Conditions d'optimalité et dualité en programmation mathématique
Cahiers du Bureau universitaire de recherche opérationnelle Série Recherche, Tome 14 (1970), pp. 7-62.
@article{BURO_1970__14__7_0,
     author = {Guignard, Monique},
     title = {Conditions d'optimalit\'e et dualit\'e en programmation math\'ematique},
     journal = {Cahiers du Bureau universitaire de recherche op\'erationnelle S\'erie Recherche},
     pages = {7--62},
     publisher = {Institut Henri Poincar\'e - Institut de Statistique de l'Universit\'e de Paris},
     volume = {14},
     year = {1970},
     language = {fr},
     url = {http://www.numdam.org/item/BURO_1970__14__7_0/}
}
TY  - JOUR
AU  - Guignard, Monique
TI  - Conditions d'optimalité et dualité en programmation mathématique
JO  - Cahiers du Bureau universitaire de recherche opérationnelle Série Recherche
PY  - 1970
SP  - 7
EP  - 62
VL  - 14
PB  - Institut Henri Poincaré - Institut de Statistique de l'Université de Paris
UR  - http://www.numdam.org/item/BURO_1970__14__7_0/
LA  - fr
ID  - BURO_1970__14__7_0
ER  - 
%0 Journal Article
%A Guignard, Monique
%T Conditions d'optimalité et dualité en programmation mathématique
%J Cahiers du Bureau universitaire de recherche opérationnelle Série Recherche
%D 1970
%P 7-62
%V 14
%I Institut Henri Poincaré - Institut de Statistique de l'Université de Paris
%U http://www.numdam.org/item/BURO_1970__14__7_0/
%G fr
%F BURO_1970__14__7_0
Guignard, Monique. Conditions d'optimalité et dualité en programmation mathématique. Cahiers du Bureau universitaire de recherche opérationnelle Série Recherche, Tome 14 (1970), pp. 7-62. http://www.numdam.org/item/BURO_1970__14__7_0/

[1] Abadie J. - Problèmes d'optimisation, Institut Blaise Pascal, Paris, 1965.

[2] Abadie J. - On the Kuhn-Tucker Theorem, Operations Research Center, University of California, Berkeley, ORC 65-18. | Zbl

[3] Arrow K.J., Enthoven A. C. - Quasi-concave Programming, Econometrica, 29 (1961) 779-800. | MR | Zbl

[4] Arrow K.J., Hurwicz L. , Uzawa H. - Constraint qualification in maximization problems, Naval Research Log. Quarterley 8(1961) 175-191. | MR | Zbl

[5] Altman M. - Stationary points in non-linear programming, Bull. Acad. Polonaise Sci., Ser. Sci. Math. Astr. Phys. 12(1964) 29-35. | MR | Zbl

[6] Bernholtz B. - A new derivation of the Kuhn-Tucker conditions, Quart. Appl. Math. 21(1963) 295-299. | MR | Zbl

[7] Charnes A., Cooper W.W., Kortanek K. O. - A duality theorem for convex programs for convex constraints, Bull. Amer. Math. Soc. 68(1962) 605-608. | MR | Zbl

[8] Cottle R. - Symmetric dual quadratic programs, Quart.Appl. Math. 21(1963) 237-243. | MR | Zbl

[9] Cottle R. - A theorem of Fritz John in Mathematical Programming, The Rand Corporation, 1963. RM 3858 PR.

[10] Dorn W.S. - Duality in quadratic programming, Quart. Appl. Math. 18(1960) 155-162. | MR | Zbl

[11] Dorn W.S. - A duality theorem for convex programs, IBM J. Res. Dev. 4(1960) 407-413. | MR | Zbl

[12] Dorn W.S. - Self-dual quadratic programs, J. SIAM 9 (1961) 51-54. | MR | Zbl

[13] Dubovitskiy A. Y., Milyutin A. A. - Extremum problems in the presence of constraints, Zh. Vychisl. Mat. i Mat. Fiz., 5 (1965) 395-453. | Zbl

[14] Duffin R.J. - Dual programs and minimum cost, J. SIAM 10 (1962) 119-123. | MR | Zbl

[15] Eisenberg E. - Duality in homogeneous programming, Proc . Am. Math. Soc. 12 (1961) 783-787. | MR | Zbl

[16] Penchel W. - Convex cones, sets and functions, Princeton University (1953). | Zbl

[17] Fiacco A.W. - Second order sufficient conditions for weak and strict constrained minima, SIAM J. Appl. Math. 16 (1968) 105-108. | MR | Zbl

[18] Guignard M. - Conditions d'optimalité en programmation mathématique dans un espace de Banach, C. R. Ac. Sc. 267 (1968) 5, 223-225. | MR | Zbl

[19] Guignard M. - Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space, IBM Data Proc. Div. Report 320-2920. SIAM J. on Control 7 . (1969) 232-241. | MR | Zbl

[20] Halkin H. - An abstract framework for the theory of process optimization, Bull. Amer. Math. Soc. 72 (1966) 677-678. | MR | Zbl

