COMPOSITIO MATHEMATICA

GEORGE CHOGOSHVILI On a theorem in the theory of dimensionality

Compositio Mathematica, tome 5 (1938), p. 292-298 <http://www.numdam.org/item?id=CM_1938_5_292_0>

© Foundation Compositio Mathematica, 1938, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal N$ umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On a theorem in the theory of dimensionality

by

George Chogoshvili

Moscow

1. In his note "Zum allgemeinen Dimensionsproblem"¹) Professor Alexandroff proved the following theorem:

A compact set A of the n-dimensional space \mathbb{R}^n has a dimensionality $\leq r$ if and only if for every $\varepsilon > 0$ it is ε -removable from an arbitrary (n-r-1)-dimensional polyhedron.

In this theorem a set A is called ε -removable from a set B (where A and B are subsets of the same metric space R) when there exists an ε -transformation f of A with the property:

$$f(A) \cdot B = \mathbf{0}.$$

The main purpose of this note is to generalize and to make more precise the above result established by Prof. Alexandroff:

THEOREM: Any subset A of the n-dimensional euclidean space \mathbb{R}^n has a dimension $\leq r$ then and only then, when for any $\varepsilon > 0$ it is ε -removable from every (n-r-1)-dimensional plane.²)

Remark I. The theorem holds if the word "plane" is replaced by the word "simplex".

Remark II. An r-dimensional set A is ε -removable even from every countable complex of the dimension $\leq n - r - 1$.

Remark III.³) If a set A is r-dimensional there is an (n-r)-dimensional plane (or simplex), parallel to a certain (n-r)-dimensional coordinate plane of \mathbb{R}^n , from which A is not ε -removable.

Consequently, any space R is r-dimensional then and only then, when its topological image in euclidian space of a sufficiently large dimension answers the conditions described. The

¹) Gött. Nachrichten 1928, 37.

²) r-dimensional plane of \mathbb{R}^n is an r-dimensional euclidian subspace of \mathbb{R}^n .

³) This remark is due to Prof. Pontrjagin.

problem of such a generalization of his theorem was proposed to me by Prof. Alexandroff to whom I wish to express here my best thanks for the kind attention he has shown me.

Here we shall dwell for a while on some theorems concerning the ε -transformations which have been proved only as to compact or, in the best cases, as to totally bounded spaces. This will enable us to give a more direct proof of our theorem.

2. The theorem we start from is the following:

Any r-dimensional subset A of a metric separable space R may be covered by arbitrarily small open sets, each r + 2 of which has a vacuous intersection; their number being finite in the case of the subset being totally bounded and countable⁴) in the opposite case.

The proof of the theorem in the case when the set is not necessarily totally bounded is the same as when it is totally bounded ⁵) except for the number (finite or infinite) of the covering sets involved.

With every countable system of sets $\mathfrak{S} = \{U_1, U_2, \ldots, U_i, \ldots\}$ we associate, as in the case of the finite system, a certain countable complex N, which is said to be the nerve of this system. Vertices of N are in (1-1)-correspondence with the sets of the system \mathfrak{S} , and some subset of them form the vertices of a simplex then and only then when the corresponding sets do not have a null intersection. The nerve N is *realized in the field of vertices* E, if all the vertices belong to this field. N is *realized in* \mathfrak{S} or *near* \mathfrak{S} , if all the elements of \mathfrak{S} belong to the same space R, and each vertex of N is a point of its corresponding element or of a definite neighborhood of that element.⁶)

If $R = R^n$, then N may be considered as a geometrical complex. If n is sufficiently great and the vertices of N are in a general position then the interiors of the simplexes of N do not intersect each other.

Such a realization of a nerve, which is always possible in R^{2r+1} , when \mathfrak{S} has an order equal to r, i.e. if dim N = r, is called an euclidian realization of the nerve N of \mathfrak{S} .

Having an arbitrarily small finite or countable covering of the order r of an r-dimensional space R, and the realization of

⁴) but locally finite, i.e. any element can intersect only a finite number of other elements of the covering.

⁵) See K. MENGER's Dimensionstheorie [1928], 158.

⁶) P. ALEXANDROFF & H. HOPF: Topologie I [1935], Neuntes Kapitel, § 3.

the nerve of this covering, we can, as in the finite case, construct a single-valued continuous transformation of the space R in \overline{N} ; especially we can apply the so-called Kuratowski-transformation X(p) which in the euclidian case gives:

$$X^{-1}\left[b_{i_0}\dots b_{i_k}\right] = U_{i_0}\dots U_{i_k} - \sum_{i\neq i_j} U_i;$$

here b_{i_j} is the vertex of N corresponding to the element U_{i_j} of \mathfrak{S} , and $[b_{i_0} \ldots b_{i_n}]$ is the interior of the simplex $b_{i_0} \ldots b_{i_n} \subset N$. It follows that if a system \mathfrak{S} is an ε -covering of a space R, then X(p) is an ε -mapping of R on \overline{N} , i.e. on an r-dimensional complex.

