Malnormal subgroups occur in various contexts. We review a large number of examples, and compare the general situation to that of finite Frobenius groups of permutations.
In a companion paper [18], we analyse when peripheral subgroups of knot groups and -manifold groups are malnormal.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/cml.13
Mots-clés : Malnormal subgroup, infinite permutation group, Frobenius group, knot group, peripheral subgroup, almost nalmornal subgroup.
@article{CML_2014__6_1_65_0, author = {de la Harpe, Pierre and Weber, Claude}, title = {Malnormal subgroups and {Frobenius} groups: basics and examples}, journal = {Confluentes Mathematici}, pages = {65--77}, publisher = {Institut Camille Jordan}, volume = {6}, number = {1}, year = {2014}, doi = {10.5802/cml.13}, mrnumber = {3266885}, zbl = {1327.20030}, language = {en}, url = {http://www.numdam.org/articles/10.5802/cml.13/} }
TY - JOUR AU - de la Harpe, Pierre AU - Weber, Claude TI - Malnormal subgroups and Frobenius groups: basics and examples JO - Confluentes Mathematici PY - 2014 SP - 65 EP - 77 VL - 6 IS - 1 PB - Institut Camille Jordan UR - http://www.numdam.org/articles/10.5802/cml.13/ DO - 10.5802/cml.13 LA - en ID - CML_2014__6_1_65_0 ER -
%0 Journal Article %A de la Harpe, Pierre %A Weber, Claude %T Malnormal subgroups and Frobenius groups: basics and examples %J Confluentes Mathematici %D 2014 %P 65-77 %V 6 %N 1 %I Institut Camille Jordan %U http://www.numdam.org/articles/10.5802/cml.13/ %R 10.5802/cml.13 %G en %F CML_2014__6_1_65_0
de la Harpe, Pierre; Weber, Claude. Malnormal subgroups and Frobenius groups: basics and examples. Confluentes Mathematici, Tome 6 (2014) no. 1, pp. 65-77. doi : 10.5802/cml.13. http://www.numdam.org/articles/10.5802/cml.13/
[1] M. Aschbacher. Finite group theory, Second Edition, Cambridge Univ. Press, 2000. | DOI | Zbl
[2] H. Bass. Group actions on non-archimedean trees, in: Arboreal group theory, Proc. Workshop, Berkeley, 1988, 69–131, Publ. Math. Sci. Res. Inst. 19, 1991. | DOI | Zbl
[3] B. Baumslag. Generalized free products whose two-generator subgroups are free, J. Lond. Math. Soc., 43:601–606, 1968. | DOI | MR | Zbl
[4] G. Baumslag, A. Myasnikov and V. Remeslennikov. Malnormality is decidable in free groups, Int. J. Alg. Comput., 9(6):687–692, 1999. | DOI | MR | Zbl
[5] N. Bourbaki. Groupes et algèbres de Lie, chapitres 4, 5 et 6, Hermann, 1968. | Zbl
[6] M.R. Bridson and D.T. Wise. Malnormality is undecidable in hyperbolic groups, Isr. J. Math., 124:313–316, 2001. | DOI | MR | Zbl
[7] G. Burde and H. Zieschang. Knots, de Gruyter, 1985. | DOI
[8] M. Burger and S. Mozes. Lattices in products of trees, Publ. Math. IHÉS, 92:151–194, 2000. | DOI | Zbl
[9] R.G. Burns. A note on free groups, Proc. Amer. Math. Soc., 23:14–17, 1969. | DOI | MR | Zbl
[10] M.J. Collins. Some infinite Frobenius groups, J. Alg., 131(1):161–165, 1990. | DOI | MR | Zbl
[11] J.D. Dixon and B. Mortimer. Permutation groups, Springer, 1996. | DOI | Zbl
[12] B. Farb. Relatively hyperbolic groups, GAFA, 8(5):810–840, 1998. | DOI | MR | Zbl
[13] B. Fine, A. Myasnikov and G. Rosenberger. Malnormal subgroups of free groups, Comm. Alg., 20(9):4155–4164, 2002. | DOI | MR | Zbl
[14] F.G. Frobenius. Über auflösbare Gruppen IV, S’ber Akad. Wiss. Berlin, 1216–1230, 1901. [Gesammelte Abhandlungen III, 189–203, in particular page 196].
