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Abstract. — Let Σ be a compact connected oriented surface with one boundary
component, and let π be the fundamental group of Σ. The Johnson filtration is a
decreasing sequence of subgroups of the Torelli group of Σ, whose k-th term consists
of the self-homeomorphisms of Σ that act trivially at the level of the k-th nilpotent
quotient of π. Morita defined a homomorphism from the k-th term of the Johnson
filtration to the third homology group of the k-th nilpotent quotient of π.

In this paper, we replace groups by their Malcev Lie algebras and we study the
“infinitesimal” version of the k-th Morita homomorphism, which is shown to corre-
spond to the original version by a canonical isomorphism. We provide a diagrammatic
description of the k-th infinitesimal Morita homomorphism and, given an expansion of
the free group π that is “symplectic” in some sense, we show how to compute it from
Kawazumi’s “total Johnson map”.

Besides, we give a topological interpretation of the full tree-reduction of the LMO
homomorphism, which is a diagrammatic representation of the Torelli group derived
from the Le–Murakami–Ohtsuki invariant of 3-manifolds. More precisely, a symplectic
expansion of π is constructed from the LMO invariant, and it is shown that the tree-
level of the LMO homomorphism is equivalent to the total Johnson map induced
by this specific expansion. It follows that the k-th infinitesimal Morita homomorphism
coincides with the degree [k, 2k[ part of the tree-reduction of the LMO homomorphism.
Our results also apply to the monoid of homology cylinders over Σ.
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102 G. MASSUYEAU

Résumé (Homomorphismes de Morita infinitésimaux et réduction arborée de
l’invariant LMO)

Soit Σ une surface compacte orientée avec une composante de bord, et soit π le
groupe fondamental de Σ. La filtration de Johnson est une suite décroissante de sous-
groupes du groupe de Torelli de Σ, dont le k-ième terme est constitué de tous les
homéomorphismes de Σ agissant trivialement au niveau du k-ième quotient nilpotent
de π. Morita a défini un homomorphisme du k-ième terme de la filtration de Johnson
vers le troisième groupe d’homologie du k-ième quotient nilpotent de π.

Dans cet article, nous remplaçons les groupes par leurs algèbres de Lie de Malcev
et nous étudions une version « infinitésimale » du k-ième homomorphisme de Morita,
que nous montrons être équivalente à la version originale par un isomorphisme cano-
nique. Nous apportons une description diagrammatique du k-ième homomorphisme
de Morita infinitésimal et, étant donné un développement du groupe libre π qui est
« symplectique » en un sens, nous montrons comment cet homomorphisme peut être
calculé à partir de l’« application de Johnson totale » introduite par Kawazumi.

En outre, nous donnons une interprétation topologique de toute la réduction arbo-
rée de l’homomorphisme LMO, qui est une représentation diagrammatique du groupe
de Torelli obtenue de l’invariant de Le–Murakami–Ohtsuki des variétés de dimension
trois. Plus précisément, un développement symplectique de π est construit à partir de
l’invariant LMO, et nous montrons que la réduction arborée de l’homomorphisme LMO
est équivalente à l’application de Johnson totale correspondant à ce développement.
Il en découle que le k-ième homomorphisme de Morita coïncide avec la troncation en
degré [k, 2k[ de la réduction arborée de l’homomorphisme LMO. Nos résultats s’ap-
pliquent aussi au monoïde des cylindres d’homologie sur Σ.

Introduction

Nilpotent homotopy types of 3-manifolds have been introduced by Turaev
[42]. They are defined by elementary tools from algebraic topology as follows.
We fix an integer k ≥ 1 and an abstract group G of nilpotency class k, which
means that commutators of length (k + 1) are trivial in G. Let M be a closed
connected oriented 3-manifold, whose k-th nilpotent quotient of the fundamen-
tal group is parametrized by the group G:

ψ : G
�−→ π1(M)/Γk+1π1(M).

Then, the k-th nilpotent homotopy type of the pair (M, ψ) is the homology class

µk(M,ψ) := f
ψ

∗ ([M ]) ∈ H3(G; Z)

where f
ψ : M → K(G, 1) induces the composition

π1(M) → π1(M)/Γk+1π1(M)
ψ
−1

→ G

at the level of fundamental groups. For example, for k = 1, we are considering
the abelian homotopy type of 3-manifolds which, by the work of Cochran, Gerges
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MORITA HOMOMORPHISMS AND THE TREE-LEVEL OF THE LMO INVARIANT 103

and Orr [8], is very well understood: µ1(M, ψ) determines the cohomology ring
of M together with its linking pairing, and vice versa.

As suggested to the author by Turaev, one way to study the invariant µk

for higher k is to study its behaviour under surgery. This method particularly
applies if one wishes to understand nilpotent homotopy types from the point
of view of finite-type invariants, which was our initial motivation. Note that,
to compare the k-th nilpotent homotopy type of a manifold after surgery with
that of the manifold before surgery, we can only admit surgeries that preserve
the k-th nilpotent quotient of the fundamental group (up to isomorphism). The
following type of surgery is admissible in that sense. We consider a compact
connected oriented surface S ⊂ M with one boundary component, and a home-
omorphism s : S → S whose restriction to ∂S is the identity and which acts
trivially at the level of π1(S)/Γk+1π1(S). Then, we can “twist” M along S by
s to obtain the new manifold

MS := (M \ int(S × [−1, 1])) ∪(s×1)∪(Id×(−1)) S × [−1, 1].

The Seifert–Van Kampen theorem shows the existence of a canonical isomor-
phism

π1(M)/Γk+1π1(M)
�−→ π1(MS)/Γk+1π1(MS)

which is defined by the following commutative diagram:

π1(M\int(S×[−1,1]))

Γk+1π1(M\int(S×[−1,1]))

���� �� ��
π1(M)

Γk+1π1(M) �
∃! �� π1(MS)

Γk+1π1(MS)
.

By composing it with ψ, we obtain a parametrization

ψS : G
�−→ π1(MS)/Γk+1π1(MS)

of the k-th nilpotent quotient of π1(MS). In order to compare µk(M,ψ) with
µk(MS , ψS), we consider the mapping torus of s

t(s) := (S × [−1, 1] /∼) ∪
�
S

1 ×D
2
�
.

Here, the equivalence relation ∼ identifies s(x) × 1 with x × (−1), and the
meridian 1×∂D

2 of the solid torus S
1×D

2 is glued along the circle ∗×[−1, 1] /∼
(where ∗ ∈ ∂S) while the longitude S

1 × 1 is glued along ∂S × 1. We note
that t(s) is a closed connected oriented 3-manifold, and that the inclusion
S = S × 1 ⊂ t(s) defines an isomorphism

ϕs : π1(S)/Γk+1π1(S)
�−→ π1(t(s))/Γk+1π1(t(s)).
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104 G. MASSUYEAU

Besides, the inclusion S ⊂ M defines a homomorphism

i : π1(S)/Γk+1π1(S) −→ π1(M)/Γk+1π1(M).

Then, µk varies as follows(1) under the surgery M � MS :

(0.1) µk(MS , ψS)− µk(M, ψ) = ψ
−1

∗ i∗
�
µk(t(s), ϕs)

�
∈ H3(G; Z).

This variation formula suggests the following construction, relative to a com-
pact connected oriented surface Σ with one boundary component. Let I (Σ) be
the Torelli group of Σ and let π := π1(Σ, ∗) be the fundamental group of Σ,
where ∗ ∈ ∂Σ. Let

I (Σ) = I (Σ)[1] ⊃ I (Σ)[2] ⊃ I (Σ)[3] ⊃ · · ·

be the Johnson filtration of I (Σ), whose k-th subgroup I (Σ)[k] consists of (the
isotopy classes of) the homeomorphisms s : Σ → Σ that act trivially at the level
of π/Γk+1π. The previous discussion shows that the map

Mk : I (Σ)[k] −→ H3 (π/Γk+1π; Z) , s �−→ µk(t(s), ϕs)

plays a crucial role in the study of nilpotent homotopy types, and formula (0.1)
shows that it is a group homomorphism. The homomorphism Mk has been
studied by Heap in [17]. By considering the simplicial model of K (π/Γk+1π, 1),
he proves that Mk is equal to Morita’s refinement of the k-th Johnson homo-
morphism, whose definition is purely algebraic and involves the bar complex
of a group [32]. Thus, in the sequel, we will refer to Mk as the k-th Morita
homomorphism.

Since Lie algebra homology is simpler than group homology, one would like to
replace the group π/Γk+1π by its Malcev Lie algebra m(π/Γk+1π) in the above
discussion. Thus, one defines a Lie analogue of the k-th Morita homomorphism

mk : I (Σ)[k] −→ H3

�
m (π/Γk+1π) ; Q

�

by imitating Morita’s original definition of Mk [32], the bar complex of a group
being simply replaced by the Koszul complex of its Malcev Lie algebra. The ho-
momorphism mk and, in particular its relationship with the theory of finite-type
invariants, is the main subject of this paper whose contents we now describe.

First of all, let us recall that the Lie algebra m (π/Γk+1π) is free nilpotent of
class k. More precisely, if we set H := H1(Σ; Q) and if we denote by L(H) the
free Lie algebra generated by H, then we have a (non-canonical) isomorphism

(0.2) L(H)/Γk+1L(H) � m (π/Γk+1π) .

(1) This can be proved by a simple homological computation in a singular 3-manifold that
contains the three of M , MS and t(s). Similar formulas are shown in [11, Theorem 2] and
[17, Theorem 5.2] by cobordism arguments.
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MORITA HOMOMORPHISMS AND THE TREE-LEVEL OF THE LMO INVARIANT 105

In §1, we start by describing the third homology group of a free nilpotent Lie
algebra in terms of Jacobi diagrams, which are commonly encountered in the
theory of finite-type invariants [33]. To be more explicit, let

T (H) =
+∞�

d=1

T d(H)

be the graded vector space of Jacobi diagrams that are tree-shaped, connected,
H-colored, and subject to the usual AS, IHX and multilinearity relations. The
internal degree d ≥ 1 of such a diagram is the number of trivalent vertices. We
define an explicit linear map

Φ :
2k−1�

d=k

T d(H) −→ H3

Å
L(H)

Γk+1L(H)
; Q

ã

and, thanks to prior computations of Igusa and Orr [18], we show that the map
Φ is an isomorphism (Theorem 1.5).

Next, §2 is mainly expositional and deals with expansions of the free group
π. These are generalizations of the classical “Magnus expansion” of π and,
essentially, they are algebra isomorphisms

(0.3) “Q[π] � �T(H)

between the I-adic completion of the group algebra of π and the complete tensor
algebra over H. Expansions have been studied by Lin in the context of Vassiliev
invariants and Milnor’s µ invariants [30], and by Kawazumi in connection with
Johnson homomorphisms and the cohomology of mapping class groups [22]. If
the identification (0.3) is required to be a Hopf algebra isomorphism, then the
expansion is said to be group-like and it induces a Lie algebra isomorphism

(0.4) m(π) � �L(H)

between the Malcev Lie algebra of π and the complete Lie algebra over H.
Then, each group-like expansion induces an isomorphism (0.2) for all k ≥ 1.
We also introduce symplectic expansions which relate the boundary of Σ to the
symplectic form of H defined by the intersection pairing.

In §3, we review Johnson homomorphisms and the “total Johnson map”
defined by Kawazumi in [22]. This is a way of encoding the Dehn–Nielsen
representation of the Torelli group

ρ : I (Σ) −→ Aut(π), h �−→ h∗

which depends on the choice of a group-like expansion θ. More precisely, by
passing to the Malcev Lie algebra of π and by using the identification (0.4)
induced by θ, ρ translates into a group homomorphism

�
θ : I (Σ) −→ Aut(�L(H)).
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106 G. MASSUYEAU

Since h acts trivially in homology, there is no loss of information in defining

τ
θ(h) := �

θ(h)|H − IdH ∈ Hom(H, �L≥2(H))

where �L≥2(H) denotes the degree ≥ 2 part of �L(H). Then, the total Johnson
map relative to θ is the map

τ
θ : I (Σ) −→ Hom(H, �L≥2(H)) � H

∗ ⊗ �L≥2(H)
Poincaré� H ⊗ �L≥2(H).

By degree truncation and by restriction, one obtains a map

τ
θ

[k,2k[
: I (Σ)[k] −→

2k−1�

d=k

H ⊗ Ld+1(H)

whose degree k part I (Σ)[k] → H ⊗ Lk+1(H) is the k-th Johnson homomor-
phism [22]. We observe two properties for this restriction of the total Johnson
map. First, τ

θ

[k,2k[
is a group homomorphism (Proposition 3.7). Second, the

values of τ
θ

[k,2k[
can be expressed in terms of Jacobi diagrams, provided the

expansion θ is symplectic (Proposition 3.8):

I (Σ)[k]
τ

θ
[k,2k[ ��

��

2k−1�

d=k

H ⊗ Ld+1(H)

2k−1�

d=k

T d(H)

��
η

��

Here, η is the usual map that gives rise to diagrammatic descriptions of Milnor’s
µ invariants [15] and Johnson homomorphisms [11].

The infinitesimal versions of Morita’s homomorphisms are introduced and
studied in §4. As already evoked, the precise definition of mk is obtained from
the original definition of Mk [32] by replacing each bar complex of a group by
the Koszul complex of its Malcev Lie algebra. A similar passing from groups
to Malcev Lie algebras already appears in Day’s work [9], where Mk (with real
coefficients) is extended to a crossed homomorphism on the full mapping class
group of Σ. Whereas his construction uses methods of differential topology,
our definition of mk is purely algebraic. Yet, the two approaches should be
connected since Pickel’s isomorphism [35]

P : H3 (π/Γk+1π; Q)
�−→ H3

�
m(π/Γk+1π); Q

�

connects Mk (with rational coefficients) to mk, as shown in Proposition 4.3.
The main result of §4 is Theorem 4.4, which asserts that mk coincides (up to
a sign) with the degree [k, 2k[ truncation of Kawazumi’s total Johnson map
τ

θ relative to a symplectic expansion θ. This relation between mk and τ
θ

[k,2k[
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needs their diagrammatic descriptions, which are given by the maps Φ and
η respectively. Then, we recover two properties for Mk by proving them for
mk: first, Mk determines the k-th Johnson homomorphism [32] and, second, its
kernel coincides with the 2k-th term of the Johnson filtration [17].

In §5, we come back to our initial motivation which was connecting nilpotent
homotopy types of 3-manifolds to their finite-type invariants. Let us recall
that Le, Murakami and Ohtsuki have constructed in [27] a universal finite-type
invariant of homology 3-spheres. More recently, the LMO invariant has been
extended by Cheptea, Habiro and the author to a functor �Z from a category of
cobordisms to a category of diagrams [7]. In particular, the functor �Z defines
a monoid homomorphism whose source is the Torelli group and whose target
is a certain algebra of Jacobi diagrams. This diagrammatic representation of
the Torelli group is called the LMO homomorphism. The main result of §5 is
a topological interpretation of its tree-reduction, which is obtained by killing
all Jacobi diagrams that are looped. More precisely, we start by showing that
the functor �Z defines a symplectic expansion of π, which we denote by θ

�Z .
Then, we show that the total Johnson map relative to θ

�Z is determined by
the tree-reduction of the LMO homomorphism (Theorem 5.8) and vice versa
(Theorem 5.13). Theorem 5.8 is inspired by the “global formula” of Habegger
and Masbaum giving all Milnor’s µ invariants of a pure braid from the tree-
reduction of its Kontsevich integral [15]. Finally, we conclude that the degree
[k, 2k[ part of the tree-reduction of the LMO homomorphism coincides with mk

through the isomorphisms
2k−1�

d=k

T d(H)
Φ� H3

Å
L(H)

Γk+1L(H)
; Q

ã
θ
�Z
� H3

�
m(π/Γk+1π); Q

�
.