If f is a single-valued continuous transformation of a space R in \mathbb{R}^n , then, as in the case when R is compact we get that for a sufficiently small covering of R and for a suitable realization of the nerve of this covering in \mathbb{R}^n , X(p) represents an ε -approximation of the given transformation f:

$$\varrho(f(p), X(p)) < \varepsilon.$$

Supposing that $A \subset \mathbb{R}^n$ and f is an identical transformation, we get an $\frac{s}{2}$ -deformation of the set A into the polyhedron \overline{N} , i.e. into an r-dimensional complex. On the other hand it may be shown, using our chief theorem⁷) (from which the above is independent), that by an arbitrarily small deformation of an r-dimensional set A it is impossible to transform A into a set of a dimension less than r. In fact it would be possible otherwise to remove A by an arbitrarily small deformation of it from every (n-r)-dimensional plane, but that contradicts the assumption that A is of the dimension r.

Thus we get the following theorem, the first part of which will be wanted later:

An r-dimensional set A of the space \mathbb{R}^n is ε -deformable into an r-dimensional polyhedron (finite or countable according as the set A is bounded or not), but not into a polyhedron (not into any set) of a lower dimension.

3. We shall require further the following

LEMMA: If a set A does not intersect the simplex S $(A, S \subset \mathbb{R}^n)$ it is possible to get a positive distance between the set A and the simplex S by an arbitrarily small deformation of the set A.

⁷) Prof. Ephrämowitsch has been so kind as to indicate to me this consequence of our theorem.

Furthermore, at the end of § 4 it will be shown that, if a set A is removable by an arbitrarily small deformation from each simplex of a given finite complex K, then a positive distance between the polyhedron \overline{K} and the set A may be established by an arbitrarily small deformation of the latter.

Proof of the lemma: given $\varepsilon > 0$ let us choose such a number d, that: $0 < d < \varepsilon$ and consider the set F consisting of all points whose distance from S is less than or equal to d. Especially, let $T \subset F$ be the set of those points whose distance from S is equal to d. Let us connect by segments each point of S with all the points of the set T which are at the distance d from this point. We shall call the points of these segments which belong to the simplex S, s-points and those which belong to T, t-points. It is not difficult to show that the set of all these segments fills the whole set F - S. No one of these segments intersects any other at a point which does not belong to S. Suppose the contrary: let the segments P and Q intersect in the point o, $o \not\subset S$. Denoting the s-points of the segments P and Q by s_P and s_O and the t-points by t_P and t_Q respectively, we have: $s_P \neq s_Q$ (for, otherwise, P and Q would coincide with each other) and $t_P \neq t_0$ (as, otherwise, the point $t_P = t_0$ being equally distant from the two points s_P , s_O of S would be less distant from S than from these points, which is impossible). Suppose that

then

$$\varrho(o, s_P) \geq \varrho(o, s_Q);$$

 $\rho(t_P, o) \leq \rho(t_O, o)^8);$

for, otherwise, the length of P would be less than that of Q. Therefore we have:

$$\varrho(t_P, o) + \varrho(o, s_Q) \leq d.$$

But that is impossible. The impossibility of the inequality is evident; but no equality can exist either, since, as already mentioned above, a point which is at distance d from a simplex cannot be at this distance from two different points of the simplex. Thus, the segments do not intersect one another. Let us shift each point of the set A(F-S) with uniform velocity in unit time along the segment on which it lies to the *t*-point of this segment. We obtain in this way a single-valued continuous

⁸) If $\varrho(t_Q, o) < \varrho(t_P, o)$, then, in the following argument P and Q must replace each other.

transformation f of A(F-S) into $R^n - U(S, d)$; we define moreover f as the identical transformation in all points of $A[R^n - U(S, d)]$. Then f is a continuous ε -transformation of Aall over and f(A) has a positive distance from S, q.e.d.

4. We get now the first part of our theorem direct from what has been said in § 2: by an arbitrarily small deformation of the set A, we transform it into an r-dimensional complex and, by arbitrarily small shifts of the vertices of the latter remove it from any (n-r-1)-dimensional finite or even countable polyhedron, in particular from any $\mathbb{R}^{n-r-1} \subset \mathbb{R}^n$, and, moreover from any (n-r-1)-dimensional element.

