(x).
DEFINITION 1.2. Projective change of connection. The trans-

formation

where q;(0153, E) is any arbitrary scalar field valued form of class
C(1) in x, linear in the contravariant vector e, defines a new linear
connection from a given one and a function p(x, e). This trans-
formation is called the projective change of connection, and
establishes the first class of geometric objects mentioned above.
The subclass for which (p(x, e) is also integrable is important and
will be considered in section 2.

DEFINITION 1.3. Gauge forme This is a geometric object whose
cornponents are scalar field valued functions of class C(1) in x,
symnietrie and bilinear in the arbitrary c.v. el and e2 so that

under allowable change of coordinates lé = x(x).
DEFINITION 1.4. Projective change o f gauge form. The trans-

formation

where M is a fixed positive number, 1p(0153, 03BE) is subject to the same

3) Michal and Hyers (IV), p. 5.

4) The terms linear and bilinear will be used here to mean additive and continu-

ous, and hence homogeneous of degree one, in the variable or variables mentioned.
5) Michal (V).
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restrictions as 99(x, e) above, and F(x, el E2) is a linear connection,
will be called the projective change of gauge form. This establishes
the second class of geometric objects in out space. We note that
the laws of transformation (1.1), (1.2) and (1.3) may be com-
bined into a law of transformation under simultaneous change
of coordinate and projective change of connection in the follo-
wing form

Likewise the transformations (1.4) and (1.5) may be combined
to give the law of transformation under simultaneous change of
coordinates and projective change of gauge form

DEFINITION 1.5. Coprojective change o f connection and gauge
form. If we obtain from a given r(0153, el,. E2) and rO(0153, el, e2)
involving the same ’1’ E2 a new pair by means of (1.3) and (1.5)

039B /B

in which 99(x, e) - V(x, e); then this pair r(0153, el, e2), rO(0153, el, e2)
will be said to be coprojective to the given pair, or obtained by
a coprojective change of connection and gauge form.
DEFINITION 1.6. System o f paths. The solutions x = x(t) of

the differential equation 6)

where r x, dx dx is a component of a linear connection and
dt dt

oc(t) is a numerical valued scalar function of the undefined para-
meter t, are the coordinate representations of a system of

curves called paths.
Clearly this definition of paths is equivalent to the definition

of the paths as the system of autoparallel curves.
DEFINITION 1.7. Affine parameter s. We may define a new

parameter s along each member of the system of paths (1.8) by
the differential equation:

6) Michal (1).
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This parameter, which is only determined up to a first degree
transformation s’ = as + b will be called an affine parameter.

It is clear from (1.8) and (1.9) that the differential equation
of the paths in terms of an affine parameter is

Further, under projective,change of connection (1.3) equation
(1.8) becomes.

where  x(t) = oc(t) + 299(x(t), dt) That is (1.8) remains in-

variant in form.

DEFINITION 1.8. Affine parameter s. The differential equation

(1.12)

where f , (x, ’) dg is to be interpreted as an ordinary integral of
the scalar field valued function of (1.3) taken along the paths,
defines a new affine parameter s associated with ’ 03BE1, 03BE2).

It is readily verified that (1.10) remains invariant in form
under projective change of connection (1.3) and the correspon-
ding change of parameter (1.12), taking the form

(1.13)

DEFINITION 1.9. Projective normal parameter n. This para-
meter is defined by the differential equation

where M is the positive constant of (1.7), T°(x,  /f) is a com-
ponent of a gauge form, and {n, s} is the Schwarzian derivative 7)

7) Berwald (VI).
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Three properties of the Schwarzian derivative (1.15) will be
needed later in the paper and are exhibited here for reference.

From the property (1.16) it follows at once that is defined
only up to a non-singular linear fractional transformation.
DEFINITION 1.10. Projectively invariant. Any quantity which

undergoes at most a non-singular linear fractional transformation
under an operation, is said to be projectively invariant under
that operation.
THEOREM 1.1. The projective normal parameter n is projecti-

vely invariant under allowable transformation o f coordinates
x = x(x). 