Consequently Mk splits as a sum of k finite-type invariants, whose degrees range
from k to 2k− 1. In the lowest degree, this decomposition of Mk interprets the
k-th Johnson homomorphism as a finite-type invariant of degree k which is
already known [16, 11, 14].

To close this introduction, let us recall that the Torelli group of Σ embeds
into the monoid I C(Σ) of homology cylinders over Σ. Here a homology cylinder
over Σ is a compact oriented 3-manifold C, whose boundary is parametrized
by an orientation-preserving homeomorphism c : ∂(Σ × [−1, 1]) → ∂C in such
a way that (C, c) has the same homology type as (Σ × [−1, 1], Id). Homology
cylinders play a key role in the works of Goussarov and Habiro on finite-type
invariants [12, 16]. All the constructions that we have previously mentioned for
the group I (Σ) can be extended to the monoid I C(Σ). For example, Sakasai
considers Morita’s homomorphisms for homology cylinders in [39]. Our results
are proved in this general framework.
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Conventions. — In the sequel, all vector spaces, Lie algebras, homology groups,
etc. are considered with rational coefficients. Equivalence classes are always
denoted by curly brackets {−}, except for homology classes which are denoted
by straight brackets [−]. The lower central series of a group G (respectively of
a Lie algebra g) is denoted by

G = Γ1G ⊃ Γ2G ⊃ Γ3G ⊃ · · · (respectively g = Γ1g ⊃ Γ2g ⊃ Γ3g ⊃ · · · ),

and our notation for commutators in G is [x, y] := xyx−1y−1.

1. The third homology group of a free nilpotent Lie algebra

We define in this section, for each nilpotent Lie algebra g, a linear map
from a space of tree-shaped g-colored Jacobi diagrams to H3(g). When g is free
nilpotent and finite-dimensional, we deduce from the computation of H3(g) by
Igusa and Orr [18] that our diagrammatic map is an isomorphism.

1.1. The fission map. — Let V be a vector space. A Jacobi diagram is a unitriva-
lent finite graph whose trivalent vertices are oriented (i.e. edges are cyclically
ordered around each trivalent vertex). The internal degree of such a diagram
is the number of trivalent vertices, and is denoted by i-deg. A Jacobi diagram
is said to be V -colored if it comes with a map from the set of its univalent
vertices to V . For example,

v1

v2
v3 v4

v5
(with v1, . . . , v5 ∈ V )

is a V -colored Jacobi diagram of internal degree 3 where, by convention, vertex
orientations are given by the trigonometric orientation of the plan. Let

T (V ) =
+∞�

d=1

T d(V )

be the graded vector space of Jacobi diagrams which are tree-shaped, connected
and V -colored, modulo the AS, IHX and multilinearity relations:

AS IHX multinearity

= − − + = 0 +=

v1 + v2 v1 v2
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MORITA HOMOMORPHISMS AND THE TREE-LEVEL OF THE LMO INVARIANT 109

In the sequel, we assume that V is a Lie algebra g.
Let T be a connected tree-shaped g-colored Jacobi diagram. For each triva-

lent vertex r, T can be seen as the union of three trees “rooted” at r, which
are denoted by T

(1)

r , T
(2)

r and T
(3)

r so that the numbering 1, 2, 3 gives the
vertex-orientation around r. Any connected tree-shaped Jacobi diagram A, all
of whose univalent vertices are g-colored apart from one which is denoted by
r, defines an element comm(A) of g. For example, we have

(1.1) comm

�
g1 g2 g3 g4

r

�
= [g1, [[g2, g3], g4]].

Then, the fission of T is defined by

(1.2) φ(T ) :=
�

r

comm(T (3)

r
) ∧ comm(T (2)

r
) ∧ comm(T (1)

r
) ∈ Λ3g,

where the sum is indexed by the trivalent vertices r of T . For example, we have

φ

�

g1

g2
g3 g4

g5

�
= g1 ∧ g2 ∧ [g3, [g4, g5]] + g3 ∧ [g4, g5] ∧ [g1, g2] + g5 ∧ [[g1, g2], g3] ∧ g4.

We recall that the Koszul complex of g (with trivial coefficients) is the chain
complex (Λg, ∂) whose boundary operator ∂n : Λng→ Λn−1g is defined by

∂n(g1 ∧ · · · ∧ gn) =
�

i<j

(−1)i+j · [gi, gj ] ∧ g1 ∧ · · ·“gi · · ·“gj · · · ∧ gn.

Its homology gives the homology of the Lie algebra g (with trivial coefficients).

Lemma 1.1. — Fission of tree diagrams induces a linear map

Φ : T (g) −→ Λ3g/ Im(∂4).

Proof. — The fission map φ can be extended by linearity to linear combinations
of Jacobi diagrams. Then, the map φ vanishes on the AS relations by the
antisymmetry of the Lie bracket of g and by the antisymmetry in Λ3g. A
similar argument applies to the multilinearity relations. Next, a straightforward
computation shows that

φ

Ñ

g

h k

l g

h k

l g

h k

l

− +

é
= ∂4(g ∧ h ∧ k ∧ l).
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110 G. MASSUYEAU

It follows from this identity and the Jacobi relation in g, that φ sends the IHX
relations to the subspace Im(∂4) of Λ3g. So, the map φ induces a linear map
Φ : T (g) → Λ3g/ Im(∂4).

Lemma 1.2. — Let T be a connected tree-shaped g-colored Jacobi diagram.
Then, we have

∂3(φ(T )) =
�

v

col(v) ∧ comm(Tv) ∈ Λ2g

where the sum is over all univalent vertices v of T with color col(v), and where
Tv is the tree T “rooted” at v.

Proof. — We proceed by induction on the internal degree d of T . If d = 1, then
T is a Y -shaped diagram whose univalent vertices are denoted by v1, v2, v3 in
accordance with the cyclic order:

∂3(φ(T ))

= ∂3(col(v3) ∧ col(v2) ∧ col(v1))

= −[col(v3), col(v2)] ∧ col(v1) + [col(v3), col(v1)] ∧ col(v2)

−[col(v2), col(v1)] ∧ col(v3)

= col(v1) ∧ comm(Tv1) + col(v2) ∧ comm(Tv2) + col(v3) ∧ comm(Tv3).

Assume now that T has internal degree d + 1, and let r be a trivalent vertex
of T which is adjacent to two univalent vertices. Then, T is the union of a tree
A “rooted” at r with two “radicals” colored by g and h respectively:

T = A
r

g

h

We denote by A
� the g-colored Jacobi diagram obtained from A by coloring its

root r with [g, h]. Then, we have

∂3 (φ(T )) = ∂3 (Φ(A�) + g ∧ h ∧ comm(A))

=
�

a�=r

col(a) ∧ comm(A�
a
) + [g, h] ∧ comm(A) +

(−[g, h] ∧ comm(A) + [g, comm(A)] ∧ h− [h, comm(A)] ∧ g)

=
�

a�=r

col(a) ∧ comm(A�
a
) + g ∧ [h, comm(A)] + h ∧ [comm(A), g],

where the sums range over all univalent vertices a �= r of the tree A. This proves
the inductive step.

tome 140 – 2012 – no 1



MORITA HOMOMORPHISMS AND THE TREE-LEVEL OF THE LMO INVARIANT 111

Proposition 1.3. — Assume that the Lie algebra g is nilpotent of class k, i.e.
Γk+1g = {0}. Then, the map Φ restricts to a linear map

Φ :
+∞�

d=k

T d(g) −→ H3(g).

Moreover, this map is trivial in degree d ≥ 2k.

Proof. — Let T be a connected g-colored tree-shaped Jacobi diagram of inter-
nal degree d. Then, for each univalent vertex v of T , the rooted tree Tv has
d + 1 leaves, so that the length of the commutator comm(Td) is (d + 1). So,
Lemma 1.2 implies that φ(T ) is a 3-cycle if d ≥ k.

Assume now that d ≥ 2k. By the IHX relation, we can assume that each
trivalent vertex r of T is adjacent to, at least, one univalent vertex. Let T

(1)

r ,
T

(2)

r and T
(3)

r be the three subtrees of T rooted at r. There exists j ∈ {1, 2, 3}
such that T

(j)

r has at least k trivalent vertices, so that comm(T (j)

r ) belongs to
Γk+1g = {0}. Then, formula (1.2) shows that the 3-chain φ(T ) is trivial.

1.2. The case of a free nilpotent Lie algebra. — Let H be a finite-dimensional
vector space, and let L(H) be the free Lie algebra generated by H. The length
of commutators defines a grading on L(H):

L(H) =
+∞�

k=1

Lk(H).

To simplify the notation, we will often write L instead of L(H). Since L≥k+1

coincides with Γk+1L, the Lie algebra L/L≥k+1 is the free nilpotent Lie alge-
bra generated by H of nilpotency class k. Being graded, its Koszul complex
Λ(L/L≥k+1) has a grading, and so has its homology:

H∗ (L/L≥k+1) =
+∞�

d=1

H∗ (L/L≥k+1)d
.

Those homology groups can be computed for low homological degrees as follows.
First of all, the isomorphism

H
�−→ H1 (L/L≥k+1) , h �−→ [{h}]

shows that H1 (L/L≥k+1) is concentrated in degree 1. Next, by Hopf’s theorem,
we have an isomorphism

(1.3) Lk+1

�−→ H2 (L/L≥k+1) , [a, b] �−→ [{a} ∧ {b}]

where a and b belong to Li and Lj , respectively, for some i, j such that i + j =
k + 1. Thus, H2 (L/L≥k+1) is concentrated in degree k + 1.
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The computation of H3 (L/L≥k+1) is done by Igusa and Orr in [18, §5].
They apply the Hochschild–Serre spectral sequence to the central extension of
graded Lie algebras

(1.4) 0 → Lk → L/L≥k+1 → L/L≥k → 1,

which gives

(1.5) E
r

p,q

r→+∞−→ Hp+q(L/L≥k+1) where E
2

p,q
� Hp (L/L≥k)⊗ ΛqLk.

Their result can be summarized as follows in terms of the kernel of the bracket
map

Dk(H) := Ker ([−,−] : H ⊗ Lk−1(H) −→ Lk(H)) ,

which we also simply denote by Dk.

Theorem 1.4 (Igusa–Orr). — There is an isomorphism of graded vector
spaces

IO : H3(L/L≥k+1)
�−→

2k+1�

d=k+2

Dd

such that, for all m ≥ k, the diagram

H3(L/L≥m+1)
IO

�
��

canonical

��

�2m+1

d=m+2
Dd

canonical

��

H3(L/L≥k+1)
IO

� ���2k+1

d=k+2
Dd

commutes, and such that the composition

H3(L/L≥k)
canonical �� �� H3(L/L≥k)k+1

IOk+1

�
�� Dk+1 ⊂ H ⊗ Lk

coincides with the differential d
2
3,0 : E

2
3,0 → E

2
1,1 of the spectral sequence (1.5).

Let us recall that the space Dk can be described in terms of tree diagrams,
which leads to diagrammatic descriptions for Milnor’s µ invariants of string
links [15] or, similarly, for Johnson homomorphisms of homology cylinders [11].
Indeed, there is a linear map

ηk : T k(H)
�−→ Dk+2(H) ⊂ H ⊗ Lk+1(H)

defined, for all connected tree-shaped H-colored Jacobi diagrams T , by

(1.6) ηk(T ) :=
�

v

col(v)⊗ comm(Tv)

where the sum is over all univalent vertices v of T . See [28] for more de-
tails. Thus, one can expect from Theorem 1.4 a diagrammatic description of
H3(L/L≥k+1), and this is achieved by the fission map.
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Theorem 1.5. — Fission of tree diagrams defines a linear isomorphism

Φ :
2k−1�

d=k

T d(H)
�−→ H3(L/L≥k+1)

which shifts the degree by +2.

Proof. — Since T (H) embeds into T (L/L≥k+1), we can take the map Φ given
by Proposition 1.3. It shifts the degree by +2 because a connected tree-shaped
Jacobi diagram of internal degree d has d + 2 univalent vertices.

Claim 1.6. — For all m ≥ 1, the following diagram commutes

T m(H)
Φm ��

ηm

�

��

H3(L/L≥m+1)m+2

IOm+2�
��

Dm+2

It follows from Claim 1.6 that the map Φ is an isomorphism in the lowest
degree. Then, for all d = k, . . . , 2k − 1, the commutative diagram

H3(L/L≥k+1)d+2 H3(L/L≥k+2)d+2
�� · · ·�� H3(L/L≥d+1)d+2,

��

T d(H)

Φd

��

Φd

��

Φd

�

��

(whose horizontal maps are isomorphisms by Theorem 1.4) shows that the map
Φ is bijective in degree d. Thus, it is enough to prove Claim 1.6, i.e. to check
the commutativity of the diagram

(1.7) T m(H)
Φm ��

ηm
��

H3(L/L≥m+1)

d
2
3,0

��
H ⊗ Lm+1.

For this, we recall that the Hochschild–Serre spectral sequence associated to
a central extension of Lie algebras

0 → h→ g→ g/h→ 1

is the spectral sequence associated to the chain complex C := (Λg, ∂) filtered
by

Cn = F nCn ⊃ F n−1Cn ⊃ · · · ⊃ F 0Cn ⊃ F −1Cn = {0}
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where

F pCn := Im
Ä
h⊗(n−p) ⊗ g⊗p → g⊗n → Λng

ä
⊂ Λng = Cn.

At the second stage of this spectral sequence, we have

E
2

p,q
=

F pCp+q ∩ d
−1( F p−2Cp+q−1)

F pCp+q ∩ d( F p+1Cp+q+1) + F p−1Cp+q ∩ d−1( F p−2Cp+q−1)
,

the differential d
2
pq

: E
2
p,q

→ E
2
p−2,q+1 is induced by the boundary operator

∂p+q of C and there is an isomorphism

Hp(g/h)⊗ Λqh
�−→ E

2

p,q

defined by [{x}] ⊗ y �→ {x ∧ y} for all y ∈ Λqh and for all x ∈ Λpg such that
∂p(x) ≡ 0 modulo h.

We now take g := L/L≥m+2, h := Lm+1, p = 3 and q = 0. Let T be
a tree-shaped connected H-colored Jacobi diagram of internal degree m. Let
φ(T ) ∈ Λ3L be the 3-chain for the free Lie algebra L obtained from T by fission.
Then, we have

Φm(T ) = [{φ(T )}] ∈ H3(L/L≥m+1)

where the inner {−} denotes the reduction Λ3L → Λ3(L/L≥m+1). Therefore
d
2
3,0Φm(T ) ∈ E

2
1,1 is the class of ∂3φ(T ) ∈ Λ2L, for which Lemma 1.2 gives an

explicit formula. By comparing this formula with the definition (1.6) of ηm, we
see that d

2
3,0Φm(T ) ∈ E

2
1,1 � H ⊗ Lm+1 coincides with ηm(T ).

