Embeddings and the (virtual) cohomological dimension of the braid and mapping class groups of surfaces
Confluentes Mathematici, Tome 10 (2018) no. 1, pp. 41-61.

We use the relations between the braid and mapping class groups of a compact, connected, non-orientable surface N without boundary and those of its orientable double covering S to study embeddings of these groups and their (virtual) cohomological dimensions. We first generalise results of [4, 14] to show that the mapping class group MCG(N;k) of N relative to a k-point subset embeds in the mapping class group MCG(S;2k) of S relative to a 2k-point subset. We then compute the cohomological dimension of the braid groups of all compact, connected aspherical surfaces without boundary, generalising results of [15]. Finally, if the genus of N is at least 2, we deduce upper bounds for the virtual cohomological dimension of MCG(N;k) that are coherent with computations of Ivanov.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/cml.45
Classification : 57N05, 20F36, 55R80, 55P20, 20F38, 57M07, 20J06
Mots clés : Mapping class groups, surface braid groups, finite coverings, embeddings, (virtual) cohomological dimension
Lima Gonçalves, Daciberg 1 ; Guaschi, John 2 ; Maldonado, Miguel 3

1 Departamento de Matemática, IME, Universidade de São Paulo, Rua do Matão, 1010, CEP 05508-090 - São Paulo - SP, Brazil
2 Normandie Univ., UNICAEN, CNRS, Laboratoire de Mathématiques Nicolas Oresme UMR CNRS 6139, CS 14032, 14032 Caen Cedex 5, France
3 Unidad Académica de Matemáticas, Universidad Autónoma de Zacatecas, Calzada Solidaridad entronque Paseo a la Bufa, C.P. 98000, Zacatecas, Mexico
@article{CML_2018__10_1_41_0,
     author = {Lima Gon\c{c}alves, Daciberg and Guaschi, John and Maldonado, Miguel},
     title = {Embeddings and the (virtual) cohomological dimension of the braid and mapping class groups of surfaces},
     journal = {Confluentes Mathematici},
     pages = {41--61},
     publisher = {Institut Camille Jordan},
     volume = {10},
     number = {1},
     year = {2018},
     doi = {10.5802/cml.45},
     mrnumber = {3869010},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/cml.45/}
}
TY  - JOUR
AU  - Lima Gonçalves, Daciberg
AU  - Guaschi, John
AU  - Maldonado, Miguel
TI  - Embeddings and the (virtual) cohomological dimension of the braid and mapping class groups of surfaces
JO  - Confluentes Mathematici
PY  - 2018
SP  - 41
EP  - 61
VL  - 10
IS  - 1
PB  - Institut Camille Jordan
UR  - http://www.numdam.org/articles/10.5802/cml.45/
DO  - 10.5802/cml.45
LA  - en
ID  - CML_2018__10_1_41_0
ER  - 
%0 Journal Article
%A Lima Gonçalves, Daciberg
%A Guaschi, John
%A Maldonado, Miguel
%T Embeddings and the (virtual) cohomological dimension of the braid and mapping class groups of surfaces
%J Confluentes Mathematici
%D 2018
%P 41-61
%V 10
%N 1
%I Institut Camille Jordan
%U http://www.numdam.org/articles/10.5802/cml.45/
%R 10.5802/cml.45
%G en
%F CML_2018__10_1_41_0
Lima Gonçalves, Daciberg; Guaschi, John; Maldonado, Miguel. Embeddings and the (virtual) cohomological dimension of the braid and mapping class groups of surfaces. Confluentes Mathematici, Tome 10 (2018) no. 1, pp. 41-61. doi : 10.5802/cml.45. http://www.numdam.org/articles/10.5802/cml.45/

[1] Birman, J. S., Braids, Links and Mapping Class Groups, Ann. Math. Stud. 82, Princeton Univ. Press, 1975. | DOI | Zbl

[2] Birman, J. S., On braid groups, Comm. Pure Appl. Math. 22 (1969), 41–72. | DOI | MR

[3] Birman, J. S., Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969), 213–238. | DOI | MR | Zbl

[4] Birman, J. S., Chillingworth, D. R. J., On the homeotopy of a non-orientable surface, Proc. Camb. Phil. Soc. 71 (1972), 437–448, and Erratum, Math. Proc. Cambridge Philos. Soc. 136 (2004), 441. | DOI | MR | Zbl

[5] Boldsen, S. K., Different versions of mapping class groups of surfaces, arXiv: 0908.2221 (2009).

