[Pourquoi les algèbres de Jordan sont-elles naturelles en statistiques ? La régression quadratique implique la distribution de Wishart]
Si l’espace
If the space
Keywords: symmetric cones, random matrices, characterization of Wishart laws
Mot clés : cônes symétriques, matrices aléatoires, caractérisation des lois de Wishart
@article{BSMF_2011__139_1_129_0, author = {Letac, G. and Weso{\l}owski, J.}, title = {Why {Jordan} algebras are natural in statistics: quadratic regression implies {Wishart} distributions}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {129--144}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {139}, number = {1}, year = {2011}, doi = {10.24033/bsmf.2603}, zbl = {1213.62089}, language = {en}, url = {https://www.numdam.org/articles/10.24033/bsmf.2603/} }
TY - JOUR AU - Letac, G. AU - Wesołowski, J. TI - Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions JO - Bulletin de la Société Mathématique de France PY - 2011 SP - 129 EP - 144 VL - 139 IS - 1 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2603/ DO - 10.24033/bsmf.2603 LA - en ID - BSMF_2011__139_1_129_0 ER -
%0 Journal Article %A Letac, G. %A Wesołowski, J. %T Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions %J Bulletin de la Société Mathématique de France %D 2011 %P 129-144 %V 139 %N 1 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2603/ %R 10.24033/bsmf.2603 %G en %F BSMF_2011__139_1_129_0
Letac, G.; Wesołowski, J. Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions. Bulletin de la Société Mathématique de France, Tome 139 (2011) no. 1, pp. 129-144. doi : 10.24033/bsmf.2603. https://www.numdam.org/articles/10.24033/bsmf.2603/
[1] « Invariant normal models », Ann. Statist. 3 (1975), p. 132-154. | MR | Zbl
-[2] « On the theory of the statistical regression », Proc. Royal Soc. Edinburgh 53 (1933), p. 260-283. | JFM
-[3] « The Lukacs-Olkin-Rubin theorem without invariance of the “quotient” », Studia Math. 152 (2002), p. 147-160. | MR | Zbl
& -[4] « Characterization and testing problems in the complex Wishart distribution », Thèse, University of Toronto, 1975. | MR
-[5] « Les familles exponentielles à variance quadratique homogène sont des lois de Wishart sur un cône symétrique », C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), p. 537-540. | MR | Zbl
-[6] « Characterization of the Jørgensen set in generalized linear models », Test 3 (1994), p. 145-162. | MR | Zbl
& -[7] -, « The Lukacs-Olkin-Rubin characterization of Wishart distributions on symmetric cones », Ann. Statist. 24 (1996), p. 763-786. | MR | Zbl
[8] Multivariate statistics, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Inc., 1983. | MR | Zbl
-[9] Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press Oxford Univ. Press, 1994, Oxford Science Publications. | MR | Zbl
& -[10] « Statistical analysis based on a certain multivariate complex Gaussian distribution. (An introduction) », Ann. Math. Statist. 34 (1963), p. 152-177. | MR | Zbl
-[11] « Invariant generalized functions in homogeneous spaces », J. Funct. Anal. Appl. 9 (1975), p. 50-52. | Zbl
-[12] « Covariance hypotheses which are linear in both the covariance and the inverse covariance », Ann. Statist. 16 (1988), p. 302-322. | MR | Zbl
-[13] « On a problem connected with quadratic regression », Biometrika 47 (1960), p. 335-343. | MR | Zbl
& -[14] « Algèbre de Jordan et ensemble de Wallach », Invent. Math. 89 (1987), p. 375-393. | MR | Zbl
-
[15] « Le problème de la classification des familles exponentielles naturelles de
[16] « Quadratic and inverse regressions for Wishart distributions », Ann. Statist. 26 (1998), p. 573-595. | MR | Zbl
& -[17] « Laplace transforms which are negative powers of quadratic polynomials », Trans. Amer. Math. Soc. 360 (2008), p. 6475-6496. | MR | Zbl
& -[18] « A characterization of the gamma distribution », Ann. Math. Statist. 26 (1955), p. 319-324. | MR | Zbl
-[19] Random matrices, third éd., Pure and Applied Mathematics (Amsterdam), vol. 142, Elsevier/Academic Press, Amsterdam, 2004. | MR | Zbl
-[20] Aspects of multivariate statistical theory, John Wiley & Sons Inc., 1982. | MR | Zbl
-[21] « A characterization of the Wishart distribution », Ann. Math. Statist. 33 (1962), p. 1272-1280. | MR | Zbl
& -[22] « Proof of a conjecture of M. L. Eaton on the characteristic function of the Wishart distribution », Ann. Probab. 19 (1991), p. 868-874. | MR | Zbl
& -[23] « The Davidson-Kendall problem and related results on the structure of the Wishart distribution », Austr. J. Statist. 30A (1988), p. 272-280. | Zbl
-[24] « Extensions of Lukacs' characterization of the gamma distribution », in Analytical methods in probability theory (Oberwolfach, 1980), Lecture Notes in Math., vol. 861, Springer, 1981, p. 166-177. | MR | Zbl
-[25] « The generalised product moment distribution in samples from a normal multivariate population », Biometrika 20A (1928), p. 32-52. | JFM
-Cité par Sources :