Remark 1.7. — Let H be a finitely-generated free Z-module, and let L(H)
be the free Lie ring generated by H. Igusa and Orr’s result (Theorem 1.4) is
also valid for integer coefficients [18] and, besides, the map

Φ :
2k−1�

d=k

T d(H)
�−→ H3(L(H)/L≥k+1(H)),

is defined with integer coefficients as well. However, Φ is not bijective since η

is not(2) an isomorphism over Z.

2. Expansions of the free group

In this section, we review expansions of the free group [30, 22] and we focus
on “group-like” expansions which are, essentially, identifications between the
Malcev Lie algebra of the free group and the complete free Lie algebra. Finally,
we introduce “symplectic” expansions of the fundamental group of a compact
connected oriented surface, with one boundary component.

(2) According to Levine [28, 29], η2k is not surjective and η2k+1 is not injective.
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2.1. Review of the Malcev Lie algebra of a group. — Let G be a group. As shown
by Jennings [19] and Quillen [38], the Malcev completion and the Malcev Lie
algebra of G can be constructed from its group algebra Q[G]. The reader is
referred to [38] for full details of their construction, which is only outlined
below. We denote by I the augmentation ideal of Q[G]. The I-adic completion
of Q[G]

“Q[G] := lim←−
k

Q[G]/I
k

equipped with the filtration

“Ij := lim←−
k≥j

I
j
/I

k
, ∀j ≥ 0

is a complete Hopf algebra in the sense of Quillen [38]. Let “∆ be the coproduct.

Definition 2.1. — The Malcev completion of G is the group of group-like
elements of the complete Hopf algebra “Q[G]

M(G) := GLike(“Q[G]) =
¶
x ∈ “Q[G] : “∆(x) = x“⊗x, x �= 0

©

equipped with the filtration

�ΓjM(G) := M(G) ∩
Ä
1 + “Ij

ä
, ∀j ≥ 1.

The Malcev Lie algebra of G is the Lie algebra of primitive elements of “Q[G]

m(G) := Prim(“Q[G]) =
¶
x ∈ “Q[G] : “∆(x) = x“⊗1 + 1“⊗x

©

equipped with the filtration

�Γjm(G) := m(G) ∩ “Ij , ∀j ≥ 1.

Remark 2.2. — Our notation for the filtration of m(G) is justified by the fact
that, for all j ≥ 1, the j-th term of this filtration is the closure of Γjm(G) for
the topology that it defines. A similar remark applies to M(G).

The Malcev completion and the Malcev Lie algebra of a group G are equiv-
alent objects derived from G. Indeed, as a general fact in a complete Hopf
algebra, the primitive and the group-like elements are in one-to-one correspon-
dence via the exponential and logarithmic series:

M(G) ⊂ 1 + �I
log

−→←−
exp

�I ⊃ m(G).
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The inclusion G ⊂ Q[G] induces a canonical map ι : G −→ M(G). It is injective
if and only if G is residually torsion-free nilpotent or, equivalently, if and only
if the rational lower central series of G has a trivial intersection:

�

k≥1

�
g ∈ G : ∃n ≥ 1, gn ∈ ΓkG

�
= {1}.

In such a case, we will omit the map ι to simplify notations. For example, free
groups and free nilpotent groups are residually torsion-free nilpotent.

Classically, the “Malcev completion” of a nilpotent group N refers to its
uniquely-divisible closure. It has been proved by Jennings in the finitely gener-
ated case [19] and by Quillen in general [38] that M(N) is a realization of this
closure. To be more specific, let us recall that a uniquely-divisible closure of a
nilpotent group N is a pair (D, i), where

� D is nilpotent and is uniquely-divisible: ∀y ∈ D,∀k ≥ 1,∃!x ∈ D, xk = y,
� i : N → D is a group homomorphism whose kernel is the torsion subgroup

of N ,
� ∀x ∈ D,∃k ≥ 1, xk ∈ i(N).

Malcev proved that the uniquely-divisible closure of a nilpotent group N always
exists and is essentially unique. (See [21] for instance.) It is usually denoted by
N ⊗Q.

Theorem 2.3 (Jennings, Quillen). — The canonical map ι : G → M(G) in-
duces a group isomorphism

ι : lim←−
k

((G/ΓkG)⊗Q)
�−→ M(G).

The Malcev Lie algebra of a group G being canonically filtered, there is a
graded Lie algebra Grm(G) associated to it. This graded Lie algebra has been
identified by Quillen.

Theorem 2.4 (Quillen). — The map log ι : G → m(G) preserves the filtra-
tions (G being filtered by the lower central series), and it induces a graded Lie
algebra isomorphism:

(Gr log ι)⊗Q : GrG⊗Q �−→ Grm(G).

The first statement is an application of the Baker–Campbell–Hausdorff formula,
and the second statement follows from [38, Theorem 2.14] and the main result
of [37].
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2.2. Group-like expansions. — Let F be a finitely-generated free group, and let
H be the abelianization of F with rational coefficients:

H := (F/Γ2F )⊗Q.

We denote by T(H) the tensor algebra of H, and by �T(H) its degree completion.
If one forgets its addition, one can regard �T(H) just as a monoid.

Definition 2.5. — An expansion of the free group F is a monoid map θ :
F → �T(H) such that θ(x) = 1 + {x} + (deg ≥ 2) for all x ∈ F .

Expansions have been studied by Lin in his work on Milnor’s µ invariants
[30], and by Kawazumi in his study of Johnson homomorphisms [22].

Example 2.6. — Assume that F comes with a preferred basis b =
(b1, . . . , bn). The Magnus expansion of F relative to b is the unique ex-
pansion defined by

∀i = 1, . . . , n, θ
Z
b (bi) := 1 + {bi}.

This expansion plays an important role in combinatorial group theory and
low-dimensional topology, and it has the peculiarity to exist with integer coef-
ficients.

It is well-known that there is a canonical graded algebra isomorphism

Gr“Q[F ] =
�

k≥0

I
k
/I

k+1 �−→ T(H)

defined by I/I
2 � {x − 1} �→ {x} ∈ H: See, for example, [6] or [31]. Thus, we

can identify Gr“Q[F ] with T(H) = Gr �T(H).

Proposition 2.7 (Lin, Kawazumi). — An expansion θ of F extends to a
unique filtered algebra isomorphism

θ : “Q[F ]
�−→ �T(H)

which is the identity at the graded level. Conversely, any such isomorphism θ

restricts to an expansion θ : F → �T(H).

It follows that, for any two expansions θ and θ
� of F , there exists a unique

filtered algebra automorphism ψ : �T(H) → �T(H) inducing the identity at the
graded level and such that ψ ◦ θ = θ

� [22, 30].
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Proof of Proposition 2.7. — The monoid homomorphism θ : F → �T(H) in-
duces a unique algebra map θ : Q[F ] → �T(H) which sends the augmentation
ideal I to the ideal �T≥1(H) and, so, preserves the filtrations. Hence we have a
filtered algebra homomorphism

θ : “Q[F ] −→ �T(H).

Clearly, Gr θ is the identity in degree 1 and, so, is the identity in any degree.
By completeness, it follows that θ : “Q[F ] → �T(H) is an isomorphism.

Conversely, given a filtered algebra isomorphism θ : “Q[F ] → �T(H) that
induces the identity at the graded level, we get an expansion θ : F → �T(H) by
composition with the canonical monomorphism ι : F → “Q[F ].

Among expansions of the free group F , we prefer those with the following
property.

Definition 2.8. — An expansion θ : F → �T(H) is group-like if it takes values
in the group of group-like elements of �T(H).

For instance, the Magnus expansion from Example 2.6 is not group-like.

Example 2.9. — Let b = (b1, . . . , bn) be a basis of F . The group-like expan-
sion of F relative to b is the unique expansion defined by

∀i = 1, . . . , n, θb(bi) := exp({bi}).

The following analogue of Proposition 2.7 is proved along the same lines.

Proposition 2.10. — A group-like expansion θ of F extends to a unique com-
plete Hopf algebra isomorphism

θ : “Q[F ]
�−→ �T(H)

which is the identity at the graded level. Conversely, any such isomorphism θ

restricts to a group-like expansion θ : F → �T(H).

Let us restate this characterization of group-like expansions in terms of Lie
algebras. For this, we need the canonical isomorphisms

L(H) ��

�
��

Grm(F ).

GrF ⊗Q
�

��

The left-hand isomorphism is defined to be the identity in degree 1 [6, 31], while
the right-hand isomorphism is given by Theorem 2.4. Thus, we can identify
Grm(F ) with L(H) = Gr �L(H).
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Corollary 2.11. — A group-like expansion θ of F induces a unique filtered
Lie algebra isomorphism

θ : m(F )
�−→ �L(H)

which is the identity at the graded level. Conversely, any such isomorphism θ

induces a unique group-like expansion θ : F → �T(H).

Proof. — This follows from Proposition 2.10 since we have

m(F ) = Prim(“Q[F ]) and �L(H) = Prim(�T(H))

and since we have, conversely,

“Q[F ] = �U(m(F )) and �T(H) = �U(�L(H)).

Here, for g a Lie algebra, �U(g) denotes the J-adic completion of the universal
enveloping algebra of g, where J is the ideal of U(g) generated by g.

Group-like expansions are useful to compute the Malcev Lie algebra of a
finitely generated group. Indeed, we have the following statement.

Theorem 2.12. — Let R be a normal subgroup of F and let θ be a group-like
expansion of F . We denote by ��log θ(R)�� the closed ideal of �L(H) generated
by log θ(R). Then, θ : m(F ) → �L(H) induces a unique filtered Lie algebra
isomorphism

θ : m(F/R)
�−→ �L(H)/��log θ(R)��.

In particular, if R is normally generated by some r1, . . . , rs, we can see from
the Baker–Campbell–Hausdorff formula that

��log θ(R)�� = ��log θ(r1), . . . , log θ(rs)��.

Thus, Theorem 2.12 is a recipe to compute the Malcev Lie algebra of a finitely
presented group. This is well-known for the group-like expansion θ relative to
a basis of the free group F [34].

Proof of Theorem 2.12. — The canonical projection F → F/R induces a fil-
tered Lie algebra homomorphism m(F ) → m(F/R) which, obviously, vanishes
on log(r) for all r ∈ R. So, we have a filtered Lie algebra map

p : m(F )/��log(R)�� −→ m(F/R).

Claim 2.13. — p is an isomorphism at the graded level.
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By completeness, it follows that p is an isomorphism. Besides, the filtered Lie
algebra isomorphism θ : m(F ) → �L(H) given by Corollary 2.11 induces

θ : m(F )/��log(R)�� −→ �L(H)/��log θ(R)��.

Then, the composition θ ◦ p
−1 : m(F/R) → �L(H)/��log θ(R)�� is our filtered

Lie algebra isomorphism θ.

To prove Claim 2.13, we look at the following diagram:

Grm(F ) �� �� Gr (m(F )/��log(R)��)
Gr p �� Grm(F/R)

GrF ⊗Q �� ��

�

��

Gr(F/R)⊗Q.

�

����

Here, the vertical maps are given by Theorem 2.4, the horizontal maps are
induced by canonical projections and the diagonal map

�

n≥1

ΓnF · R
Γn+1F · R ⊗Q = Gr

F

R
⊗Q −→ Gr

m(F )

��log(R)�� =
�

n≥1

�Γnm(F ) + ��log(R)��
�Γn+1m(F ) + ��log(R)��

is defined by {x} ⊗ 1 �→ {log(x)} for all x ∈ ΓnF · R. We deduce from that
diagram that Gr p is an isomorphism.

We can deduce a nilpotent version of Corollary 2.11.

Corollary 2.14. — Let m ≥ 1 and let θ be a group-like expansion of F .
Then, the isomorphism θ : m(F ) → �L(H) induces a unique filtered Lie algebra
isomorphism

θ : m(F/Γm+1F )
�−→ L(H)/L≥m+1(H).

Proof. — Let (b1, . . . , bn) be a basis of F . By Example 2.9, m(F ) is the com-
plete free Lie algebra generated by (b1, . . . , bn) where bi := log(bi). The Baker–
Campbell–Hausdorff formula implies that, for all r ≥ 1 and for all i1, . . . , ir ∈
{1, . . . , n},

log ([bi1 , [bi2 , [. . . , bir ] · · · ]]) ≡ [bi1 , [bi2 , [. . . , bir ] · · · ]] mod �Γr+1m(F ).

We deduce that ��log(Γm+1F )�� = �Γm+1m(F ) and we conclude by applying
Theorem 2.12 to R = Γm+1F .
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2.3. Symplectic expansions. — Let Σ be a compact connected oriented surface
of genus g with one boundary component. The fundamental group of Σ relative
to a point ∗ ∈ ∂Σ

π := π1(Σ, ∗)

is a free group of rank 2g. The oriented boundary curve defines a special element

ζ ∈ π.

The first homology group of Σ with rational coefficients

H := H1(Σ)

is a vector space of dimension 2g. The intersection pairing of Σ defines a sym-
plectic form ω on H and, so, it gives a duality isomorphism H

�→ H
∗ defined

by h �→ ω(h,−). The bivector dual to ω ∈ Λ2
H
∗ is still denoted by

ω ∈ Λ2
H � L2(H).

Every system of meridians and parallels (α1, . . . , αg, β1, . . . , βg) on the sur-
face Σ, as shown on Figure 2.1, defines a basis (a1, . . . , ag, b1, . . . , bg) of π, as
well as a basis (a1, . . . , ag, b1, . . . , bg) of H. In terms of these basis, ζ

−1 and ω

write

ζ
−1 =

g�

i=1

�
b−1

i
, ai

�
∈ π and ω =

g�

i=1

[ai, bi] ∈ L2(H).

∗

ζα1

αg

β1 βg

+

Figure 2.1. The surface Σg,1 and a system of meridians and par-

allels (α, β).

Definition 2.15. — An expansion θ : π → �T(H) is symplectic if it is group-
like and if it sends ζ

−1 to exp(ω).
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Bene, Kawazumi and Penner show in [5] how to build a group-like expansion
of π from any “fatgraph presentation” of the surface Σ, but this kind of expan-
sion does not seem to be symplectic [5, §6]. The group-like expansion θ(a,b)

relative to the basis (a, b) of π (see Example 2.9) is not either. Nevertheless,
θ(a,b) can be “deformed” to a symplectic expansion as the next proof shows.

Lemma 2.16. — Symplectic expansions do exist.

Proof. — By Corollary 2.11, proving the existence of symplectic expansions
is equivalent to proving the existence of a filtration-preserving isomorphism
θ : m(π) → �L(H) which induces the identity at the graded level and satis-
fies θ(log(ζ−1)) = ω. The isomorphism θ(a,b) : m(π) → �L(H) induced by the
expansion θ(a,b) of π satisfies

θ(a,b)(log(ζ−1)) = log(θ(a,b)(ζ
−1)) = �ω

where we set

�ω := log

�
g�

i=1

exp(−bi)⊗ exp(ai)⊗ exp(bi)⊗ exp(−ai)

�
∈ �L(H).

