[Métriques presque d'Einstein ACH, renormalisation de volume, et un invariant pour les variétés de contact]
Pour toute variété lisse compacte
To any smooth compact manifold
Mots-clés : ACH metric, approximately Einstein metric, volume renormalization, contact manifold, almost CR structure, CR
@article{BSMF_2009__137_1_63_0, author = {Seshadri, Neil}, title = {Approximately {Einstein} {ACH} metrics, volume renormalization, and an invariant for contact manifolds}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {63--91}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {137}, number = {1}, year = {2009}, doi = {10.24033/bsmf.2569}, mrnumber = {2496701}, zbl = {1176.53078}, language = {en}, url = {https://www.numdam.org/articles/10.24033/bsmf.2569/} }
TY - JOUR AU - Seshadri, Neil TI - Approximately Einstein ACH metrics, volume renormalization, and an invariant for contact manifolds JO - Bulletin de la Société Mathématique de France PY - 2009 SP - 63 EP - 91 VL - 137 IS - 1 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2569/ DO - 10.24033/bsmf.2569 LA - en ID - BSMF_2009__137_1_63_0 ER -
%0 Journal Article %A Seshadri, Neil %T Approximately Einstein ACH metrics, volume renormalization, and an invariant for contact manifolds %J Bulletin de la Société Mathématique de France %D 2009 %P 63-91 %V 137 %N 1 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2569/ %R 10.24033/bsmf.2569 %G en %F BSMF_2009__137_1_63_0
Seshadri, Neil. Approximately Einstein ACH metrics, volume renormalization, and an invariant for contact manifolds. Bulletin de la Société Mathématique de France, Tome 137 (2009) no. 1, pp. 63-91. doi : 10.24033/bsmf.2569. https://www.numdam.org/articles/10.24033/bsmf.2569/
[1] Einstein Manifolds, Ergeb. Math. Grenzgeb., vol. 10, Springer, 1987. | MR | Zbl
-[2] Métriques d'Einstein Asymptotiquement Symétriques, Astérisque, vol. 265, Soc. Math. France, 2000. | Numdam | Zbl
-[3] « A Burns-Epstein invariant for ACHE 4-manifolds », Duke Math. J. 126 (2005), p. 53-100. | MR | Zbl
& -[4] « Diabatic limit, eta invariants and Cauchy-Riemann manifolds of dimension 3 », Ann. Sci. Ecole Norm. Sup. 40 (2007), p. 589-631. | MR | Zbl
, & -[5] « Wormholes in ACH Einstein manifolds », preprint, arXiv:math.DG/0609558. To appear in Trans. Amer. Math. Soc.. | MR | Zbl
& -[6] « Pseudohermitian geometry on contact Riemannian manifolds », Rend. Mat. Ser. VII 22 (2002), p. 275-341. | MR | Zbl
& -[7] « Logarithmic trace of Toeplitz projectors », Math. Res. Lett. 12 (2005), p. 401-412. | MR | Zbl
-[8] -, « Vanishing of the logarithmic trace of generalized Szëgo projectors », in Algebraic Analysis of Differential Equations: In Honor of Prof. Takahiro Kawai on the Occasion of His Sixtieth Birthday (T. Aoki, Y. Takei, N. Tose & H. Majima, éds.), Springer, 2007, preprint arXiv:math.AP/0604166. | MR
[9] « Resolvent of the Laplacian on strictly pseudoconvex domains », Acta Math. 167 (1991), p. 1-106. | MR | Zbl
, & -[10] « Almost-Hermitian geometry », Diff. Geom. Appl. 4 (1994), p. 259-282. | MR | Zbl
, & -[11] « Monge-Ampére equations, the Bergman kernel, and the geometry of pseudoconvex domains », Ann. of Math. 103 (1976), p. 395-416, correction: 104 (1976), 393-394. | MR | Zbl
-
[12] «
[13] -, « The ambient metric », preprint, arXiv:0710.0919.
[14] « Ambient metric construction of
[15] « Hermitian connections and Dirac operators », Boll. Un. Mat. Ital. B (7), suppl. fasc. 2, 11 (1997), p. 257-288. | MR | Zbl
-[16] « Local invariants of an embedded Riemannian manifold », Ann. of Math. 102 (1975), p. 187-203. | MR | Zbl
-[17] « The ambient obstruction tensor and the conformal deformation complex », Pacific J. Math. 226 (2006), p. 309-351. | MR | Zbl
& -[18] « Higher asymptotics of the complex Monge-Ampére equation », Compos. Math. 64 (1987), p. 133-155. | Numdam | MR | Zbl
-[19] -, « Volume and area renormalizations for conformally compact Einstein metrics », Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), p. 31-42. | MR | Zbl
[20] « The ambient obstruction tensor and
[21] « Some global proerties of contact structures », Ann. of Math. 69 (1959), p. 421-450. | MR | Zbl
-[22] « Scattering and inverse scattering on ACH manifolds », J. reine angew Math. 622 (2008), p. 1-55. | MR | Zbl
& -[23] « A remark on renormalized volume and Euler characteristic for ACHE 4-manifolds », Diff. Geom. Appl. 25 (2007), p. 78-91. | MR | Zbl
-[24] « Boundary behaviour of the complex Monge-Ampére equation », Acta Math. 148 (1982), p. 159-192. | MR | Zbl
& -[25] « Geometric connections and geometric Dirac operators on contact manifolds », Diff. Geom. Appl. 22 (2005), p. 355-378. | MR | Zbl
-[26] « Noncommutative residue invariants for CR and contact manifolds », J. reine angew Math. 614 (2008), p. 117-151. | MR | Zbl
-[27] « Perturbations of Kähler-Einstein metrics »,, PhD thesis, University of Washington, 1999.
-[28] « Analytic torsions on contact manifolds », preprint, arXiv:0802.0123. | Numdam | MR | Zbl
& -[29] « Volume renormalization for complete Einstein-Kähler metrics », Diff. Geom. Appl. 25 (2007), p. 356-379. | MR | Zbl
-
[30] -, « Kanbi Einstein-Kähler keiry
[31] A Differential Study on Strongly Pseudo-convex Manifolds, Lectures in Mathematics, vol. 9, Department of Mathematics, Kyoto University, Kinokuniya Book-Store Co., Ltd., 1975. | MR | Zbl
-[32] « Variational problems on contact Riemannian manifolds », Trans. Amer. Math. Soc. 314 (1989), p. 349-379. | MR | Zbl
-[33] « Pseudo-hermitian structures on a real hypersurface », J. Differential Geom. 13 (1978), p. 25-41. | MR | Zbl
-Cité par Sources :