[6] Brown, K. S., Cohomology of groups, Graduate Texts in Mathematics 87, Springer-Verlag, 1982. | DOI | Zbl

[7] Fadell, E., Husseini, S., The Nielsen number on surfaces, Topological methods in nonlinear functional analysis (Toronto, Ont., 1982), Contemp. Math., Amer. Math. Soc., Providence, RI, 21 (1983), 59–98. | DOI

[8] Fadell, E., Neuwirth, L., Configuration spaces, Math. Scand. 10 (1962), 111–118. | DOI | MR

[9] Farb, B., Some problems on mapping class groups and moduli space, In Problems on mapping class groups and related topics, Proc. Sympos. Pure Math. 74, 11–55, Amer. Math. Soc., Providence, RI, 2006. | DOI

[10] Farb, B., Margalit D., A primer on mapping class groups, Princeton Mathematical Series 49, Princeton Univ. Press, Princeton, NJ, 2012. | DOI | Zbl

[11] Fox, R. H., Neuwirth, L., The braid groups, Math. Scand. 10 (1962), 119–126. | DOI | Zbl

[12] Gonçalves, D. L., Guaschi, J., On the structure of surface pure braid groups, J. Pure Appl. Algebra 182 (2003), 33–64 (due to a printer’s error, this article was republished in its entirety with the reference 186 (2004) 187–218). | DOI | MR | Zbl

[13] Gonçalves, D. L., Guaschi, J., Braid groups of non-orientable surfaces and the Fadell-Neuwirth short exact sequence, J. Pure Appl. Algebra 214 (2010), 667–677. | DOI | MR | Zbl

[14] Gonçalves, D. L., Guaschi, J., Surface braid groups and coverings, J. London Math. Soc. 85 (2012), 855–868. | DOI | MR | Zbl

[15] Gonçalves, D. L., Guaschi, J., Inclusion of configuration spaces in Cartesian products, and the virtual cohomological dimension of the braid groups of 𝕊 2 and P 2 , Pac. J. Math. 287 (2017), 71–99. | DOI | Zbl

[16] Gonçalves, D. L., Kudryavtseva, E., Zieschang, H., Roots of mappings on nonorientable surfaces and equations in free groups, Manuscripta Math. 107 (2002), 311–341. | DOI | MR | Zbl

[17] Guaschi, J., de Miranda e Pereiro, C., The lower central and derived series of the braid groups of compact surfaces, arXiv:1802.07636 (2018).

[18] Hamstrom, M.-E., The space of homeomorphisms on a torus, Illinois J. Math. 9 (1965), 59–65. | DOI | MR | Zbl

[19] Hamstrom, M.-E., Homotopy properties of the space of homeomorphisms on P 2 and the Klein bottle, Trans. Amer. Math. Soc. 120 (1965), 37–45. | DOI | MR | Zbl

[20] Hamstrom, M.-E., Homotopy groups of the space of homeomorphisms on a 2-manifold, Illinois J. Math. 10 (1966), 563–573. | DOI | MR | Zbl

[21] Harer, J. L., The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986), 157–176. | DOI | MR | Zbl

[22] Hope, G. and Tillmann, U., On the Farrell cohomology of the mapping class group of non-orientable surfaces, Proc. Amer. Math. Soc. 137 (2009), 393–400. | DOI | MR | Zbl

[23] Ivanov, N. V., Complexes of curves and the Teichmuller modular group, Russ. Math. Surv., 42–55, 1987. | DOI | Zbl

[24] Ivanov, N. V., Mapping class groups, in Handbook of geometric topology, 523–633, North-Holland, Amsterdam, 2002. | DOI | Zbl

[25] Johnson, D. L., Presentations of groups, London Mathematical Society Student Texts 15, 2nd edition, Cambridge University Press, Cambridge, 1997. | Zbl

[26] Lickorish, W. B. R., On the homeomorphisms of a non-orientable surface, Proc. Camb. Phil. Soc. 61 (1965), 61–64. | DOI | MR | Zbl

[27] Lima, E. L., Fundamental Groups and Covering Spaces, A. K. Peters, Ltd., Natick, MA, 2003. | DOI

[28] McCarty Jr., G. S., Homeotopy groups, Trans. Amer. Math. Soc. 106 (1963), 293–304. | DOI | MR | Zbl

[29] Olum, P., Mappings of manifolds and the notion of degree, Ann. Math. 58 (1953), 458–480. | DOI | MR | Zbl

[30] Paris, L., From braid groups to mapping class groups, In Problems on mapping class groups and related topics, Proc. Sympos. Pure Math. 74, 355–371, Amer. Math. Soc., Providence, RI, 2006. | DOI | Zbl

[31] Paris, L. and Rolfsen D., Geometric subgroups of surface braid groups, Ann. Inst. Fourier 49 (1999), 417–472. | DOI | Numdam | MR | Zbl

[32] Pereiro, C. M., Os grupos de tranças do toro e da garrafa de Klein, Ph.D thesis, Universidade Federal de São Carlos, Brazil, and Université de Caen Basse-Normandie, France, 2015.

[33] Scott, G. P., Braid groups and the group of homeomorphisms of a surface, Proc. Camb. Phil. Soc. 68 (1970), 605–617. | DOI | MR | Zbl

Cité par Sources :