So, it is enough to show that there exists a filtration-preserving Lie algebra
automorphism ψ : �L(H) → �L(H) which is the identity at the graded level and
sends ω to �ω: then, the Lie algebra isomorphism θ := ψ

−1 ◦ θ(a,b) will have the
desired properties.

Claim 2.17. — Let n ≥ 1. For all i = 1, . . . , g and for all j = 2, . . . , n, there
exist some u

(j)

i
, v

(j)

i
∈ Lj such that

�ω ≡
g�

i=1

�
ai +

n�

j=2

u
(j)

i
, bi +

n�

j=2

v
(j)

i

�
mod �L≥n+2.

This statement is proved by induction on n ≥ 1. For n = 1, Claim 2.17 holds
because the Baker–Campbell–Hausdorff formula shows that

�ω ≡
g�

i=1

[ai, bi] mod �L≥3.

If Claim 2.17 holds at step n, then the Lie series

d := �ω −
g�

i=1

�
ai +

n�

j=2

u
(j)

i
, bi +

n�

j=2

v
(j)

i

�
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starts in degree n + 2. Using the Jacobi identity, we can write the degree n + 2
part of the series d as

g�

i=1

Äî
ai, v

(n+1)

i

ó
+
î
u

(n+1)

i
, bi

óä
∈ Ln+2

for some u
(n+1)

i
, v

(n+1)

i
∈ Ln+1. We then have

�ω −
g�

i=1

�
ai +

n+1�

j=2

u
(j)

i
, bi +

n+1�

j=2

v
(j)

i

�

≡ d−
g�

i=1

Äî
ai, v

(n+1)

i

ó
+
î
u

(n+1)

i
, bi

óä
≡ 0 mod �L≥n+3,

which proves Claim 2.17 at step n + 1.

Of course, those Lie words u
(j)

i
, v

(j)

i
are not unique but, as the above in-

duction shows, we can choose those words at step n + 1 in a way compatible
with those chosen at step n. Then, we define a filtration-preserving Lie algebra
endomorphism ψ : �L(H) → �L(H) by the formulas

ψ(ai) := ai +
�

j≥2

u
(j)

i
and ψ(bi) := bi +

�

j≥2

v
(j)

i
.

Clearly, ψ induces the identity at the graded level and so, by completeness, ψ

is an isomorphism. Moreover, it satisfies

ψ(ω) =
g�

i=1

[ψ(ai), ψ(bi)] ≡
g�

i=1

�
ai +

n�

j=2

u
(j)

i
, bi +

n�

j=2

v
(j)

i

�
≡ �ω mod �L≥n+2

for all n ≥ 1, so that we have ψ(ω) = �ω.

If one allows coefficients to be in R rather than in Q, then the “harmonic
expansions” considered by Kawazumi in [23] are symplectic. Symplectic expan-
sions with real coefficients also appear implicitely in [30], where the following
proposition is proved using Chen’s iterated integrals.

Proposition 2.18. — Let ÛΣ be the closed connected oriented surface of genus
g, which is obtained from Σ by gluing a 2-disk along its boundary. Then, any
symplectic expansion θ of π induces an isomorphism of filtered Lie algebras

θ : m
Ä
π1

ÄÛΣ, ∗
ää �−→ �L(H)/��ω��

where ��ω�� denotes the closed ideal of �L(H) generated by ω.
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Proof. — The fundamental group of ÛΣ has the following presentation:

π1

ÄÛΣ, ∗
ä

= �a1, . . . , ag, b1, . . . , bg |ζ � .

So, according to Theorem 2.12, any symplectic expansion θ of π induces an
isomorphism θ : m(π1(ÛΣ, ∗)) → �L(H)/��ω��.

It does not seem easy to describe by a closed formula an instance of a sym-
plectic expansion. Nevertheless, we can still figure out a symplectic expansion
up to some finite low degree with the help of a computer.

Example 2.19. — There exists a symplectic expansion θ which, in degree ≤ 4,
is given by

log θ(ai) = ai −
1

2
[ai, bi] +

1

12
[[ai, bi], bi]−

1

2

�

j<i

[[aj , bj ], ai]

− 1

24
[ai, [ai, [ai, bi]]] +

1

4

�

j<i

[[aj , bj ], [ai, bi]] + (deg ≥ 5),

log θ(bi) = bi −
1

2
[ai, bi] +

1

12
[ai, [ai, bi]] +

1

4
[[ai, bi], bi] +

1

2

�

j<i

[bi, [aj , bj ]]

− 1

24
[[[ai, bi], bi], bi] +

1

4

�

j<i

[[aj , bj ], [ai, bi]] + (deg ≥ 5).

This example has been found using the computer algebra software Axiom. More
precisely, we have written a small program which delivers this in genus g = 3.
To conclude that an expansion having that form in degree ≤ 4 is symplectic
up to order 5 for any genus g ≥ 1, it has been enough to write another small
program which checks this assertion in genus g = 5. (The .input files are
available on the author’s webpage.)

3. The total Johnson map

Let Σ be a compact connected oriented surface of genus g, with one boundary
component. The Torelli group of Σ is denoted by

I := I (Σ).

In this section, we review the total Johnson map relative to a group-like ex-
pansion, which contains all Johnson homomorphisms and has been introduced
by Kawazumi in [22]. The total Johnson map is originally defined on I , but it
is easily extended to the monoid

I C := I C(Σ)
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of homology cylinders over Σ. Next, we consider certain truncations of this map
which define homomorphisms on subgroups of the Johnson filtration, and have
diagrammatic descriptions if the choosen expansion is symplectic.

3.1. The Dehn–Nielsen representation. — The canonical action of the Torelli
group of Σ on its fundamental group defines a group homomorphism

ρ : I −→ Aut(π)

which, by a classical result of Dehn and Nielsen, allows one to regard I as a
subgroup of the automorphism group of a free group.

Theorem 3.1 (Dehn–Nielsen). — The homomorphism ρ is injective, and its
image is the group

IAutζ(π)

of automorphisms of π that fix ζ = [∂Σ] and induce the identity at the level of
the abelianization.

We wish to consider an “infinitesimal” version of the Dehn–Nielsen repre-
sentation ρ. For this and further purposes, let us recall how, in general, an
action

A : M −→ Aut(G)

of a monoid M on a group G can be transported to an action of M on the
Malcev Lie algebra m(G):

a : M −→ Aut (m(G)) .

Each automorphism Ψ of G induces an automorphism “Q[Ψ] of the complete
Hopf algebra “Q[G]. So, by restricting to the primitive part, we get a filtered
Lie algebra isomorphism m(Ψ) : m(G) → m(G). Thus, we obtain a group
homomorphism

m : Aut(G) −→ Aut(m(G))

with values in the group of filtration-preserving automorphisms of m(G). Then,
we define the “infinitesimal” version of A to be a := m ◦A.

Lemma 3.2. — If G is residually torsion-free nilpotent, then the map

m : Aut(G) −→ Aut(m(G))

is an isomorphism onto the subgroup

Autlog(G)(m(G)) := {ψ ∈ Aut(m(G)) : ψ(log(G)) = log(G)}.
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Proof. — By assumption on G, the canonical map ι : G → M(G) defines an
inclusion G ⊂ M(G). For all Ψ ∈ Aut(G), we have

(3.1) ∀g ∈ G, m(Ψ)(log(g)) = log Ψ(g)

so that m(Ψ) belongs to Autlog(G)(m(G)). Conversely, given ψ ∈ Autlog(G)(m(G)),
we define a map Ψ : G → G by

∀g ∈ G, Ψ(g) := expψ log(g).

A map Ψ� : G → G is defined similarly from ψ
−1. It is easily checked that

ΨΨ� = Ψ�Ψ = IdG and, using the Baker–Campbell–Hausdorff formula, that Ψ
is a group homomorphism. So, Ψ is a group automorphism of G which satisfies
m(Ψ) = ψ. Thus, the surjectivity of m onto Autlog(G)(m(G)) is proved. Its
injectivity follows from (3.1).

We come back to the fundamental group π of Σ. By the previous discussion,
we obtain an “infinitesimal” version of the Dehn–Nielsen representation

(3.2) � : I −→ IAutlog(ζ) (m(π))

defined by � := m ◦ ρ and with values in the group of filtration-preserving
automorphisms of m(π) that fix log(ζ) and induce the identity at the graded
level. As an application of Lemma 3.2, we obtain an “infinitesimal” formulation
of Theorem 3.1.

Theorem 3.3. — The map � : I → IAutlog(ζ) (m(π)) is injective, and its
image is

�( I ) =
�
ψ ∈ IAutlog(ζ)(m(π)) : ψ(log(π)) = log(π)

�
.

Finally, assume that we are given a group-like expansion θ of π. Let

IAutθ log(ζ)(�L)

be the group of filtration-preserving automorphisms of �L = �L(H) that induce
the identity at the graded level and fix the element θ log(ζ). The Dehn–Nielsen
representation of the Torelli group is equivalent to the group homomorphism

�
θ : I −→ IAutθ log(ζ)(�L)

defined by

(3.3) �
θ(f) := θ ◦ �(f) ◦ θ

−1 = θ ◦m(f∗) ◦ θ
−1

where θ : m(π) → �L is the Lie algebra isomorphism given by Corollary 2.11.

tome 140 – 2012 – no 1



MORITA HOMOMORPHISMS AND THE TREE-LEVEL OF THE LMO INVARIANT 127

3.2. Johnson homomorphisms and the total Johnson map. — Let us now review
Johnson homomorphisms in a few lines, the reader being referred to [20, 32]
for details. For each integer k ≥ 1, the Dehn–Nielsen representation ρ induces
a group homomorphism

ρk : I −→ IAut{ζ}(π/Γk+1π)

with values in the group of automorphisms of π/Γk+1π that fix {ζ} and induce
the identity at the level of the abelianization. Let I [k] be the kernel of ρk. The
sequence of subgroups

I = I [1] ⊃ I [2] ⊃ I [3] ⊃ · · ·

is called the Johnson filtration of I . To define Johnson homomorphisms, one
considers the short exact sequence

1 → Hom (π/Γ2π,Γk+1π/Γk+2π) → Aut(π/Γk+2π) → Aut(π/Γk+1π)

where a group homomorphism t : π/Γ2π → Γk+1π/Γk+2π goes to the automor-
phism of π/Γk+2π defined by {x} �→ {x · t({x})}. Thus, the map ρk+1 restricts
to a homomorphism

τk : I [k] → Hom(π/Γ2π,Γk+1π/Γk+2π)⊗Q � Hom(H,Lk+1(H)) � H ⊗ Lk+1(H).

Here, the first isomorphism comes from the canonical identification between
Ln(H) and (Γnπ/Γn+1π) ⊗ Q and the second isomorphism is induced by the
duality H

∗ � H defined by the intersection pairing ω. The map τk is known as
the k-th Johnson homomorphism and is considered, here, with rational coeffi-
cients.

Next, following [22], we give an equivalent description of the infinitesimal
Dehn–Nielsen representation �. For this, we fix a group-like expansion θ of π.

Definition 3.4 (Kawazumi). — The total Johnson map relative to the group-
like expansion θ is the map

τ
θ : I −→ Hom(H, �L≥2), f �−→ �

θ(f)
���
H

− IdH .

The total Johnson map can be decomposed as follows:

τ
θ =

�

m≥1

τ
θ

m
∈

�

m≥1

H ⊗ Lm+1 � Hom(H, �L≥2).

Such notation and terminology are justified by the following result from [22],
whose proof is given here for the sake of completeness.
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Theorem 3.5 (Kawazumi). — The degree k part of the total Johnson map,
restricted to the k-th term of the Johnson filtration, coincides with the k-th
Johnson homomorphism:

τ
θ

k

���
I [k]

= τk ∈ Hom( I [k], H ⊗ Lk+1).

Proof. — Let f ∈ I [k] and let {x} ∈ H be represented by x ∈ π. We set

q := x−1 · f∗(x) ∈ Γk+1π

so that, by definition of τk, we have

(3.4) τk(f)({x}) = {q} ∈ Γk+1π/Γk+2π ⊗Q � Lk+1.

We also set

x2 := θ
−1({x})− log(x) ∈ m(π).

Since θ(x) = 1 + {x} + (deg ≥ 2), x2 belongs to �Γ2m(π). Then, we have

θm(f∗)θ
−1({x}) = θm(f∗)(log(x) + x2)

= θ(log(f∗(x)) + x2 + xk+2)

= θ(log(x · q) + x2 + xk+2)

= θ(log(x) + log(q) + x
�
k+2 + x2 + xk+2)

= θ(θ−1({x}) + log(q)) + θ(xk+2 + x
�
k+2)

= {x} + θ log(q) + θ(xk+2 + x
�
k+2).

Here, xk+2 and x
�
k+2

are some elements of �Γk+2m(π) and the fourth identity
follows from the Baker–Campbell–Hausdorff formula. Since θ(xk+2 +x

�
k+2

) be-
longs to �L≥k+2, we deduce that

τ
θ

k
(f)({x}) = {θ log(q)} ∈ �L≥k+1/

�L≥k+2 � Lk+1.

Since θ : m(π) → �L induces the identity at the graded level, we conclude that

τ
θ

k
(f)({x}) = {q} (3.4)

= τk(f)({x}) ∈ Γk+1π/Γk+2π ⊗Q � Lk+1.

Remark 3.6. — In fact, Kawazumi considers in [22] expansions which are not
necessarily group-like, so that he works with �T(H) instead of �L(H). He proves
Theorem 3.5 in this more general context.
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3.3. Extension to the monoid of homology cylinders. — As shown in [11], the
Johnson homomorphisms can be extended from the Torelli group I to the
monoid of homology cylinders I C . Indeed, by definition, a homology cylinder
C comes with a parametrization of its boundary

c : ∂(Σ× [−1, 1])
∼=+−→ ∂C.

This map c splits into c+ and c− where c± := c|Σ×{±1} : Σ → C. The map c±
is a homological equivalence so that, by Stalling’s theorem [40], it induces an
isomorphism at the level of the k-th nilpotent quotient for every integer k ≥ 1.
Thus, one gets a monoid homomorphism

ρk : I C −→ IAut{ζ}(π/Γk+1π), C �−→ (c−,∗)
−1 ◦ c+,∗.

Let I C [k] be the kernel of ρk. The sequence of submonoids

I C = I C [1] ⊃ I C [2] ⊃ I C [3] ⊃ · · ·

is called the Johnson filtration of I C . Then, as in the case of the Torelli group,
the map ρk+1 restricts to a monoid homomorphism

τk : I C [k] −→ H ⊗ Lk+1(H).

The total Johnson map relative to a group-like expansion θ can also be
extended from I to I C in the following way. For all k ≥ 1, there is an “in-
finitesimal” version of the homomorphism ρk

(3.5) �k : I C −→ IAutlog({ζ}) (m(π/Γk+1π))

defined by �k := m ◦ ρk. Lemma 3.2 implies that

(3.6) Ker(�k) = I C [k].

By conjugating with the Lie algebra isomorphism θ from Corollary 2.14, we
obtain a monoid homomorphism

�
θ

k
: I C −→ IAutθ log({ζ})(L/L≥k+1).

Equivalently, we can consider the map

τ
θ

[1,k[
: I C −→ Hom(H,L≥2/L≥k+1), C �−→ �

θ

k
(C)

���
H

− IdH .