Proof: Let s = as + b be an affine parameter s in x coordi-
nates, then by definitions 1.8 and 1.9

Since O, s) = 0, we see from (1.17) that {n, s} = {n, s}, which,
by (1.16) completes the proof. Q. E. D.
THEOREM 1.2. The parameter n is projectively invariant under

co,projective change o f connection and gauge forme
Proof: Under projective change of gauge form (1.5), (1.14)

becomes

Since x must satisfy the equation (1.10) of the paths, a direct

computation from (1.12) shows that the expression in square
brackets of (1.19) is simply {s, s}. From this and (1.17)
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where s by definition 1.8 is the affine parameter s associated with

DEFINITION 1.11. Gauge variable x9. A numerical variable x°,
called gauge variable, is defined along all paths by the equation

where s and n are corresponding parameters [définitions 1.7

and 1.9].
/B 

DEFINITION 1.12. Gauge variable x0. A second gauge variable
/B

x ° corresponding to s and hence to F(x, Et, E2) is defined along
each path by

where the integral is taken along the path with arbitrary para-
meter t from any initial point q.

In terms of the gauge variable x° and the parameter n it is

now possible to establish a representation of the system of paths,
which does not involve the parameter s, as follows

whence

and, by eliminating s between (1.10) and (1.20),

DEFINITION 1.13. The Banach space Bl. The space of all

couples of the form X = (x, x0) where x is in B and x° is a real
number, form a Banach space under suitable definition of opera-
tions and norm. This space will be denoted by B, and its elements
by capital letters.
DEFINITION 1.14. Projective connection II(X, Y, Z). The

components of this geometric object are functions with arguments
and values in B, given by
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(1.25) II(X, Y, Z) = (F(x, y, z ) + Mz°y + My°z, r0(z, y, z)+MyozO)
where M is the same positive constant as in (1.5) and (1.14).
The following properties of the projective connection are

practically immediate consequences of its définition :

where a is any real number.

THEOREM 1.3. The projective connection II(X, Y, Z) is sym-
metric and bilinear in the arguments Y and Z.

Proof : Symmetry follows from e of (1.26); hence our proof
will consist in showing additivity and continuity in Y.
From definitions 1.13 and 1.14 and the linearity properties in

definitions 1.1 and 1.3 we have by a simple calculation that

By the definition of norni in B1 and the bilinearity in defini-
tions 1.1 and 1.3 we have

Hence, for a fixed Xo and Zo, we can make the last member as
small as we choose by taking Y with small enough norm. Thus

for any a &#x3E; 0 there exists ô &#x3E; 0 such that ll Y II [ = /[ [ y [ ] 2 + [ y° [ 2  à
implies

since II(X, 0, Z) = 0. This shows continuity at Y = 0, and

completes the proof. Q. E. D.

l’IIEOREM 1.4. The differential equation
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is equivalent to the pair (1.23) (1.24) and hence represents the

systern of paths (1.10) -in ternis of the projective norrnal parameter 1C.
Proof : In general, if Y is a function of any scalar parameter t,

If we substitute these values in (1.27) and equate separately
the Banach elements and real elements to zero, we get (1.23)
and (1.24). The steps are all reversible, so the proof is complete.

Q. E. D.

2. The Integrable Case.

Certain interesting and important aspects of our theory in-

volve the subclass of linear connections obtainable by a projec-
tive change of connection (1.3) in which (a?, ) is the exact
Fréchet differential of a scalar numerical valued function.
We shall express the latter function in terms of the logarithm

of a positive real valued function (x) of class C(2),

DEFINITION 2.1. Change of representation. This is a change
of coordinate representation in’ the B, space from X = (x, x°) to
X = (x, x°) such that

A change of representation necessarily entails a simultaneous
coprojective change of connection and gauge form since (1.21)
implies that x° is associated with the coprojective connection and
gauge form.

