[Théorèmes centraux limite pour le mouvement brownien sur le groupe unitaire de grande taille]
Dans cet article, on considère la loi limite, lorsque
In this paper, we are concerned with the large
Keywords: unitary brownian motion, heat kernel, random matrices, central limit theorem, Haar measure
Mot clés : mouvement brownien unitaire, noyau de la chaleur, matrices aléatoires, théorème central limite, mesure de Haar
@article{BSMF_2011__139_4_593_0, author = {Benaych-Georges, Florent}, title = {Central limit theorems for the brownian motion on large unitary groups}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {593--610}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {139}, number = {4}, year = {2011}, doi = {10.24033/bsmf.2621}, mrnumber = {2869307}, zbl = {1242.60007}, language = {en}, url = {https://www.numdam.org/articles/10.24033/bsmf.2621/} }
TY - JOUR AU - Benaych-Georges, Florent TI - Central limit theorems for the brownian motion on large unitary groups JO - Bulletin de la Société Mathématique de France PY - 2011 SP - 593 EP - 610 VL - 139 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2621/ DO - 10.24033/bsmf.2621 LA - en ID - BSMF_2011__139_4_593_0 ER -
%0 Journal Article %A Benaych-Georges, Florent %T Central limit theorems for the brownian motion on large unitary groups %J Bulletin de la Société Mathématique de France %D 2011 %P 593-610 %V 139 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2621/ %R 10.24033/bsmf.2621 %G en %F BSMF_2011__139_4_593_0
Benaych-Georges, Florent. Central limit theorems for the brownian motion on large unitary groups. Bulletin de la Société Mathématique de France, Tome 139 (2011) no. 4, pp. 593-610. doi : 10.24033/bsmf.2621. https://www.numdam.org/articles/10.24033/bsmf.2621/
[1] An introduction to random matrices, Cambridge Studies in Advanced Math., vol. 118, Cambridge Univ. Press, 2010. | MR | Zbl
, & -[2] « A continuous semigroup of notions of independence between the classical and the free one », Ann. Probab. 39 (2011), p. 904-938. | MR | Zbl
& -[3] « Free Brownian motion, free stochastic calculus and random matrices », in Free probability theory (Waterloo, ON, 1995), Fields Inst. Commun., vol. 12, Amer. Math. Soc., 1997, p. 1-19. | MR | Zbl
-[4] -, « Segal-Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems », J. Funct. Anal. 144 (1997), p. 232-286. | MR | Zbl
[5] « Sur les principes de la théorie cinétique des gaz », Ann. Sci. École Norm. Sup. 23 (1906), p. 9-32. | JFM | Numdam
-[6] « Multivariate normal approximation using exchangeable pairs », ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008), p. 257-283. | MR | Zbl
& -[7] « Two central limit problems for dependent random variables », Z. Wahrsch. Verw. Gebiete 43 (1978), p. 223-243. | MR | Zbl
-[8] « Second order freeness and fluctuations of random matrices. III. Higher order freeness and free cumulants », Doc. Math. 12 (2007), p. 1-70. | MR | Zbl
, , & -[9] « Borel theorems for random matrices from the classical compact symmetric spaces », Ann. Probab. 36 (2008), p. 876-895. | MR | Zbl
& -[10] « Brownian motion and the classical groups », in Probability, statistics and their applications: papers in honor of Rabi Bhattacharya, IMS Lecture Notes Monogr. Ser., vol. 41, Inst. Math. Statist., 2003, p. 97-116. | MR | Zbl
, & -[11] Large deviations techniques and applications, second éd., Applications of Mathematics (New York), vol. 38, Springer, 1998. | MR | Zbl
& -[12] « Free Jacobi process », J. Theoret. Probab. 21 (2008), p. 118-143. | MR | Zbl
-[13] « On the eigenvalues of random matrices », J. Appl. Probab. 31A (1994), p. 49-62. | MR | Zbl
& -[14] « Rough path limits of the Wong-Zakai type with a modified drift term », J. Funct. Anal. 256 (2009), p. 3236-3256. | MR | Zbl
& -[15] « Semi-groups of measures on Lie groups », Trans. Amer. Math. Soc. 81 (1956), p. 264-293. | MR | Zbl
-[16] Stochastic differential equations and diffusion processes, second éd., North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., 1989. | MR | Zbl
& -[17] « How many entries of a typical orthogonal matrix can be approximated by independent normals? », Ann. Probab. 34 (2006), p. 1497-1529. | MR | Zbl
-[18] « Schur-Weyl duality and the heat kernel measure on the unitary group », Adv. Math. 218 (2008), p. 537-575. | MR | Zbl
-[19] « Central limit theorem for the heat kernel measure on the unitary group », J. Funct. Anal. 259 (2010), p. 3163-3204. | MR | Zbl
& -[20] « Linear functions on the classical matrix groups », Trans. Amer. Math. Soc. 360 (2008), p. 5355-5366. | MR | Zbl
-[21] « Annular noncrossing permutations and partitions, and second-order asymptotics for random matrices », Int. Math. Res. Not. 2004 (2004), p. 1413-1460. | MR | Zbl
& -[22] « Second order freeness and fluctuations of random matrices. II. Unitary random matrices », Adv. Math. 209 (2007), p. 212-240. | MR | Zbl
, & -[23] « Second order freeness and fluctuations of random matrices. I. Gaussian and Wishart matrices and cyclic Fock spaces », J. Funct. Anal. 235 (2006), p. 226-270. | MR | Zbl
& -[24] « Martingale approach to some limit theorems », in Papers from the Duke Turbulence Conference (Duke Univ., Durham, N.C., 1976), Paper No. 6, Duke Univ. Math. Ser., vol. III, Duke Univ., 1977. | MR | Zbl
, & -[25] « Combinatorial properties of Brownian motion on the compact classical groups », J. Theoret. Probab. 10 (1997), p. 659-679. | MR | Zbl
-[26] Diffusions, Markov processes, and martingales. Vol. 2, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Inc., 1987. | MR | Zbl
& -[27] « A short proof of Motoo's combinatorial central limit theorem using Stein's method », Probab. Theory Related Fields 78 (1988), p. 249-252. | MR | Zbl
-[28] « Limit theorems for random walks on Lie groups », Sankhyā Ser. A 35 (1973), p. 277-294. | MR | Zbl
& -[29] « A random matrix model from two-dimensional Yang-Mills theory », Comm. Math. Phys. 190 (1997), p. 287-307. | MR | Zbl
-Cité par Sources :