For all l ≥ k ≥ 1, we have the following commutative triangle

I C
τ

θ
[1,l[ ��

τ
θ
[1,k[ ��

Hom(H,L≥2/L≥l+1)

����
Hom(H,L≥2/L≥k+1)
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where the vertical map is induced by the projection L≥2/L≥l+1 → L≥2/L≥k+1.
Therefore, we can take the inverse limit as k → +∞ of the maps τ

θ

[1,k[
in order

to obtain a map
τ

θ : I C −→ Hom(H, �L≥2)

whose restriction to I coincides with Kawazumi’s total Johnson map. Theo-
rem 3.5 and its proof can be extended without difficulty to homology cylinders.

As an alternative to τ
θ, we can equivalently consider the monoid homomor-

phism
�

θ : I C −→ IAutθ log(ζ)(�L)
which sends any homology cylinder C to the unique filtration-preserving auto-
morphism of �L whose restriction to H is IdH +τ

θ(C). If restricted to the Torelli
group, this definition agrees with (3.3).

3.4. Truncations of the total Johnson map. — In the next sections, we will be
mostly interested in certain truncations of the total Johnson map τ

θ. These
are introduced in the next statement.

Proposition 3.7. — The degree [k, 2k[ truncation of the total Johnson map
τ

θ, restricted to the k-th term of the Johnson filtration,

τ
θ

[k,2k[
:=

2k−1�

m=k

τ
θ

m
: I C [k] −→

2k−1�

m=k

H ⊗ Lm+1 � Hom(H,L≥k+1/L≥2k+1)

is a monoid homomorphism. Moreover, its kernel is I C [2k].

Proof. — For all C ∈ I C [k], τ
θ

[k,2k[
(C) can be computed from �

θ

2k
(C) ∈

Aut(L/L≥2k+1), and vice versa, thanks to the following equation:

(3.7) �
θ

2k
(C)

���
H

= IdH +τ
θ

[1,2k[
(C) = IdH +τ

θ

[k,2k[
(C) ∈ Hom(H,L/L≥2k+1).

Here, the second identity follows from the fact that �
θ

k
(C) is the identity, so

that τ
θ

[1,2k[
(C) starts in degree k. So, for all C, D ∈ I C [k], we have

�
θ

2k
(DC)

���
H

= �
θ

2k
(D) ◦ �

θ

2k
(C)

���
H

= �
θ

2k
(D)

���
H

+ �
θ

2k
(D) ◦ τ

θ

[k,2k[
(C)

= IdH +τ
θ

[k,2k[
(D) + �

θ

2k
(D) ◦ τ

θ

[k,2k[
(C)

= IdH +τ
θ

[k,2k[
(D) + τ

θ

[k,2k[
(C).

Here, the last identity is an instance of the following elementary fact: for all
c ∈ Hom(H,L≥k+1/L≥2k+1) and for all d ∈ Aut(L/L≥2k+1) that reduces to
the identity modulo L≥k+1/L≥2k+1, we have d ◦ c = c. Thus, we conclude that

τ
θ

[k,2k[
(DC) = τ

θ

[k,2k[
(D) + τ

θ

[k,2k[
(C).
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Finally, we also deduce from (3.7) that τ
θ

[k,2k[
(C) is trivial if and only if �

θ

2k
(C)

is the identity, which amounts to say that C belongs to I C [2k] by (3.6).

When the expansion θ is symplectic, the homomorphism τ
θ

[k,2k[
defined in

Proposition 3.7 has a diagrammatic description.

Proposition 3.8. — Assume that the expansion θ is symplectic. Then, for all
C ∈ I C [k] and for all j ∈ {k, . . . , 2k−1}, the Lie bracket of τ

θ

j
(C) ∈ H⊗Lj+1

is trivial. Therefore, we have

η
−1

τ
θ

j
(C) ∈ T j(H)

where the diagrammatic space T j(H) and the map η have been introduced in
§1.1 and §1.2 respectively.

Proof. — Let (α, β) be a system of meridians and parallels for the surface
Σ, and let (a, b) be the corresponding basis of H. Since C acts trivially on
m(π/Γk+1π), we have

�
θ(C)(ai) ≡ ai +

2k�

j=k+1

u
(j)

i
mod �L≥2k+1

and �
θ(C)(bi) ≡ bi +

2k�

j=k+1

v
(j)

i
mod �L≥2k+1

where u
(j)

i
, v

(j)

i
∈ Lj for all j = k + 1, . . . , 2k. Then, we obtain

�
θ(C)(ω) = �

θ(C)

�
g�

i=1

[ai, bi]

�

≡ ω +
g�

i=1

2k�

j=k+1

Ä
[ai, v

(j)

i
] + [u(j)

i
, bi]

ä
mod �L≥2k+2.

Since θ is symplectic, �
θ(C) fixes ω and we deduce that

g�

i=1

Ä
[ai, v

(j)

i
] + [u(j)

i
, bi]

ä
= 0 ∈ Lj+1, ∀j = k + 1, . . . , 2k.

Since τ
θ

j
(C) ∈ H ⊗ Lj+1 is given by

τ
θ

j
(C) =

g�

i=1

Ä
−bi ⊗ u

(j+1)

i
+ ai ⊗ v

(j+1)

i

ä
,

for all j = k, . . . , 2k − 1, we conclude that its Lie bracket is zero.
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4. Infinitesimal Morita homomorphisms

In this section, we define the Lie version mk of the k-th Morita homomor-
phism Mk, and we show the equivalence between mk and Mk. We relate mk

to the degree [k, 2k[ truncation of the total Johnson map and we deduce some
properties of mk.

4.1. Definition of the infinitesimal Morita homomorphisms. — For each integer
k ≥ 1, we define a monoid homomorphism

mk : I C [k] −→ H3 (m(π/Γk+1π))

in a way very similar to the original definition of Mk [32, 39], the bar complex
of a group being replaced by the Koszul complex of a Lie algebra. Details are
as follows and need the following preliminary.

Lemma 4.1. — The linear map

H2 (m(π/Γn+1π)) −→ H2 (m(π/Γm+1π)) ,

induced by the canonical Lie algebra homomorphism m(π/Γn+1π) → m(π/Γm+1π),
is trivial for all n > m. Besides, the linear map

H3 (m(π/Γn+1π)) −→ H3 (m(π/Γm+1π))

is trivial for all n ≥ 2m.

Proof. — Let (α, β) be a system of meridians and parallels for Σ, and let (a, b)
be the corresponding basis of π which defines a group-like expansion θ(a,b) of π

(as we saw in Example 2.9). We also denote by (a, b) the basis of H defined by
(a, b). According to Corollary 2.14, θ(a,b) induces for all m ≥ 1 an isomorphism

L/L≥m+1

�−→ m(π/Γm+1π)

defined by {ai} �→ log({ai}) and {bi} �→ log({bi}). Moreover, this isomorphism
is compatible with the reduction maps

L/L≥n+1 → L/L≥m+1 and m(π/Γn+1π) → m(π/Γm+1π)

for all n ≥ m. Therefore, the lemma follows from (1.3) and from Theorem 1.4.

We choose z ∈ Λ2m(π/Γ2k+2π) such that ∂2(z) = − log({ζ}) in the Koszul
complex of the Lie algebra m(π/Γ2k+2π). Such a z exists since, by the Baker–
Campbell–Hausdorff formula, we have

{ζ} ∈ Γ2(π/Γ2k+2π) =⇒ log({ζ}) ∈ Γ2m(π/Γ2k+2π).
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We denote by {z} ∈ Λ2m(π/Γ2k+1π) the reduction of z. Let C ∈ I C [k] for
which we wish to define mk(C). We have

∂2

�
{z} − �2k(C)({z})

�
= − log{ζ} + �2k(C)(log{ζ}) = 0 ∈ m(π/Γ2k+1π).

Thus, {z}−�2k(C)({z}) is a 2-cycle which, by Lemma 4.1, is null-homologous.
So, we can choose a tC ∈ Λ3m(π/Γ2k+1π) such that

∂3(tC) = {z} − �2k(C)({z}) ∈ Λ2m(π/Γ2k+1π).

Observing that the reduction {tC} ∈ Λ3m(π/Γk+1π) is a 3-cycle since �k(C) is
the identity, we set

mk(C) := [{tC}] ∈ H3 (m(π/Γk+1π)) .

Lemma 4.2. — The above discussion defines a monoid homomorphism

mk : I C [k] −→ H3 (m(π/Γk+1π)) .

Proof. — First, assume that a different choice of tC , say t
�
C

, has been done
in the above discussion. Then, the difference tC − t

�
C
∈ Λ3m(π/Γ2k+1π) is a

3-cycle whose reduction

{tC − t
�
C
} = {tC} − {t�

C
} ∈ Λ3m(π/Γk+1π)

must be null-homologous by Lemma 4.1. So, the choice of tC is irrelevant. Next,
assume that a different choice of z, say z

�, has been done. The difference

δ := z − z
� ∈ Λ2m(π/Γ2k+2π)

is then a 2-cycle whose reduction {δ} ∈ Λ2m(π/Γ2k+1π) must be null-
homologous by Lemma 4.1. Let ε ∈ Λ3m(π/Γ2k+1π) be such that ∂3(ε) = {δ}.
The 3-chain

t
�
C

:= tC − ε + �2k(C)(ε) ∈ Λ3m(π/Γ2k+1π)

satisfies
∂3(t

�
C

) = {z�} − �2k(C)({z�}) ∈ Λ2m(π/Γ2k+1π),

and we have

{t�
C
} = {tC} − {ε} + �k(C)({ε}) = {tC} ∈ Λ3m(π/Γk+1π).

We conclude that [{tC}] only depends on C, so that the map mk is well-defined.
Let D ∈ I C [k] be another homology cylinder, for which we choose an ele-

ment tD ∈ Λ3m(π/Γ2k+1π) satisfying

∂3(tD) = {z} − �2k(D)({z}) ∈ Λ2m(π/Γ2k+1π).

Thus, we have mk(D) = [{tD}]. The 3-chain t := tC + �2k(C)(tD) ∈
Λ3m(π/Γ2k+1π) satisfies

∂3(t) = ∂3(tC) + �2k(C) (∂3(tD)) = {z} − �2k(C ◦D)({z}).
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Therefore, we have

mk(C ◦D) = [{t}] = [{tC} + �k(C)({tD})] = mk(C) + mk(D)

and we conclude that the map mk is a monoid homomorphism.

4.2. Pickel’s isomorphism. — Let G be a finitely generated torsion-free nilpo-
tent group. Let us recall how Pickel relates the homology of G to the homology
of m(G) in [35]. First, he shows that “Q[G] is flat as a Q[G]-module and that,
similarly, �U(m(G)) is flat as an U(m(G))-module. Next, he deduces from [19]
that the inclusion m(G) ⊂ “Q[G] induces an algebra isomorphism

�U(m(G)) � “Q[G].

Finally, he considers, for all n ≥ 1, the following sequence of isomorphisms:

TorQ[G]

n
(Q, Q)

� �� Tor�Q[G]

n
(Q, Q) � Tor�U(m(G))

n
(Q, Q) TorU(m(G))

n
(Q, Q)

���

Hn(G)
P

�� Hn(m(G)).

In dimension n = 3 and for G = π/Γk+1π, Pickel’s isomorphism links the k-th
Morita homomorphism to its infinitesimal version.

Proposition 4.3. — The following diagram is commutative:

I C [k]
Mk ��

mk
��

H3(π/Γk+1π)

P�
��

H3 (m(π/Γk+1π)).

Proof. — We need to make Pickel’s isomorphism explicit at the chain level.
Let G be a finitely generated torsion-free nilpotent group, for which we set

R := “Q[G] = �U(m(G)).

Let B → Q → 0 be a free resolution of Q as a Q[G]-module, and let K → Q → 0
be a free resolution of Q as an U(m(G))-module. Then, by tensoring and using
that “Q[G] is flat as Q[G]-module, we get a free resolution of Q as a “Q[G]-module:

“Q[G]⊗Q[G] B −→ Q −→ 0.

Similarly, we obtain a free resolution of Q as an �U(m(G))-module:

�U(m(G))⊗U(m(G)) K −→ Q −→ 0.
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Thus, there exists a homotopy equivalence of chain complexes over the ring R

(4.1) f : “Q[G]⊗Q[G] B −→ �U(m(G))⊗U(m(G)) K

(which is unique up to homotopy). Therefore, we get a homotopy equivalence
(4.2)
Q⊗Rf : Q⊗Q[G]B=Q⊗R

�
R⊗Q[G] B

�
→ Q⊗R

�
R⊗U(m(G)) K

�
=Q⊗U(m(G))K

and Pickel’s isomorphism is

P = Hn (Q⊗R f) : Hn(G) = Hn(Q⊗Q[G] B) −→ Hn(Q⊗U(m(G)) K) = Hn(m(G)).

Let us now assume that B is the bar resolution for Q[G]:

· · · �� B2

∂2 �� B1

∂1 �� B0

ε �� Q �� 0

where Bn = Q[G] · G×n, ε is the augmentation of Q[G] and

∂n(g1| · · · |gn) = g1 · (g2| · · · |gn)

+
n−1�

i=1

(−1)i · (g1| · · · |gigi+1| · · · |gn) + (−1)n · (g1| · · · |gn−1).

We also assume that K is the Koszul resolution for U(m(G)):

· · · �� K2

∂2 �� K1

∂1 �� K0

η �� Q �� 0

where Kn = U(m(G))⊗ Λnm(G), η is the augmentation of U(m(G)) and

∂n (1⊗ g1 ∧ · · · ∧ gn) =
n�

i=1

(−1)i+1
gi ⊗ g1 ∧ · · ·“gi · · · ∧ gn

+
�

1≤i<j≤n

(−1)i+j ⊗ [gi, gj ] ∧ g1 ∧ · · ·“gi · · ·“gj · · · ∧ gn.

For these choices of resolutions B and K, Suslin and Wodzicki have constructed
in [41, §5] a homotopy equivalence f of the form (4.1). This chain map f is
derived from a contracting homotopy of the free resolution �U(m(G))⊗U(m(G))K

of Q, which is itself defined by means of the Poincaré–Birkhoff–Witt isomor-
phism. Besides the fact that it is the identity of R in degree 0, we record two
properties of the homotopy equivalence f : first, it is functorial in G and, second,
it is given in degree 1 by

f(1⊗ g) =
�

n≥1

1

n!
log(g)n−1 ⊗ log(g).

We deduce that there exists a homotopy equivalence of the form (4.2) between
the bar complex of G with trivial coefficients and the Koszul complex of m(G)
with trivial coefficients, which is functorial in G and is the log map in degree
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one. This is exactly what we need to conclude that Morita’s definition of Mk

[32, 39] corresponds to our definition of mk through Pickel’s isomorphism.

4.3. Properties of the infinitesimal Morita homomorphisms. — The k-th infinites-
imal Morita homomorphism corresponds (up to a minus sign) to the degree
[k, 2k[ truncation of the total Johnson map, relative to a symplectic expansion.

Theorem 4.4. — Let θ be a symplectic expansion of π. Then, the following
diagram is commutative:

I C [k]

τ
θ
[k,2k[

��

−mk �� H3(m(π/Γk+1π))
θ∗

�
�� H3 (L/L≥k+1)

2k−1�

j=k

Dj+2(H)
2k−1�

j=k

T j(H)
�
η

��

Φ�

��

Here, θ∗ is induced by the Lie algebra isomorphism θ : m(π/Γk+1π) → L/L≥k+1

from Corollary 2.14.