LEMMA 2.1. A necessary and sufficient condition that E = (e, e0)
be a contravariant vector with components in B, is that e be a contra-
variant vector with components in B, and that e0 transform accor-
ding to
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Proof : Assume that " is a c.v. and hence transforms

(2.4) B = X(X; E) under change of representation.

Clearly

Since by the hypotheses and the definitions of B1

the cond ition is necessary. The steps of this argument are rever-
sible, hence the condition is also sufficient. Q. E. D.

THEORM 2.1. The projective connection H(X, E1, E2) in the
arbitrary. c.v. E1 and 82 transforma as a component o f linear con-
nection under a change o f representation. That is

under X = X(X).
Proo f : By Kerner’s theorem on the symmetry of the second

successive Fréchet differential with independent increments y, z

Hence in the present case (1.6) and (1.7) become

(2.7)

Since e(ae) is a scalar and hence log é(ffi) = log p(.c), the in-
verse of (2.4) and (2.3) is

(2.8) 
E = X(X; E) = (x(ae; 03BE), 03BEo - 4 log e(ae))

and X(X; E1; E2) = (x(x; 03BE1; 03BE2), 2013 4. d’, log -(,i».
Consider now the right member of (2.5) which can be writter

in the form



166

In (2.6), y and z were independent increments, but in evaluating
the above expression we must bear in mind that el = x(x; 03BE1)
is also a function of x, hence

By definition 1.14, we have in the X representation

If now we substitute in the right members of (2.11) according
to (2.7), (2.8), and (2.10) and collect terms, we obtain the B1
element which is the right member of (2.9), which completes
the proof. Q. E. D.

3. The Curvature Form in Bi.

DEFINITION 3.1. The curvature form B(l)(X, Et, E2, E3). The
components of this geometric object are defined in terms of the
components of the projective connèction by the relation

THEOREM 3.1. The curvature form B(1)(X, El, E2, E3) is tri-

linear in the arbitrary Z-1, E2, Ea and is skew-symmetric in the
last two.
THEOREM 3.2. The curvature form B(1)(X, El, E2, 8a) vanishes

unless 03BE1, 03BE2 and e3 are all different from zero in B.
Proof : From (1.25) we have by differentiation

II(X, E1, = 2 E3) = (r(XI 03BE1’ e2; e3), -ro(XI 03BE1, e2; 03BE3))
and by iteration in the second argument
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If we substitute these values in (3.1), collect terms, and intro-
duce the notation

we obtain

where B(x, 03BE1, e2l 03BE3 ) is the curvature form based on r(0153, ;1’ e2)
in the space B. Clearly b(,) and b0(1) both vanish for any e, = 0,
(i = 1, 2, 3), hence the theorem. Q. E. D.

COROLLARY 3.1. The curvature form is c.v. f . valued and inde-

pendent of x, 8f, 8É and 03BE03 hence

b(1) = b(1)(x ele e2y e3) and b’) (1 = b0(1) (XI 1’2’ e3)-

COROLLARY 3.2 The real element b0(1) 0f (3.2) is expressible
in terrns o f covariant differentials 8) in the form

b0(1))(x, 03BE1, 03BE2, e3) = ro(XI 03BE1, e2 1 e3) - rO(0153, el’ e3 1 e2)
COROLLARY 3.3 Both b(1) and b0(1) satisfy a .cyclic indentity of

the form

b.(x, el, e2l e3) + b(x, e., e3l 03BE1 ) + b (x e3l 03BE1 03BE2) = 0-

Should we impose the further restrictions that II(X, Y, Z) have
a differential with the c5-property 9) with respect to Y,

B(1)(X, 11 "2, E3) vanish identically and M = 1, then our

space would be a locally flat projective space and its geometry a

locally flat projective geometry in the sense we have developed
more fully elsewhere 9).

8 ) Michal (V), Theorem 3, p. 400.

8) Michal and Mewborn (III).
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