[Approximation diophantienne sur les surfaces de Veech]
Nous montrons que les fractions continues generalisées
We show that Y. Cheung’s general
Keywords: translation surfaces, transcendence, diophantine approximation
Mot clés : surfaces de translation, transcendance, approximation diophantienne
@article{BSMF_2012__140_4_551_0, author = {Hubert, Pascal and Schmidt, Thomas A.}, title = {Diophantine approximation on {Veech} surfaces}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {551--568}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {140}, number = {4}, year = {2012}, doi = {10.24033/bsmf.2636}, mrnumber = {3059850}, language = {en}, url = {https://www.numdam.org/articles/10.24033/bsmf.2636/} }
TY - JOUR AU - Hubert, Pascal AU - Schmidt, Thomas A. TI - Diophantine approximation on Veech surfaces JO - Bulletin de la Société Mathématique de France PY - 2012 SP - 551 EP - 568 VL - 140 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2636/ DO - 10.24033/bsmf.2636 LA - en ID - BSMF_2012__140_4_551_0 ER -
%0 Journal Article %A Hubert, Pascal %A Schmidt, Thomas A. %T Diophantine approximation on Veech surfaces %J Bulletin de la Société Mathématique de France %D 2012 %P 551-568 %V 140 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2636/ %R 10.24033/bsmf.2636 %G en %F BSMF_2012__140_4_551_0
Hubert, Pascal; Schmidt, Thomas A. Diophantine approximation on Veech surfaces. Bulletin de la Société Mathématique de France, Tome 140 (2012) no. 4, pp. 551-568. doi : 10.24033/bsmf.2636. https://www.numdam.org/articles/10.24033/bsmf.2636/
[1] « Fractions continues sur les surfaces de Veech », J. Anal. Math. 81 (2000), p. 35-64. | MR | Zbl
& -[2] « Veech surfaces with nonperiodic directions in the trace field », J. Mod. Dyn. 3 (2009), p. 611-629. | MR | Zbl
& -[3] « An elementary introduction to modern convex geometry », in Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, Cambridge Univ. Press, 1997, p. 1-58. | MR | Zbl
-[4] Approximation by algebraic numbers, Cambridge Tracts in Mathematics, vol. 160, Cambridge Univ. Press, 2004. | MR | Zbl
-[5] « Transcendence with Rosen continued fractions », to appear in J. European Math. Soc. | MR
, & -[6] « Algebraically periodic translation surfaces », J. Mod. Dyn. 2 (2008), p. 209-248. | MR | Zbl
& -[7] « Hausdorff dimension of the set of singular pairs », Ann. of Math. 173 (2011), p. 127-167. | MR | Zbl
-[8] « Dichotomy for the Hausdorff dimension of the set of nonergodic directions », Invent. Math. 183 (2011), p. 337-383. | MR | Zbl
, & -[9] « Modular embeddings for some nonarithmetic Fuchsian groups », Acta Arith. 56 (1990), p. 93-110. | MR | Zbl
& -[10] « Moduli spaces of abelian differentials: the principal boundary, counting problems, and the Siegel-Veech constants », Publ. Math. I.H.É.S. 97 (2003), p. 61-179. | Numdam | MR | Zbl
, & -[11] « Affine mappings of translation surfaces: geometry and arithmetic », Duke Math. J. 103 (2000), p. 191-213. | MR | Zbl
& -[12] « Veech groups without parabolic elements », Duke Math. J. 133 (2006), p. 335-346. | MR | Zbl
& -[13] « Billiards on rational-angled triangles », Comment. Math. Helv. 75 (2000), p. 65-108. | MR | Zbl
& -[14] « Infinite sequence of fixed point free pseudo-Anosov homeomorphisms on a family of genus two surface », Contemporary Mathematics 532 (2010), p. 231-242. | MR | Zbl
-[15] Topics in number theory. Vols. 1 and 2, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1956. | MR | Zbl
-[16] The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Math., vol. 219, Springer, 2003. | MR | Zbl
& -[17] « The cohomological equation for Roth-type interval exchange maps », J. Amer. Math. Soc. 18 (2005), p. 823-872. | MR | Zbl
, & -[18] « Rational billiards and flat structures », in Handbook of dynamical systems, Vol. 1A, North-Holland, 2002, p. 1015-1089. | MR | Zbl
& -[19] « Billiards and Teichmüller curves on Hilbert modular surfaces », J. Amer. Math. Soc. 16 (2003), p. 857-885. | MR | Zbl
-[20] « Variations of Hodge structures of a Teichmüller curve », J. Amer. Math. Soc. 19 (2006), p. 327-344. | MR | Zbl
-[21] « A class of continued fractions associated with certain properly discontinuous groups », Duke Math. J. 21 (1954), p. 549-563. | MR | Zbl
-[22] « Rational approximations to algebraic numbers », Mathematika 2 (1955), p. 1-20; corrigendum, 168. | MR | Zbl
-[23] « Semi-arithmetic Fuchsian groups and modular embeddings », J. London Math. Soc. 61 (2000), p. 13-24. | MR | Zbl
& -[24] « Geodesic flow on the Teichmüller disk of the regular octagon, cutting sequences and octagon continued fractions maps », in Dynamical numbers - interplay between dynamical systems and number theory, Contemp. Math., 2010, p. 29-65. | MR | Zbl
& -[25] -, « Beyond Sturmian sequences: coding linear trajectories in the regular octagon », Proc. Lond. Math. Soc. 102 (2011), p. 291-340. | MR | Zbl
[26] « On the geometry and dynamics of diffeomorphisms of surfaces », Bull. Amer. Math. Soc. (N.S.) 19 (1988), p. 417-431. | MR | Zbl
-[27] « Gauss measures for transformations on the space of interval exchange maps », Ann. of Math. 115 (1982), p. 201-242. | MR | Zbl
-[28] -, « Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards », Invent. Math. 97 (1989), p. 553-583. | MR | Zbl
[29] « Plane structures and billiards in rational polygons: the Veech alternative », Uspekhi Mat. Nauk 51 (1996), p. 3-42. | MR | Zbl
-[30] Diophantine approximation on linear algebraic groups, Grund. Math. Wiss., vol. 326, Springer, 2000. | MR | Zbl
-[31] « Flat surfaces », in Frontiers in number theory, physics, and geometry. I, Springer, 2006, p. 437-583. | MR | Zbl
-Cité par Sources :