Proof. — Let m
θ

k
: I C [k] → H3 (L/L≥k+1) be the composition θ∗ ◦ mk, and

let C ∈ I C [k]. We are asked to show that

(4.3) −m
θ

k
(C) = Φη

−1
τ

θ

[k,2k[
(C).

Since the isomorphism θ : m(π/Γm+1π) → L/L≥m+1 is compatible with the
canonical projections

L/L≥n+1 → L/L≥m+1 and m(π/Γn+1π) → m(π/Γm+1π)

for all n ≥ m, we can compute m
θ

k
directly from �

θ

2k
∈ Aut(L/L≥2k+1) in the

following way. First, we set

w :=
g�

i=1

ai ∧ bi ∈ Λ2L

and we denote by {w} its reduction to Λ2(L/L≥2k+1). The 2-chain

{w} − �
θ

2k
(C)({w}) ∈ Λ2(L/L≥2k+1)

is a 2-cycle and, so, is a boundary by Lemma 4.1. Let tC ∈ Λ3(L/L≥2k+1) be
one of its antecedents by ∂3. Then, the definition of mk given in §4.1 implies
that

m
θ

k
(C) = [{tC}] ∈ H3 (L/L≥k+1)

where {tC} is the reduction of tC modulo L≥k+1/L≥2k+1.
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Next, since C belongs to I C [k], we can write
(4.4)

�
θ

2k
(C)({ai}) = {ai}+

2k�

j=k+1

¶
u

(j)

i

©
and �

θ

2k
(C)({bi}) = {bi}+

2k�

j=k+1

¶
v
(j)

i

©

where u
(j)

i
, v

(j)

i
∈ Lj for all j = k+1, . . . , 2k. Then, by definition of τ

θ, we have

τ
θ

[k,2k[
(C) =

g�

i=1

Ñ
−bi ⊗

2k−1�

j=k

u
(j+1)

i
+ ai ⊗

2k−1�

j=k

v
(j+1)

i

é
.

In the sequel, we set aC := η
−1

τ
θ

[k,2k[
(C) and we consider the canonical embed-

ding

� :
2k−1�

j=k

H ⊗ Lj+1 −→ Λ2(L/L≥2k+1), u⊗ v �−→ {u} ∧ {v}.

It follows from Lemma 1.2 and from (1.6) that

�η(aC) = ∂3φ(aC)

where φ(aC) ∈ Λ3(L/L≥2k+1) is obtained from the linear combination of trees
aC by fission. On the other hand, a direct computation based on (4.4) gives

−�τ
θ

[k,2k[
(C) = {w} − �

θ

2k
(C)({w}) + ε ∈ Λ2(L/L≥2k+1)

where ε is the following 2-cycle of degree at least 2k + 2:

ε :=
g�

i=1

2k−1�

h=k

2k−1�

j=k

u
(h+1)

i
∧ v

(j+1)

i
.

Since H2(L/L≥2k+1) is concentrated in degree 2k + 1 according to (1.3), there
exists an e ∈ Λ3(L/L≥2k+1) of degree at least 2k+2 such that ∂3(e) = ε. Then,
we have

∂3 (−φ(aC)− e) = −�η(aC)− ε = −�τ
θ

[k,2k[
(C)− ε = {w} − �

θ

2k
(C)({w}),

which shows that (−φ(aC)− e) can play the role of tC . We deduce that

m
θ

k
(C) = [{−φ(aC)− e}] = [−{φ(aC)} − {e}].

But, {e} ∈ Λ3(L/L≥k+1) is a 3-cycle (since {ε} ∈ Λ2(L/L≥k+1) vanishes)
of degree at least 2k + 2, and so, is null-homologous (since H3(L/L≥k+1) is
concentrated in degrees [k + 2, 2k + 1] by Theorem 1.4). Thus, we obtain (4.3)
as desired.
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As applications of Theorem 4.4, we recover two important properties for the
homomorphism Mk by proving them for mk. First, the k-th Morita homomor-
phism Mk is known to determine the k-th Johnson homomorphism [32]. To
obtain a similar fact for mk, we need the central extension of Lie algebras

(4.5) 0 → Lk+1(H) → m(π/Γk+2π) → m(π/Γk+1π) → 1

whose first map is the composition

Lk+1(H)
�−→ (Γk+1π/Γk+2π)⊗Q log⊗Q−→ m(π/Γk+2π).

Corollary 4.5. — We have the following commutative diagram

I C [k]
mk ��

−τk ��

H3 (m(π/Γk+1π))

d
2
3,0

��
H ⊗ Lk+1(H)

where the homomorphism d
2
3,0 is the second-stage differential of the Hochschild–

Serre spectral sequence associated to (4.5).

Proof. — Let θ be a symplectic expansion of π. We consider the diagram

(4.6) 0 �� Lk+1(H) �� m(π/Γk+2π)

θ�
��

�� m(π/Γk+1π) ��

θ�
��

1

0 �� Lk+1(H) �� L/L≥k+2
�� L/L≥k+1

�� 1

whose vertical isomorphisms θ are given by Corollary 2.14. The commutativity
of the diagram is a consequence of the fact that these isomorphisms are induced
by the Lie algebra isomorphism θ : m(π) → �L(H) from Corollary 2.11. By
naturality of the Hochschild–Serre spectral sequence, the corollary is equivalent
to the commutativity of the diagram

I C [k]
m

θ
k ��

−τk ��

H3 (L/L≥k+1)

d
2
3,0

��
H ⊗ Lk+1(H),

where m
θ

k
denotes θ∗ ◦mk and where d

2
3,0 refers now to the central extension

given by the second line of (4.6). We conclude using some previous results:

d
2

3,0 ◦m
θ

k

(1.7)

= ηk ◦ Φ−1 ◦m
θ

k

Thm 4.4
= −τ

θ

k

Thm 3.5
= −τk.
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Second, the kernel of Mk is known to be the 2k-th term of the Johnson
filtration: this has been proved by Heap [17] in the case of the Torelli group,
and by Sakasai [39] in the general case. Alternatively, we can deduce this from
the following result.

Corollary 4.6. — The kernel of mk is I C [2k].

Proof. — This follows immediately from Theorem 4.4 and Proposition 3.7.

5. The tree-reduction of the LMO homomorphism

In this last section, we prove that the LMO functor introduced in [7] defines a
symplectic expansion of π. Next, we consider the LMO homomorphism, which
is the restriction of the LMO functor to the monoid of homology cylinders.
We show that the total Johnson map relative to that particular expansion
is equivalent to the tree-reduction of the LMO homomorphism. We deduce
that the degree [k, 2k[ part of the tree-reduction of the LMO homomorphism
coincides with the k-th infinitesimal Morita homomorphism.

We assume that the reader is familiar enough with the LMO invariant [27,
3, 4, 33] and, more specifically, with the constructions of [7]. (The surface Σ
is denoted by Fg in [7], and the monoid of homology cylinders I C is denoted
there by Cyl.)

5.1. The monoid of bottom knots in a thickened surface. — An essential ingredient
to derive a symplectic expansion from the LMO functor is the notion of “bottom
knot” in Σ × [−1, 1]. We fix two distinct points p, q in the interior of Σ and,
at each of them, we fix a non-zero tangent vector which will be implicit in the
sequel.

Definition 5.1. — A bottom knot in Σ×[−1, 1] is a connected framed oriented
tangle, which starts from q× (−1) and ends at p× (−1). Two bottom knots are
considered to be the same if they differ by an ambient isotopy of Σ × [−1, 1]
relative to the boundary.

An example of bottom knot is shown on Figure 5.1. Another example is the
trivial bottom knot which, together with an interval in Σ× (−1) that connects
p × (−1) to q × (−1), bounds an embedded disk in Σ × [−1, 1]. We denote by
B(Σ), or simply by B, the set of bottom knots in Σ× [−1, 1].

The reader may be more familiar with the notion of string knot in Σ×[−1, 1],
which is a connected framed oriented tangle starting from q× (−1) and ending
at q×1. Let S(Σ) be the set of string knots in Σ× [−1, 1]. There is a canonical
bijection

b : S(Σ)
�−→ B(Σ)
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p q

Figure 5.1. An example of bottom knot in Σ × [−1, 1] in genus

g = 2. (The blackboard framing convention is used.)

which is schematically defined by Figure 5.2. The set S(Σ) is a monoid, whose
multiplication is defined by “stacking”:

K · L :=
L

K
∀K, L ∈ S(Σ)

and whose identity element is the trivial string knot (Σ × [−1, 1], q × [−1, 1]).
Therefore, the push-out by b defines a monoid structure on B(Σ), whose identity
element is the trivial bottom knot.

K

b(K)

Σ× [−1, 1]

Σ× [−1, 1]

Figure 5.2. How to transform a string knot into a bottom knot.

Definition 5.2. — Two bottom knots K and K
� in Σ× [−1, 1] are homotopic

if K can be transformed to K
� by a framing change and a finite number of

crossing changes.

tome 140 – 2012 – no 1



MORITA HOMOMORPHISMS AND THE TREE-LEVEL OF THE LMO INVARIANT 141

The homotopy relation, which we denote by �h, is an equivalence relation on
B which is compatible with its multiplication.

Lemma 5.3. — There is a canonical monoid isomorphism

� : B(Σ)/�h

�−→ π

defined by assigning to each bottom knot K a based loop �(K) in Σ × [−1, 1],
as shown in Figure 5.3, and by identifying π = π1(Σ, ∗) with π1(Σ× [−1, 1], ∗).

K

∗
�(K)

Figure 5.3. How to transform a bottom knot into a based loop.

Proof. — The statement of the lemma clearly defines a map � : B(Σ)/�h→ π.
By composition with b, one gets a map �◦b : S(Σ)/�h → π which is well-known
to be a monoid isomorphism.

Each bottom knot K can be transformed into a cobordism by “digging”
Σ × [−1, 1] along K, and this cobordism is a “Lagrangian” cobordism from
Fg to Fg+1 in the sense of [7]. To be more specific, the 1-st handle of Fg+1

is identified with the boundary of a neighborhood of K in Σ × [−1, 1] while,
for all i = 2, . . . , g + 1, the i-th handle of Fg+1 corresponds to the (i − 1)-st
handle of Σ× (−1). This construction is a special case of the way cobordisms
are presented in [7] in terms of “bottom-top” tangles. Thus, we get an inclusion

(5.1) B ⊂ LCob(g, g + 1).

The monoid structure of B can be defined in terms of the monoidal structure
of LCob. For this, we recall that LCob is a subcategory of the category of cobor-
disms Cob, which is braided monoidal and for which the object 1 is a Hopf
algebra [24]. Then, the multiplication of B is given by

(5.2) ∀K, L ∈ B, K · L = (µ⊗ Idg) ◦ (Id1⊗K) ◦ L,
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where µ ∈ LCob(2, 1) is the product of the Hopf algebra object 1. The identity
element of B is then

(5.3) (trivial bottom knot) = η ⊗ Idg

where η ∈ LCob(0, 1) is the unit of the Hopf algebra object 1.

5.2. The symplectic expansion defined by the LMO functor. — We now explain
how the LMO functor defines a symplectic expansion of π by considering bot-
tom knots up to homotopy. First, we recall the diagrammatic analogue of the
homotopy relation introduced by Bar-Natan in the context of Milnor’s µ in-
variants of string links [2].

Let S be a finite set, and let r ∈ S. We denote by A(S) the space of Jacobi
diagrams colored by S, and we denote by A(↑S) the space of Jacobi diagrams
based on the 1-manifold ↑S , which consists of one oriented interval ↑s for each
element s ∈ S. Recall from [1] that there is a diagrammatic analogue of the
Poincaré–Birkhoff–Witt isomorphism

χ : A(S)
�−→ A(↑S).

Following [2], we consider the subspace

H (r) ⊂ A(S)

generated by Jacobi diagrams with at least one component that is looped or
that possesses at least two univalent vertices colored by r. Similarly, let

H (↑r) ⊂ A(↑S)

be the subspace generated by Jacobi diagrams with at least one dashed com-
ponent that is looped or that posseses at least two univalent vertices attached
to ↑r. The following statement is proved in [2, Theorem 1].

Theorem 5.4 (Bar-Natan). — For any finite set S and for all r ∈ S, we have

χ (H (r)) = H (↑r).

By the inclusion (5.1), bottom knots are Lagrangian cobordisms. They are
promoted to Lagrangian q-cobordisms (in the sense of [7]) if we agree to equip
each of them with rg on the top surface and with rg+1 on the bottom surface,
where

rg := (• · · · (•(••)) · · · )
is the length g right-handed non-associative word in the single letter •. Then,
the LMO functor �Z introduced in [7] can be applied to bottom knots:

�Z : B −→ ts A(g, g + 1).
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Recall that ts A(g, g + 1) is a subspace of

A(�g�+ ∪ �g + 1�−)

where �g�+ denotes the finite set {1+
, . . . , g

+} and �g+1�− stands for the finite
set {1−, . . . , (g + 1)−}. In the construction of the LMO functor, the color i

+

refers to the i-th handle of the top surface, while the color i
− refers to the i-th

handle of the bottom surface. Thus, for those cobordisms arising from bottom
knots, it is natural to rename the colors as follows:

(5.4) 1− �−→ r and i
− �−→ (i− 1)−, ∀i = 2, . . . , (g + 1)

so that the variable r refers to the bottom knot. After this change of variables
(which is often tacit in the sequel), the LMO functor gives a map

�Z : B −→ A(�g�+ ∪ �g�− ∪ {r}).

Lemma 5.5. — For any bottom knot K in Σ × [−1, 1], �Z(K) mod H (r) only
depends on the homotopy class of K.

Proof. — Let us consider a crossing change (respectively, a framing change)
K � K

�. The Lagrangian cobordisms defined by bottom knots are “special”
in the sense of [7]. So, we can apply [7, Lemma 5.5] to derive �Z(K) from
the Kontsevich integral Z(L) of an appropriate framed oriented tangle L in
[−1, 1]3. Similarly, we can reduce �Z(K �) to the Kontsevich integral Z(L�) of
an appropriate framed oriented tangle L

� in [−1, 1]3. Furthermore, we can find
such an L and an L

� that only differ by a self-crossing change (respectively, by
small kinks) of a component ↑l0 . Then, the lemma follows from the fact that

Z(L�)− Z(L) ∈ H (↑l0),

which is well-known and is easily checked from the value of the Kontsevich
integral on a crossing (respectively, on a small kink).

Let us now recall that, for any finite set S, A(S) is a Hopf algebra, whose
product is given by the disjoint union � and whose coproduct is defined by

(5.5) ∆(D) =
�

D=D��D��

D
� ⊗D

��

for all diagrams D. Since H (r) is a Hopf ideal of A(�g�+ ∪ �g�− ∪ {r}), the
quotient vector space A(�g�+ ∪ �g�− ∪ {r})/H (r) is a Hopf algebra. Besides,
the subspace of A(�g�+∪�g�−∪{r}) spanned by tree-shaped Jacobi diagrams,
with at most one r-colored vertex on each component, is a Hopf subalgebra of
A(�g�+∪�g�−∪{r}). This subspace is isomorphically mapped onto the quotient
A(�g�+ ∪ �g�− ∪ {r})/H (r) by the canonical projection. Thus, in the sequel,

A(�g�+ ∪ �g�− ∪ {r})/H (r)
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will either denote a quotient Hopf algebra or a Hopf subalgebra of the Hopf
algebra A(�g�+ ∪ �g�− ∪ {r}).