[15] E. Ghys and P. de la Harpe (éds). Sur les groupes hyperboliques d’après Mikhael Gromov, Birkhäuser, 1990. | Zbl
[16] D. Gildenhuys, O. Kharlampovich and A. Myasnikov. CSA-groups and separated free constructions, Bull. Austr. Math. Soc., 52(1):63–84, 1995. | DOI | MR | Zbl
[17] M. Hall Jr. Coset representations in free groups, Trans. Amer. Math. Soc., 67:421–432, 1949. | DOI | MR | Zbl
[18] P. de la Harpe and C. Weber. On malnormal peripheral subgroups of the fundamental group of a -manifold, Confl. Math., 6:41–64, 2014. | DOI | MR | Zbl
[19] J. Hempel. –manifolds, Ann. Math. Stud., Princeton University Press, 1976. | Zbl
[20] B. Huppert. Endliche Gruppen I, Springer, 1967. | DOI | Zbl
[21] I.M. Isaacs. Finite group theory, Graduate Studies in Math. 92, Amer. Math. Soc., 2008. | DOI
[22] S.V. Ivanov. On some finiteness conditions in semigroup and group theory, Semigroup Forum, 48(1):28–36, 1994. | DOI | MR | Zbl
[23] I. Kapovich and A. Myasnikov. Stallings foldings and subgroups of free groups, J. Alg., 248(2):608–668, 2002. | DOI | MR | Zbl
[24] A. Karrass and D. Solitar. The free product of two groups with a malnormal amalgamated subgroup, Canad. J. Math., 23:933–959, 1971. | DOI | MR | Zbl
[25] R. Kashaev. On ring-valued invariants of topological pairs, arXiv:math/07015432v2, 21 Jan 2007.
[26] R. Kashaev. -groupoids in knot theory, Geom. Dedicata, 150:105–130, 2011. | DOI | MR | Zbl
[27] O.H. Kegel and B.A.F. Wehrfritz. Locally finite groups, North-Holland, 1973. | DOI | Zbl
[28] W. Magnus, A. Karrass, and D. Solitar. Combinatorial group theory, Interscience, 1966. | DOI | Zbl
[29] A.G. Myasnikov and V.N. Remeslennikov. Exponential group 2: extensions of centralizers and tensor completion of CSA-groups, Int. J. Alg. Comput., 6(6):687–711, 1996. | DOI | MR | Zbl
[30] P.M. Neumann and P.J. Rowley. Free actions of abelian groups on groups, 291–295, Lond. Math. Soc. Lec. Notes 252, 1998. | DOI | Zbl
[31] B.B. Newman. Some results on one-relator groups, Bull. Amer. Math. Soc., 74:568–571, 1968. | DOI | MR | Zbl
[32] D.V. Osin. Elementary subgroups of relatively hyperbolic groups and bounded generation, Int. J. Alg. Comput., 16(1):99–118, 2006. | DOI | MR | Zbl
[33] D.V. Osin. Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179, 843, 2006. | DOI | MR | Zbl
[34] D.V. Osin. Small cancellations over relatively hyperbolic groups and embedding theorems, Ann. Math., 172(1):1–39, 2010. | DOI | MR | Zbl
[35] J. Peterson and A. Thom. Group cocycles and the ring of affiliated operators, Inv. Math., 185(3):561–592, 2011. | DOI | MR | Zbl
[36] G. de Rham. Sur les polygones générateurs de groupes fuchsiens, L’Ens. Math., 17:49–61, 1971. | Zbl
[37] G. Robertson. Abelian subalgebras of von Neumann algebras from flat tori in locally symmetric spaces, J. Funct. Anal., 230(2):419–431, 2006. | DOI | MR | Zbl
[38] G. Robertson and T. Steger. Malnormal subgroups of lattices and the Pukanszky invariant in group factors, J. Funct. Anal., 258(8):2708–2713, 2010. | DOI | Zbl
[39] J.R. Stallings. Topology of finite graphs, Inv. Math., 71:551–565, 1983. | DOI | MR | Zbl
[40] J.G. Thompson. Finite groups with fixed-point-free automorphisms of prime order, Proc. Nat. Acad. Sci. USA, 45:578–581, 1959. | DOI | MR | Zbl
[41] J.G. Thompson. Normal -complements for finite groups, Math. Zeitschr., 72:332–354, 1960. | DOI | Zbl
[42] D.T. Wise. The residual finiteness of negatively curved polygons of finite groups, Inv. Math., 149(3):579–617, 2002. | DOI | MR | Zbl
[43] D.T. Wise. Residual finiteness of quasi-positive one-relator groups, J. Lond. Math. Soc. 66(2):334–350, 2002. | DOI | MR | Zbl
[44] D.T. Wise. A residually finite version of Rips’s construction, Bull. Lond. Math. Soc., 35(1):23–29, 2003. | DOI | MR | Zbl
[45] D.T. Wise. The structure of groups with a quasiconvex hierarchy, Electron. Res. Announc. Math. Sci., 16:44–55, 2009. | DOI | MR | Zbl
Cité par Sources :