[21] Halkin H. - Nonlinear nonconvex programming in an infinite dimensional space, Mathematical Theory of Control, ed. A. V. Balakrishnan, Academic Press, New York, (1967) 10-25. | MR | Zbl

[22] Halkin H., Neustadt L.W. - General necessary conditions for optimization problems, Proc. Nat. Acad. Sci. USA 56 (1966) 1066-1071. | MR | Zbl

[23] Hanson M.A. - A duality theorem in nonlinear programming with nonlinear constraints, Austr. J. Stat. 3 (1961) 64-72. | MR | Zbl

[24] Huard P. - Dual programs, IBM J. Res. Dev. 6 (1962) 137-139. | Zbl

[25] Huard P. - Programme dual, Math. des Progr. Economiques, Monographies de Recherche operationnelle, 1, 13-17. | Zbl

[26] John F. - Extremum problems with inequalities as subsidiary conditions, Studies and Essays Interscience Pub. Inc., New York (1948) 187-204. | MR | Zbl

[27] Kakutani S. - A generalization of Brouwer fixed point theorem, Duke Math. 8 (1941) 418-457. | JFM | MR

[28] Kao R.C. - A note on Lagrangian multipliers, The Rand Corporation, (1963) P 2713-1.

[29] Kuhn, H.W., Tucker A.W. - Nonlinear programming, Proc, 2nd Berkeley Symposium University of California Press, Berkeley, (1951) 481-492. | MR | Zbl

[30] Mangasarian O. L. - Duality in nonlinear programming, Quart. Appl. Math. 20 (1962) 300-302. | MR | Zbl

[31] Mangasarian O. L., Fromovitz S. - The Fritz John necessary optimality conditions in the presence of equality and inequality constraints, J. Math. An. Appl. 17 (1967) 37-47 | MR | Zbl

[32] Mangasarian O. L. , Ponstein J. - Minimax and duality in nonlinear programming, J. Math. An. Appl. 11 (1965) 504-518. | MR | Zbl

[33] Mangasarian O. L. - Pseudo-convex functions, J. SIAM Control 3 (1965) 281-290. | MR | Zbl

[34] Mc Cormick G.P. - Second order conditions for constrained minima, SIAM J. Appl. Math. 15 (1967) 641-652 | MR | Zbl

[35] Neustadt L.W. - An abstract variational theory with applications to a broad class of optimization problems, Report of the Electronic Sciences Laboratory, University of Southern California, Los Angeles. | Zbl

[36] Pallu De La Barriere R. - Compléments à la théorie des multiplicateurs en programmation non linéaire, Revue française de Recherche opérationnelle, 27 (1963) 163-180.

[37] Phipps C.G. - Maxima and minima under restraint, Amer. Math. Monthly 59 (1952) 230-235. | MR | Zbl

[38] Ponstein J. - An extension of the min-max theorem, SIAM Review 7 (1965) 181-188. | MR | Zbl

[39] Pschenicheniy B.N. - Convex programming in a normed space, Kibernetika 5 (1965) 46-54. | Zbl

[40] Raffin C. - Programmation mathématique et dualité, Université de Poitiers, Séminaire de Statistiques et Econométrie (1966)

[41] Rice D. R., Thomas M.E. - Sufficiency conditions in nonlinear programming, College of Engineering, University of Florida (1967).

[42] Ritter K. - Duality for nonlinear programming in a Banach space, SIAM J. Appl. Math. 15 (1967) 294-302. | MR | Zbl

[43] Rubinov A.M. - Necessary conditions for an extreme value and their use in the study of certain equations, Soviet Math. Dokl. (trad. angl.) 7 (1966) 978-980. | Zbl

[44] Russel D. L. - The Kuhn-Tucker conditions in Banach space with an application to control theory, J. Math. An. Appl. 15 (1966) 200-212. | MR | Zbl

[45] Simmonard M. - Programmation linéaire, Dunod, Paris (1962). | Zbl

[46] Sion - Sur une généralisation du théorème du minimax, C. R. Ac. Sci. Paris 244 (1957) 2120

[47] Slater - Lagrange multipliers revisited, The Rand Corporation, (1951) RM 676

[48] Stoer J. - Duality in nonlinear programming and the minmax theorem, Num. Math. 5 (1963) 371-379. | MR | Zbl

[49] Uzawa H. - The Kuhn-Tucker theorem in concave programming, Studies in linear and nonlinear programming, Stanford University Press, 32-37.

[50] Vajda - Dans Nonlinear Programming, North Holland Pub. Amsterdam (1966).

[51] Varaiya P.P. - Nonlinear programming in Banach space, SIAM J. Appl. Math. 15 (1967) 284-293. | MR | Zbl

[52] Varaiya P. P. - Nonlinear programming and optimal control, ERL Technical Memorandum M-129, University of California, Berkeley (1965).

[53] Wilde D. J. - Differential calculus in nonlinear programming, Opns. Res. 10 (1962) 764-773. | MR | Zbl

[54] Whinston A. - Conjugate functions and dual programs, Nav. Res. Log. Quart. 12 (1965) 315-322. | MR | Zbl

[55] Wolfe P. - A duality theorem for nonlinear programming, The Rand Corporation, P 2028. | Zbl