Let K be a bottom knot in Σ × [−1, 1]. By the previous paragraph, �Z(K)
mod H (r) can be regarded as a series of tree-shaped Jacobi diagrams with at
most one r-colored vertex on each component. Using the functoriality of �Z,
it is easily checked that the subseries of �Z(K) mod H (r) consisting only of
tree-shaped Jacobi diagrams without r-colored vertices, is �Z(Σ× [−1, 1]). This
is the identity of the object g in the category ts A, namely

Idg = exp�

�
g�

i=1
i
−

i
+
�

.

Moreover, �Z(K) mod H (r) is group-like since �Z(K) is so. Thus, we deduce
that

log�
Ä

�Z(K) mod H (r)
ä
−

g�

i=1
i
−

i
+

is a series of tree-shaped connected Jacobi diagrams with exactly one r-colored
vertex. Such a series can be interpreted as a Lie series in the set of variables
�g�+∪�g�− as we did in (1.1) and, so, as an element of �L(H) after the following
change of variables:

i
+ �−→ bi, ∀i = 1, . . . , g and i

− �−→ ai, ∀i = 1, . . . , g.

Thus, we have an inclusion

(5.6) �L(H) ⊂ A(�g�+ ∪ �g�− ∪ {r})

and we can write

log�
Ä

�Z(K) mod H (r)
ä
−

g�

i=1
i
−

i
+

∈ �L(H).

Therefore, we can use Lemma 5.3 and Lemma 5.5 to define a map

θ
�Z : π −→ �T(H)

by the formula

(5.7) θ
�Z (�(K)) := exp⊗

�
log�

Ä
�Z(K) mod H (r)

ä
−

g�

i=1
i
−

i
+
�

.

Proposition 5.6. — The map θ
�Z is a symplectic expansion of π.
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Proof. — First, we prove that θ
�Z is a monoid homomorphism. According to

(5.3), the q-cobordism corresponding to the trivial bottom knot is η⊗ Idrg , and
we have

�Z(η ⊗ Idrg ) = �Z(η)⊗ �Z(Idrg ) = ∅⊗ Idg = exp�

�
g�

i=1
i
−

i
+
�

.

We deduce that θ
�Z(1) = exp⊗(0) = 1. To prove the multiplicativity of θ

�Z ,
we consider two bottom knots K and L. According to (5.2), the Lagrangian
q-cobordism corresponding to K · L can be decomposed as

K · L = (µ⊗ Idrg ) ◦ P•,•,rg ◦ (Id•⊗K) ◦ L.

Here, P•,•,rg is the q-cobordism (•(•rg)) → ((••)rg) whose associated cobor-
dism is the identity of (g + 2). So, we obtain

�Z(K · L) = ( �Z(µ)⊗ Idg) ◦ �Z(P•,•,rg ) ◦ (Id1⊗ �Z(K)) ◦ �Z(L).

An application of [7, Lemma 5.5] shows that �Z(µ) is congruent modulo H (1−)
to

p := χ
−1




1−

1+ 2+




where the brackets [−] stand for exponentials. Thus, we obtain that
�Z(K · L) ≡ (p⊗ Idg) ◦ �Z(P•,•,rg ) ◦ (Id1⊗ �Z(K)) ◦ �Z(L) mod H (1−).

Using the functoriality of �Z, it is easily checked thatÄ
�Z(P•,•,rg )

��1− �→ 0
ä

= ∅⊗Idg+1 and
Ä

�Z(P•,•,rg )
��2− �→ 0

ä
= Id1⊗∅⊗Idg

from which it follows thatÄ
�ZY (P•,•,rg )

��1− �→ 0
ä

= ∅ and
Ä

�ZY (P•,•,rg )
��2− �→ 0

ä
= ∅.

Since �ZY (P•,•,rg ) is group-like, we deduce that each diagram of this series dis-
plays the color 1− as well as the color 2−, on each of its components. Therefore,

�Z(K · L) mod H (1−)

(5.8)

= (p⊗ Idg) ◦ (Id1⊗ �Z(K)) ◦ �Z(L) mod H (1−)

= (p⊗ Idg) ◦ (Id1⊗( �Z(K) mod H (1−))) ◦ ( �Z(L) mod H (1−)) mod H (1−).
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For all B ∈ B, we set

κ(B) := log�
Ä

�Z(B) mod H (r)
ä
−

g�

i=1
i
−

i
+

∈ �L(H)

where �Z(B) is seen as an element of A(�g�+ ∪ �g�− ∪ {r}) by the change of
variables (5.4) and �L(H) is seen as a subspace of A(�g�+∪�g�−∪{r}) by (5.6).
By definition of θ

�Z we have

(5.9) θ
�Z(�(B)) = exp⊗(κ(B)).

By expliciting the composition law in the category ts A, we derive from (5.8)
the following identity:

�Z(K · L) mod H (r) =

(exp� κ(L)|r �→ 1∗) � (exp� κ(K)|r �→ 2∗)

{1∗, 2∗}Ö

p

�������

1+ �→ 1∗

2+ �→ 2∗

1− �→ r

è
� Idg .

Here, the array means that the bottom row is “contracted” to the top row with
respect to the set of their common variables, which appears in the middle row.
(This contraction is denoted by �−,−�{1∗,2∗} in [7].) Therefore, we have

�Z(K · L) mod H (r) = χ
−1

r
(χr exp� κ(K) · χr exp� κ(L)) � Idg

= χ
−1

r
(exp· χrκ(K) · exp· χrκ(L)) � Idg

where, in the last two terms, the dot · denotes the multiplication in the space
A(↑r

, �g�+∪�g�−) along ↑r, and χr is the Poincaré–Birkhoff–Witt isomorphism
from A(�g�+ ∪ �g�− ∪ {r}) to A(↑r

, �g�+ ∪ �g�−). We deduce that

exp� κ(K · L) = χ
−1

r
(exp· χrκ(K) · exp· χrκ(L))

or, equivalently, that

exp· χrκ(K · L) = χr exp� κ(K · L) = exp· χrκ(K) · exp· χrκ(L).

By (5.9), we conclude that

θ
�Z (�(K) · �(L)) = θ

�Z(�(K))⊗ θ
�Z(�(L))

and that θ
�Z is a monoid homomorphism.

Next, for any bottom knot B, we deduce from [7, Lemma 4.12] that

�Z(B) = exp�

�

r

b

+
g�

i=1
i
−

i
+
�
� �ZY (B)
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where b is the homology class of B in Σ× [−1, 1] written as

H � b =
g�

i=1

(xi · ai + yi · bi) =
g�

i=1

(xi · i− + yi · i+)

for some x1, y1, . . . , xg, yg ∈ Q. So, we have

κ(B) =
r

b

+ (i-deg ≥ 1) mod H (r)

and we deduce that θ
�Z(�(B)) = exp⊗ (κ(B)) = 1 + b + (deg ≥ 2).

Bg

Figure 5.4. A bottom knot Bg such that �(Bg) = ζ.

It remains to prove that θ
�Z(ζ) = exp(−ω). The element ζ ∈ π can be

represented by the bottom knot Bg shown on Figure 5.4. An application of [7,
Lemma 5.5] gives

�Z(Bg) = χ
−1



 Z(Lg)

· · ·

1+ g+ 



where Z(Lg) is the Kontsevich integral of the framed oriented q-tangle Lg

shown on Figure 5.5. The same figure states that the q-tangle Lg is obtained
by cabling the vertical component of a certain q-tangle L. So, we have

Z(Lg) = ∆+

(rg|•�→(+−))
(Z(L))
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where, for any non-associative word w in the letters {+,−}, ∆+
w

denotes the
usual “doubling”/“orientation-reversal” map as recalled in [7, Notation 3.13].

cabling�

· · ·

r
r

L Lg

((+−) +)

(+)

((+−) (rg|• �→ (+−))

(rg|• �→ (+−))

Figure 5.5. The framed oriented q-tangle Lg as a cabling.

By decomposing L into elementary q-tangles, it is easily checked that

Z(L) ≡ �

r

mod H (�r),

where we notify of a (vertical) minus sign inside the exponential [−] . We deduce
that
(5.10)

�Z(Bg) ≡ χ
−1




�

· · ·

r 1− g−

1+ g+ 



mod H (r).

By developing the (g + 1) exponentials and by applying χ
−1, we obtain
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�Z(Bg) ≡
�

m

1

m!

.

.

.

· · ·

· · ·

· · · · · ·
1− 1− g− g−

1+ 1+ g+ g+

r

r

m0

m1 mg

mod H (r)

where the sum is over all (g + 1)-uplets of non-negative integers m =
(m0, m1, . . . ,mg). This can be reduced modulo H (r) to

�

m

1

m!

�

n1≤m1,...,ng≤mg
n1+···+ng=m0

g�

i=1

ni! ·
g�

i=1

Ç
mi

ni

å
·
Ç

m0

n1, . . . , ng

å
·

g�

i=1
r

i
+

i
−
�ni

�
g�

i=1
i
−

i
+
�(mi−ni)

.

Thus, we obtain

�Z(Bg) ≡ exp�

�
g�

i=1
i
−

i
+
�
� exp�

Ü
g�

i=1
r

i
+

i
−
ê

mod H (r),

which is equivalent to

κ(Bg) =
g�

i=1
r

i
+

i
−

=
g�

i=1

[bi, ai] = −ω ∈ �L(H).

This concludes the proof of the symplecticity of θ
�Z .

Remark 5.7. — The construction of the LMO functor �Z in [7] assumes two
choices: one has to fix a system of meridians and parallels (α, β) on the surface
Σ and, since the definition of �Z is based on the Kontsevich integral, one has
to specify a Drinfeld associator. Therefore, the symplectic expansion θ

�Z should
depend on those two choices.

5.3. The total Johnson map defined by the LMO functor. — The total Johnson
map relative to the symplectic expansion θ

�Z of π is denoted by

τ
�Z : I C −→ Hom(H, �L≥2)
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and, as explained at the end of §3.3, this map is equivalent to a monoid homo-
morphism

�
�Z : I C → IAutω(�L).

Besides, the LMO homomorphism is defined(3) in [7] as the “Y-part” of the
LMO functor restricted to I C , and this is a monoid homomorphism

�ZY : I C −→ AY (�g�+ ∪ �g�−).

Recall that the product � on AY (�g�+ ∪ �g�−) is defined on Jacobi diagrams
D,E by
(5.11)

D � E :=

�
sum of all ways of connecting some i

+-colored vertices
of D to some i

−-colored vertices of E, for all i = 1, . . . , g

�
.

The values of �ZY are group-like and, so, they are invertible for the multiplica-
tion �. Actually, we will only need the tree-reduction of �ZY

�ZY,t : I C −→ AY,t(�g�+ ∪ �g�−)

with values in the quotient of AY (�g�+ ∪ �g�−) by the subspace generated by
looped Jacobi diagrams. This subspace being a Hopf ideal, AY,t(�g�+ ∪ �g�−)
is a quotient Hopf algebra.

The next result shows that the tree-reduction of the LMO homomorphism
determines the total Johnson map relative to the symplectic expansion θ

�Z .

Theorem 5.8. — Let C ∈ I C and let Z := �ZY,t(C). We denote by Z
−1 the

inverse of Z with respect to the multiplication �. Then, for all y ∈ �L(H), we
have

(5.12) �
�Z(C)(y) = log�

�
Z � exp�(y) � Z

−1 mod H (r)
�
∈ �L(H).

Here, �L(H) is seen as a subspace of A(�g�+ ∪ �g�− ∪ {r}) by inclusion (5.6),
and � is the multiplication on A(�g�+ ∪ �g�− ∪ {r}) defined by (5.11).

This result is inspired by the work of Habegger and Masbaum [15, §12]. In
this work, they first show that the Kontsevich integral defines an expansion
of the free group of rank n, with respect to which one can compute Milnor’s
µ invariants of an n-strand string link β. Then, they prove a “global formula”
giving Milnor’s µ invariants of β in terms of its Kontsevich integral. Theorem 5.8
is very close in spirit to that formula.

(3) Homology cylinders over Σ are equipped in [7] with left-handed non-associative words
(· · · ((••) •) · · · •). Here, we prefer to equip them with right-handed non-associative words,
which affects none of the properties shown in [7] for �ZY .
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Proof of Theorem 5.8. — We start with the case when C is the mapping cylin-
der of an h ∈ I , which is simpler. For all bottom knots K in Σ × [−1, 1], we
have the identity

(Id1⊗h) ◦K ◦ h
−1 = h(K) ◦ h ◦ h

−1 = h(K)

in the category of cobordisms LCob, hence the identity

�Z(h(K)) = (Id1⊗ �Z(h)) ◦ �Z(K) ◦ �Z(h−1)

in the category of diagrams ts A. By expliciting the composition law of ts A, this
writes

�Z(h(K)) =

Ä
�Z(h−1) |j− �→ j

∗
,∀j = 1, . . . , g

ä

�g�∗Ö
�Z(K)

�������

r �→ s

j
+ �→ j

∗
,∀j = 1, . . . , g

j
− �→ j

�
,∀j = 1, . . . , g

è

{s} ∪ �g��

exp�

Ç

r

s

å
�
Ä

�Z(h)
��j+ �→ j

�
,∀j = 1, . . . , g

ä

.

By reducing modulo H (r), we obtain
(5.13)

�Z(h(K)) mod H (r) =

exp�

�
g�

j=1
j
∗

j
+
�
�

�
Z
−1 |j− �→ j

∗
,∀j = 1, . . . , g

�

�g�∗Ö
�Z(K) mod H (r)

�������

r �→ s

j
+ �→ j

∗
,∀j = 1, . . . , g

j
− �→ j

�
,∀j = 1, . . . , g

è

{s} ∪ �g��

exp�

�

r

s

+
g�

j=1
j
−

j
�
�
�

�
Z

��j+ �→ j
�

,∀j = 1, . . . , g
�

.

As before, we associate to each bottom knot B the Lie series

κ(B) := log�
Ä

�Z(B) mod H (r)
ä
−

g�

i=1
i
−

i
+

∈ �L(H) ⊂ A(�g�+ ∪ �g�− ∪ {r}),
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which satisfies κ(B) = θ
�Z log �(B) ∈ �L(H) ⊂ �T(H). We have

κh(K) = θ
�Z log �(h(K))

= θ
�Z log h∗�(K)

= θ
�Zm(h∗) log �(K) = �

�Z(h)θ�Z log �(K).

