Cahiers du Buro

B. E. WYnNE
 T. V. Narayana
 Tournament Configuration and Weighted Voting

Cahiers du Bureau universitaire de recherche opérationnelle.
Série Recherche, tome 36 (1981), p. 75-78
http://www.numdam.org/item?id=BURO_1981__36_75_0
© Institut Henri Poincaré - Institut de statistique de l'université de Paris, 1981, tous droits réservés.

L'accès aux archives de la revue «Cahiers du Bureau universitaire de recherche opérationnelle. Série Recherche » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

TOURNAMENT CONFIGURATION AND WEIGHTED VOTING

by

B.E. WYNNE and T.V. NARAYANA

3. INTRODUCTION

Integer sequences can serve as powerful explicit descriptions of fundamental processes underlying organized activities. Seemingly unrelated decision processes may te perceived as mere variants of one arother, once defined in terms of their essential sequences. As an example, tw:o diverse sporting and/or tusiness activities will te shown to involve the same recursively describatle integer sequence.
2. RANDOM TOLIRNAMENTS

$$
\begin{align*}
& \text { Let us define } T_{2}=T_{3}=1 \\
& \qquad T_{2 n+1}=2 T_{2 n}-T_{n}, T_{2 n}=2 T_{2 n-1} \text { for } n \geqslant 2 . \tag{1}
\end{align*}
$$

Then T_{n} is the total number of ways in which a knock-out tournament aniong n entrants can be structured in order to determine a champion. Were no byes allowed, the number of entrants must be $n=2^{t}$, where t is the number of match rounds in the tournament. To satisfy the practical general conditions v:e must allow any reasonatle number of entrants, yet provide at least one match per round of the tournament.

As Capell and Narayana [1] showed, T_{n} is the number of tournaments or possible match play configurations for n entrants and is given Ey Tatle 1..

TABLE 1.

Match Tournament Entrants and Configurations

Entrants,	n	2	3	4	5	6	7	8	9	10	11
Configurations,	T_{n}	1	1	2	3	6	11	22	42	84	165

Great care must te taken not to confuse T_{n} with the number of "matchtree" configurations as defined by Niaurer [2].

3. WEIGHTED VOTING PROCEDURE

A "Board of Directors" protient was posed in [4]. There, the challenge w'as to define an algorithm which would generate the mini-mal-sum set of weights for aggregating the votes of up to m participants such that under any tehavior other than total abstention, (1) no tally of weighted votes could result in a tie, and (2) any group decision would always reflect the will of the majority of actual voters. An incomplete computational proof and an accompanying generation method satisfying the challenge have teen sutmitted [6].

The essence of that method vias to recursively compute a vector element increment, I_{m}, as follow's:

$$
\begin{equation*}
I_{m}=2\left(I_{m-1}\right)-\bmod _{2}(m-1)\left(I_{[m / 2]-1}\right) \tag{2}
\end{equation*}
$$

where $m \geqslant 3$ and $I_{0}=0, I_{1}=I_{2}=1$.

Then, given the integer weighting elements, $W_{m-1, j}$, of the weights vector, W_{m-1}, the elements of the vector W_{m} are given by:

$$
\begin{equation*}
W_{m, j}=W_{m-1}+I_{m} \tag{3}
\end{equation*}
$$

where $j=1, \ldots, m-1$ and $W_{m, m}=I_{m}$.

Finally, denoting the sum of the weights vector elements as S_{m}, the data of Table 2 is generated for illustration. Comparison of the T_{n} values of Tatle 1 with the I_{m} values of Table 2 discloses the same sequence of numbers. That sequence is \#297, p. 53 of [5]. This equivalence is more readily seen ty restating $\mathrm{T}_{\mathrm{n}+1}$ as in (2) :

$$
\begin{equation*}
T_{n+1}=2 T_{n}-\bmod _{2}(n-1) T_{[n / 2]} \tag{4}
\end{equation*}
$$

with $T_{0}=1, T_{2}=T_{3}=1$ and $n \geqslant 3$.
TABLE 2.

Non-distorting, Tie-avoiding Integer Vote Weights

memters, m	1	2	3	4	5	6	7	8	9	10	11	12	13
totals, S_{m}	1	3	5	21	51	117	271	607	1363	3013	6643	14491	31495

4. CONCLUSION

It is easy to verify that subsets of W_{n} are tie-avoiding and non-distorting i.e. any y smallest weights sum exceeds any y-1 exclusive larger weights sum taken W_{n}. Indeed, Kreweras (personal communication) has indicated to us an elegant proof of these facts tased on "triangular sums" for non-decreasing positive integer sequences i.e. sums of the type

$$
\theta\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\sum_{i=1}^{m} x_{i} \cdot \min (i, m+1-i)
$$

Winile this proof shows that T_{n} is in this sense a minimal triangular sequence, (T_{n+2} being equal to $1+\theta\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ where $T_{1}=T_{2}=1$) the question whether $\left[W_{m}\right]$ are minimal-sum or even mini-mal-dominance in the sense of [3] is an open question. We propose thus the following conjecture : prove or disprove that the weight vectors W_{m} of Table 2 are minimal-sum vectors.

REFERENCES

[1] P. Cape11 and T.V. Narayana "On Knock-out Tournaments", Can. Math. Bull. 13 (1970), 105.
[2] W. Maurer "On most effective tournament plans with fewer games that competitors", Ann. Stat. 3 (1975), 717.
[3] T.V. Narayana "Lattice path combinatorics with statistical applications" sukmitted to Marcel Dekker (1976).
[4] D.L. Silverman "The Board of Director's problem", Jour. Recreational Math. 8 (1975), 234.
[5] N.J.A. Sloane "A Handbook of integer sequences", Academic Press, New-York (1973).
[6] B.E. Wynne, "INTWAT, STREAK and Weights Vectors", sutmitted May 15, 1976 to Journal of Recreational Nathematics.

