Let be a finite group, the smallest prime dividing the order of and a Sylow -subgroup of with the smallest generator number . There is a set of maximal subgroups of such that . In the present paper, we investigate the structure of a finite group under the assumption that every member of is either -permutably embedded or weakly -permutable in to give criteria for a group to be -supersolvable or -nilpotent.
Accepté le :
Accepté après révision le :
Publié le :
Mots-clés : weakly $s$-permutable subgoups; $s$-permutably embedded subgroups; $p$-nilpotent groups
@article{CML_2013__5_1_93_0, author = {Xie, Fenfang and Wang, Jinjin and Xia, Jiayi and Zhong, Guo}, title = {Finite {Groups} with some $s${-Permutably} {Embedded} and {Weakly} $s${-Permutable} {Subgroups}}, journal = {Confluentes Mathematici}, pages = {93--101}, publisher = {Institut Camille Jordan}, volume = {5}, number = {1}, year = {2013}, doi = {10.5802/cml.4}, language = {en}, url = {http://www.numdam.org/articles/10.5802/cml.4/} }
TY - JOUR AU - Xie, Fenfang AU - Wang, Jinjin AU - Xia, Jiayi AU - Zhong, Guo TI - Finite Groups with some $s$-Permutably Embedded and Weakly $s$-Permutable Subgroups JO - Confluentes Mathematici PY - 2013 SP - 93 EP - 101 VL - 5 IS - 1 PB - Institut Camille Jordan UR - http://www.numdam.org/articles/10.5802/cml.4/ DO - 10.5802/cml.4 LA - en ID - CML_2013__5_1_93_0 ER -
%0 Journal Article %A Xie, Fenfang %A Wang, Jinjin %A Xia, Jiayi %A Zhong, Guo %T Finite Groups with some $s$-Permutably Embedded and Weakly $s$-Permutable Subgroups %J Confluentes Mathematici %D 2013 %P 93-101 %V 5 %N 1 %I Institut Camille Jordan %U http://www.numdam.org/articles/10.5802/cml.4/ %R 10.5802/cml.4 %G en %F CML_2013__5_1_93_0
Xie, Fenfang; Wang, Jinjin; Xia, Jiayi; Zhong, Guo. Finite Groups with some $s$-Permutably Embedded and Weakly $s$-Permutable Subgroups. Confluentes Mathematici, Tome 5 (2013) no. 1, pp. 93-101. doi : 10.5802/cml.4. http://www.numdam.org/articles/10.5802/cml.4/
[1] K. Al-Sharo, On some maximal -quasinormal subgroups of finite groups, Beiträge zur Algebra und Geometrie, 49:227–232, 2008.
[2] M. Asaad, A. A. Heliel, On -quasinormal embedded subgroups of finite groups, J. Pure Appl. Algebra, 165:129–135, 2001.
[3] A. Ballester-Bolinches, M. C. Pedraza-Aguilera, Sufficient conditions for supersolubility of finite groups, J. Pure Appl. Algebra, 127:113–118, 1998.
[4] K. Doerk, Finite Soluble Groups, Berlin, Walterde Gruyter, 1992.
[5] W. E. Deskins, On quasinormal subgroups of finite groups, Mathematische Zeitschrift, 82:125–132, 1963.
[6] D. Gorenstein, Finite group, Chelsea, New York, 1980.
[7] B. Huppert, Endliche gruppen I, Springer, Berlin, 1967.
[8] X. He, S. Li, X. Liu, On -quasinormal and -normal subgroups of prime power order in finite groups, Algebra Colloq., 18 (2011), 685–692.
[9] O. H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78:205–221, 1962.
[10] S. Li, X. He, On normally embedded subgroups of prime power order in finite groups, Comm. Algebra, 36:2333–2340, 2008.
[11] S. Li, Y. Li, On -quasinormal and -normal subgroups of a finite group, Czechoslovak Mathematical Journal 58:1083–1095, 2008.
[12] S. Li, Z. Shen, J. Liu, et al, The influence of -quasinormality of some subgroups on the structure of finite groups, J. Algebra, 319:4275–4287, 2008.
[13] D. H. Mclain, The existence of subgroups of given order in finite groups, Proc.Cambridge Philos.Soc, 53:278–285, 1957.
[14] L. Miao, On weakly -permutable subgroups of finite groups, Bull Braz. Math. Soc. New Series, 41:223–235, 2010.
[15] D. J. S. Robinson, A course in the Theory of groups, New York, Springer-Verlag, 1982.
[16] Z. Shen, W. Shi, Q. Zhang, -quasinormality of finite groups, Front. Math. China, 5:329–339, 2010.
[17] P. Schmidt, Subgroups permutable with all Sylow subgroups, J. Algebra, 207:285–293, 1998.
[18] X. Shen, S. Li, W. Shi, Finite groups with normally embedded subgroups, J. Group Theory, 13:257–265, 2010.
[19] A. N. Skiba, On weakly -permutable subgroups of finite groups, J. Algebra, 315:192–209, 2007.
[20] S. Srinivasan, Two sufficient conditions for supersolvability of finite groups, Israel J.Math, 35:210–214, 1980.
[21] J. G. Thompson, Normal -complements for finite groups, J. Algebra, 1:43–46, 1964.
[22] Y. Wang, -normality of groups and its properties, J. Algebra, 180:954–965, 1996.
[23] Y. Wang, Finite groups with some subgroups of Sylow subgroups c-supplemented, J. Algebra, 224:464-478, 2000.
[24] H. Wei, Y. Wang, On -normality and its properties, J. Group Theory, 10:211–223, 2007.
[25] H. Wielandt, Subnormal subgroups and permutation groups, lectures given at the Ohio State University, Columbus, Ohio, 1971.
Cité par Sources :