In order to prove the second part, let us prove first of all that by sufficiently small deformation of the given bounded set A of dimension r it is impossible to remove it from a certain (n-r)-dimensional finite polyhedron. From here naturally follows an analoguous statement as to an unbounded set. Let $\varepsilon > 0$ be so small that at a finite ε -covering of the set A by sets closed in it there should be at least one point belonging to r + 1 elements of the covering. Let us, following Lebesgue⁹), decompose the space \mathbb{R}^n in cubes with the side $\eta < \frac{\varepsilon}{3n}$ so that the points belonging to, at least, s, $1 \leq s \leq n+1$, cubes lie on (n-s+1)-dimensional sides of these cubes.

Let Q_1, Q_2, \ldots, Q_t be all the cubes of the polyhedral neighborhood of that polyhedron ¹⁰) of this decomposition whose cubes intersect the set A.

Let us denote by K the (n-r)-dimensional polyhedron formed by all (n-r)-dimensional sides of these cubes. It is clear that

$$\varrho\left(A, R^n - \sum_{i=1}^t Q_i\right) \ge \eta.$$

Suppose that by η -deformation of the set A which transforms A into A', it is possible to remove A from K. Sets Q_iA' , $1 \leq i \leq t$, closed in A', form $\frac{\varepsilon}{3}$ -covering of the set A' of the order r at most. Let the sets A_i be the originals ("Urbild") of the sets Q_iA' of the deformation in question. As originals of sets closed in A' the sets A_i are closed in A; their aggregate covers A; their

⁹) Fund. Math. 2 (1921), 256-285.

¹⁰) i.e. the aggregate of all the cubes of the decomposition in question intersecting that polyhedron.

diameters are less than ε , and each r+1 of them has a null set in its intersection; but all this contradicts the choice of the number ε .

It remains to prove the impossibility of removing the given set from a certain (n-r)-dimensional simplex and, therefore from the (n-r)-dimensional plane which is determined by this simplex.

Suppose that it is possible: A may be ε -removed, by arbitrarily small $\varepsilon > 0$, from every (n-r)-dimensional simplex. Let us have any (n-r)-dimensional polyhedron

$$K = \sum_{i=1}^{k} S_i, \text{ dim } S_i \leq n - r,$$

and any positive number ε . Let us choose ε_1 , so that $0 < \varepsilon_1 < \frac{\varepsilon}{k}$ and by an ε_1 -deformation f_1 of A establish a positive distance between $f_1(A) = A_1$ and S_1 :

$$\varrho(A_1, S_1) = d_1.$$

This is possible in virtue of the above assumption and the lemma of § 3 from which evidently follows: if by an arbitrarily small deformation of a set A it is possible to remove the latter from a simplex S, then it is possible to establish a positive distance between A and S by an arbitrarily small deformation of A.

$$\varepsilon_i, f_i, A_i, d_i; i = 1, 2, \ldots, j - 1,$$

be already constructed.

Let us choose ε_i so that

$$0$$

and, by an ε_j -deformation f_j of the set A_{j-1} , say $f_j(A_{j-1}) = A_j$, establish a positive distance between A_j and S_j :

$$\varrho(A_j, S_j) = d_j > 0.$$

We shall get

$$\varrho(A_j, S_t) > \frac{k-j}{k-t} d_t \ge 0, \ t = 1, 2, \dots, j,$$

for when j = t we had

$$\varrho(A_t, S_t) = d_t > 0$$

and with the following j - t deformations all the shifts, in virtue of the properties of ε_{τ} , $\tau = t + 1, \ldots, j$, were less than $\frac{d_t}{k-t}$.

Let us perform the same construction for j = 1, 2, ..., kand consider the mapping

$$f^*(A) = f_k \cdots f_2 f_1(A) = A^*.$$

 f^* being the result of k successive $\frac{\varepsilon}{k}$ -deformations of A is an ε deformation of this set. A^* does not intersect the polyhedron \overline{K} ,
moreover, they are at a positive distance from each other, since

and

$$A^{+} = J_{k}(A_{k-1}) = A_{k}$$

$$o(A_{k}, S_{t}) > 0, \ t = 1, 2, \dots, k.^{11}$$

١

1

f (A

1*

The contradiction of the fact just established with our former statement proves our theorem completely. The above considerations prove also the generalizations of the lemma mentioned in § 3.

Remarks I and II are already proved. It is obvious that remark III holds too. In fact, in Lebesgue's decomposition of \mathbb{R}^n every (n-r)-dimensional side is parallel to a certain (n-r)-dimensional coordinate plane; but, on the other hand, it was proved already that the set A cannot be removed by an arbitrarily small deformation from one of these sides.

(Received, February 10th, 1937.)

¹¹) The expression $\varrho(A_k, S_t) > \frac{k-k}{k-t}d_t$, for t = k, is not undetermined, as, according to the definition of f_k :

$$\varrho(A_k, S_k) = d_k > 0.$$