Then, equation (5.13) gives the following identity where y is the Lie series
θ
�Z log �(K) and where C = h is assumed to belong to I :

exp�

�
g�

j=1
j
−

j
+
�
� exp�

�
�
�Z(C)(y)

�
mod H (r)(5.14)

=

exp�

�
g�

j=1
j
∗

j
+
�
�

�
Z
−1 |j− �→ j

∗
,∀j = 1, . . . , g

�

�g�∗

exp�

�
g�

j=1
j
�

j
∗
�
�

Ö

exp�(y)

�������

r �→ s

j
+ �→ j

∗
,∀j = 1, . . . , g

j
− �→ j

�
,∀j = 1, . . . , g

è

{s} ∪ �g��

exp�

�

r

s

+
g�

j=1
j
−

j
�
�
�

�
Z

��j+ �→ j
�

,∀j = 1, . . . , g
�

Let us now prove formula (5.14) for any homology cylinder C. Our arguments
are based on Goussarov and Habiro’s calculus of claspers, which allows us to
proceed as before up to a fixed degree d ≥ 1. Fundamental in their works
is the notion of Yd-equivalence for 3-manifolds [13, 16, 12, 10]. In particular,
they prove that there exists a homology cylinder C (depending on d) such that
C ◦ C and C ◦ C are Yd-equivalent to the trivial cylinder. Thus, there exists a
disjoint union G of connected tree claspers with d nodes in Σ×[−1, 1], such that
surgery along G transforms Σ× [−1, 1] to C ◦C. Let us consider the Lagrangian
cobordism

(5.15) L := (Id1⊗C) ◦K ◦ C.

If we regard L as a connected framed oriented tangle in the homology cylinder
C ◦C, we see that there exists a bottom knot L

� in Σ× [−1, 1] disjoint from G

such that surgery along G transforms L
� to L. On the one hand, a property of

the LMO functor shown in [7] implies that �Z(L�) differs from �Z(L) by a series
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of Jacobi diagrams with internal degree ≥ d. So, we have

(5.16) κ(L�) ≡ log�
Ä

�Z(L) mod H (r)
ä
−

g�

i=1
i
−

i
+

mod �L≥d+1.

On the other hand, L
� ◦ C is Yd-equivalent to L ◦ C so that it is Yd-equivalent

to (Id1⊗C) ◦K, from which we deduce that

{�(L�)} = ρd(C)
�
{�(K)}

�
∈ π/Γd+1π.

Then, a short computation gives

(5.17) κ(L�) ≡ �
�Z(C)θ�Z log �(K) mod �L≥d+1.

By comparing (5.16) to (5.17), we get
(5.18)

�Z(L) mod H (r) = exp�

�
g�

j=1
j
−

j
+
�
� exp�

�
�
�Z(C)θ�Z log �(K)

�
+ (i-deg ≥ d).

If we now come back to (5.15) and apply to it the LMO functor, we get

(5.19) �Z(L) =
Ä
Id1⊗ �Z(C)

ä
◦ �Z(K) ◦ �Z(C).

Since C is inverse to C up to Yd-equivalence, �ZY (C) is inverse to �ZY (C) with
respect to the � product up to some terms of internal degree at least d. So,
�ZY,t(C) is equal to Z

−1 modulo diagrams of internal degree at least d. Then,
by reducing (5.19) modulo H (r) and by using (5.18), we obtain equation (5.14)
modulo diagrams of internal degree at least d. By making d → +∞, we conclude
that (5.14) is valid for any homology cylinder C and for y = θ

�Z log �(K).
Next, since the bottom knot K is arbitrary in the above discussion, formula

(5.14) holds true for any C ∈ I C and for any y ∈ θ
�Z log(π). Besides, we observe

that both sides of (5.12) are linear in y, the right side being the connected part
of the product Z � y � Z

−1 mod H (r). We deduce from this observation and
the next claim that it is enough to prove (5.12) for any y ∈ θ

�Z log(π).

Claim 5.9. — Let F be a finitely generated free group. Then, any element
x ∈ m(F ) can be written as

x =
+∞�

i=1

qixi where xi ∈ �Γim(F ) ∩ log(F ) and qi ∈ Q.

Proof of Claim 5.9. — Let (b1, . . . , bn) be a basis of F . By Example 2.9, m(F )
is the complete free Lie algebra generated by (b1, . . . , bn) where bi := log(bi).
The Baker–Campbell–Hausdorff formula implies that, for all r ≥ 1 and for all
i1, . . . , ir ∈ {1, . . . , n},

[bi1 , [bi2 , [. . . , bir ] · · · ]] ≡ log ([bi1 , [bi2 , [. . . , bir ] · · · ]]) mod �Γr+1m(F ).
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The claim is easily deduced from that fact.

We now finish the proof by developing (5.14):

exp�

�
g�

j=1
j
−

j
+
�
� exp�

�
�
�Z(C)(y)

�
mod H (r)

=

exp�

�
g�

j=1
j
∗

j
+
�
�

�
Z
−1 |j− �→ j

∗
,∀j = 1, . . . , g

�

�g�∗

exp�

�
g�

j=1
j
∆

j
∗
�
�

�
exp�(y)

�����
j
+ �→ j

∗
,∀j = 1, . . . , g

j
− �→ j

�
,∀j = 1, . . . , g

�

�g��

exp�

�
g�

j=1
j
−

j
�
�
�

�
Z

��j+ �→ j
�

,∀j = 1, . . . , g
�

= exp�

�
g�

j=1
j
−

j
+
�
�

�
Z � exp�(y) � Z

−1
�
.

The last identity is obtained by an easy combinatorial argument [7, Exam-
ple 4.5]. We conclude that �

�Z(C)(y) = log�
�
Z � exp�(y) � Z

−1 mod H (r)
�
.

We can now prove that, on the submonoid I C [k], the degree [k, 2k[ part
of �ZY,t coincides after fission with the k-th infinitesimal Morita homomor-
phism. For this, let us note that the space T (H) defined in §1.1 embeds into
AY,t(�g�+ ∪ �g�−) by

T �−→
�

T

�����
bi �→ i

+
, ∀i = 1, . . . , g

ai �→ i
−

, ∀i = 1, . . . , g

�
.

In that way, T (H) is identified with the subspace of AY,t(�g�+∪�g�−) spanned
by connected tree-shaped Jacobi diagrams.

Theorem 5.10. — Let C ∈ I C and let k ≥ 1 be such that �ZY,t

i
(C) = 0 for

all i ∈ [1, k[. Then, C belongs to I C [k] and we have

η

Ä
�ZY,t

[k,2k[
(C)

ä
= −τ

�Z
[k,2k[

(C) ∈
2k−1�

i=k

H ⊗ Li+1.

Equivalently, we have

Φ
Ä

�ZY,t

[k,2k[
(C)

ä
= θ

�Z
∗ (mk(C)) ∈ H3(L/L≥k+1)
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where θ
�Z
∗ is induced by the isomorphism θ

�Z : m(π/Γk+1π) → L/L≥k+1 in
homology.

Proof. — We set Z := �ZY,t(C), which writes

Z = ∅ + Zk + · · · + Z2k−1 + (i-deg ≥ 2k).

Since �ZY (C) is group-like, Z is group-like and, so, is the exponential with
respect to � of a primitive element. Since 2k − 1 is strictly less than k + k,
we deduce that Zk, . . . , Z2k−1 only consist of connected diagrams, so that the
map η or Φ can indeed be applied to Z[k,2k[. The same argument shows that
the inverse of Z with respect to � can be written as follows:

Z
−1 = ∅− Zk − · · · − Z2k−1 + (i-deg ≥ 2k).

According to Theorem 5.8 , we have

τ
�Z(C)(bi) mod �L≥2k+1

= log�

Ç
Z � exp�

Ç

r

i
+
å

� Z
−1

å
− bi + (i-deg ≥ 2k) mod H (r)

= log�
�
Z � (Z−1|i− �→ i

− + r)
�

+ (i-deg ≥ 2k) mod H (r)

= (Zk + · · · + Z2k−1)− (Zk + · · · + Z2k−1|i− �→ i
− + r) mod H (r)

= −(Zk + · · · + Z2k−1|i− �→ r . . . exactly one time !)

and, similarly, we have

τ
�Z(C)(ai) mod �L≥2k+1

= log�
�
(Z|i+ �→ i

+ + r) � Z
−1

�
+ (i-deg ≥ 2k) mod H (r)

= (Zk + · · · + Z2k−1|i+ �→ i
+ + r)− (Zk + · · · + Z2k−1) mod H (r)

= (Zk + · · · + Z2k−1|i+ �→ r . . . exactly one time !).

Thus, we conclude that

τ
�Z(C) mod H ⊗ �L≥2k+1 = −η

�
Z[k,2k[

�
.

In particular, this shows that C belongs to I C [k]. The second statement follows
from Theorem 4.4.

As a consequence of Theorem 3.5, we recover the following result from [7].

Corollary 5.11. — Let C ∈ I C . The lowest degree non-trivial term of
�ZY,t(C) coincides with the opposite of the first non-trivial Johnson homomor-
phism of C.
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The proof of Corollary 5.11 given in [7] is indirect: based on Habegger’s corre-
spondence between Johnson homomorphisms and Milnor’s µ invariants [14], it
uses the connection between the latter invariants and the Kontsevich integral
given in [15].

To conclude this paper, we give a restatement of Theorem 5.8 in which it
is clear that the total Johnson map relative to θ

�Z tantamounts to the tree-
reduction of the LMO homomorphism. For this, we need the following state-
ment, which is well-known and is true for any Lie algebra equipped with a
complete filtration.

Proposition 5.12. — There is a canonical bijection between the set of
filtration-preserving derivations of �L(H) with values in �L≥2(H), and the set
of filtration-preserving automorphisms of �L(H) that induce the identity at the
graded level:

Der(�L, �L≥2)

exp◦

−→←−
log◦

IAut(�L).

Proof. — We follow [36] which deals with the (commutative) associative alge-
bra case. Let ψ ∈ IAut(�L). Then, �ψ := ψ − Id is a Q-linear map �L→ �L which
sends �L≥n to �L≥n+1. Thus, the series

�
n≥1(−1)n+1

/n · �ψn(x) converges in �L
for all x ∈ �L, so that

log◦(ψ) :=
�

n≥1

(−1)n+1

n
· �ψn

defines a filtration-preserving Q-linear map �L → �L valued into �L≥2. For any
integer n ≥ 1 and for all i, j ∈ Z, we consider the integers a

n

i,j
≥ 0 defined

inductively by the relation a
n+1

i+1,j+1
= a

n

i+1,j
+ a

n

i,j+1
+ a

n

i,j
starting with

a
1

i,j
=

�
1 if (i, j) ∈ {(1, 0), (0, 1), (1, 1)},
0 otherwise.

These integers a
n

i,j
satisfy

�ψn ([x, y]) =
�

i,j∈Z
a

n

i,j
·
î
�ψi(x), �ψj(y)

ó
∀x, y ∈ �L.

In addition, the integers a
n

i,j
can be defined by the formula

(X + Y + XY )n =
�

i,j∈Z
a

n

i,j
· Xi

Y
j ∈ Q[X,Y ].
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Then, the identity log(1 + X + Y + XY ) = log(1 + X) + log(1 + Y ) implies
certain linear relations among the trinomial coefficients a

n

i,j
with (i, j) fixed.

We deduce from these relations that log◦(ψ) is a derivation.
Conversely, let δ ∈ Der(�L, �L≥2). Then, δ sends �L≥n to �L≥n+1. Thus, the

series
�

n≥0 1/n! · δn(x) converges in �L for all x ∈ �L, so that

exp◦(δ) :=
�

n≥0

1

n!
· δn

defines a filtration-preserving Q-linear map �L → �L which is the identity at
the graded level and, so, is an isomorphism. It is easily checked that exp◦(δ)
preserves the Lie bracket.

Consequently, we have a one-to-one correspondence

Derω(�L, �L≥2)

exp◦

−→←−
log◦

IAutω(�L)

between derivations that vanish on ω and automorphisms that fix ω. Moreover,
the canonical isomorphism

Der(�L, �L≥2) � Hom(H, �L≥2) � H ⊗ �L≥2

sends Derω(�L, �L≥2) to the kernel of the Lie bracket. Then, using the isomor-
phism η defined at (1.6), we obtain an isomorphism

η : T (H)
�−→ Derω(�L, �L≥2)

which appears in Kontsevich’s work [25, 26] and where T (H) stands here for its
degree completion. So, given any symplectic expansion θ of π, we can consider
the composition

(5.20) I C �
θ

−→ IAutω(�L) log◦−→
�

Derω(�L, �L≥2)
η
−1

−→
�

T (H).

Besides, the LMO homomorphism takes values in the group-like part of the
Hopf algebra AY (�g�+∪�g�−), whose product � is defined at (5.11) and whose
coproduct ∆ is defined at (5.5). The same is true for the tree-reduction of the
LMO homomorphism. Thus, we can consider the composition

I C �ZY,t

−→ GLike(AY,t(�g�+ ∪ �g�−))
log�−→
�

Prim(AY,t(�g�+ ∪ �g�−)) = T (H).

Our last result asserts that this map I C → T (H) is an instance of (5.20).

Theorem 5.13. — For all C ∈ I C , we have

log◦ �
�Z(C) = −η log

�
�ZY,t(C) ∈ Der(�L, �L≥2).
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Thus �ZY,t is essentially the same invariant of homology cylinders as the in-
finitesimal Dehn–Nielsen representation �

�Z or, equivalently, as the total John-
son map τ

�Z .

Proof of Theorem 5.13. — We set Z := �ZY,t(C) and z := log
�
(Z). Let y ∈ �L

which we can regard as an element of A(�g�+∪�g�−∪{r}). Then, Theorem 5.8
gives

�
�Z(C)(y) = log� (exp

�
(z) � exp�(y) � exp

�
(−z) mod H (r))

= non-empty connected part of exp
�
(z) � exp�(y) � exp

�
(−z) mod H (r)

= connected part of exp
�
(z) � y � exp

�
(−z) mod H (r)

= connected part of
+∞�

n=0

1

n!

n�

i=0

Ç
n

i

å
z+

�i
� y � z−

�(n−i) mod H (r),

where we have denoted z± := ±z. Observe that there are
�
n

i

�
ways of paren-

thesizing the n-iterated product z+
�i

� y � z−
�(n−i) “starting from the inside”

with y. For instance, for n = 4 and i = 2, these
�
4

2

�
= 6 ways are

�
((z+�(z+�y))�z−)�z−

�
,

�
(z+�((z+�y)�z−))�z−

�
,

�
z+�(((z+�y)�z−)�z−)

�
,

�
(z+�(z+�(y�z−)))�z−

�
,

�
z+�((z+�(y�z−))�z−)

�
,

�
z+�(z+�((y�z−)�z−))

�
.

Besides, the derivation η(z) can be written as the sum of two derivations η+(z)
and η−(z) by using the decomposition

Der(�L, �L≥2) � Hom(H, �L≥2) � H ⊗ �L≥2 = (H+ ⊗ �L≥2)⊕ (H− ⊗ �L≥2),

where H+ and H− denote the subspaces of H spanned by the longitudes
b1, . . . , bg and the meridians a1, . . . , ag respectively. We deduce that, for any
integer n ≥ 0,

(−η(z))◦n(y) = (−η+(z)− η−(z))◦n (y)

= (−1)n ·
�

p:{1,...,n}→{+,−}

ηp(1)(z) ◦ · · · ◦ ηp(n)(z)(y)

= connected part of
n�

i=0

Ç
n

i

å
z+

�i
� y � z−

�(n−i) mod H (r)

where the last identity follows from the previous observation and the definition
of the multiplication �. We conclude that �

�Z(C) = exp◦(−η(z)).
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