[Trivialisation de -algèbres à fibres fortement auto-absorbantes]
Soit une -algèbre séparable unital dont chaque fibre est isomorphe à une même -algèbre -injective et fortement auto-absorbante. Nous montrons que si l’espace compact et Hausdorff est de dimension finie, alors et sont isomorphes en tant que -algèbres. Ce resultat est connu pour ne pas s’étendre au cas des espaces de dimension infinie.
Suppose is a separable unital -algebra each fibre of which is isomorphic to the same strongly self-absorbing and -injective -algebra . We show that and are isomorphic as -algebras provided the compact Hausdorff space is finite-dimensional. This statement is known not to extend to the infinite-dimensional case.
Keywords: strongly self-absorbing $C^*$-algebra, asymptotic unitary equivalence, continuous field of $C^{*}$-algebras
Mot clés : $C^{*}$-algèbre fortement auto-absorbante, équivalence unitaire asymptotique, champ continu de $C^{*}$-algèbres
@article{BSMF_2008__136_4_575_0, author = {Dadarlat, Marius and Winter, Wilhelm}, title = {Trivialization of $\mathcal {C}(X)$-algebras with strongly self-absorbing fibres}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {575--606}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {136}, number = {4}, year = {2008}, doi = {10.24033/bsmf.2567}, mrnumber = {2443037}, zbl = {1170.46051}, language = {en}, url = {http://www.numdam.org/articles/10.24033/bsmf.2567/} }
TY - JOUR AU - Dadarlat, Marius AU - Winter, Wilhelm TI - Trivialization of $\mathcal {C}(X)$-algebras with strongly self-absorbing fibres JO - Bulletin de la Société Mathématique de France PY - 2008 SP - 575 EP - 606 VL - 136 IS - 4 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/bsmf.2567/ DO - 10.24033/bsmf.2567 LA - en ID - BSMF_2008__136_4_575_0 ER -
%0 Journal Article %A Dadarlat, Marius %A Winter, Wilhelm %T Trivialization of $\mathcal {C}(X)$-algebras with strongly self-absorbing fibres %J Bulletin de la Société Mathématique de France %D 2008 %P 575-606 %V 136 %N 4 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/bsmf.2567/ %R 10.24033/bsmf.2567 %G en %F BSMF_2008__136_4_575_0
Dadarlat, Marius; Winter, Wilhelm. Trivialization of $\mathcal {C}(X)$-algebras with strongly self-absorbing fibres. Bulletin de la Société Mathématique de France, Tome 136 (2008) no. 4, pp. 575-606. doi : 10.24033/bsmf.2567. http://www.numdam.org/articles/10.24033/bsmf.2567/
[1] « Generalized inductive limits of finite-dimensional -algebras », Math. Ann. 307 (1997), p. 343-380. | MR | Zbl
& -[2] « Global Glimm halving for -bundles », J. Operator Theory 52 (2004), p. 385-420. | MR | Zbl
& -[3] « Continuous fields of -algebras over finite dimensional spaces », preprint, arXiv:math.OA/0611405, 2006. | MR | Zbl
-[4] -, « Fiberwise -equivalence of continuous fields of -algebras », preprint, arXiv:math.OA/0611408, 2006.
[5] « On the -theory of strongly self-absorbing -algebras », preprint, arXiv:0704.0583, to appear in Math. Scand., 2007. | MR | Zbl
& -[6] « Champs continus d’espaces hilbertiens et de -algèbres », Bull. Soc. Math. France 91 (1963), p. 227-284. | Numdam | MR | Zbl
& -[7] « -algebras, stability and strongly self-absorbing -algebras », Math. Ann. 339 (2007), p. 695-732. | MR | Zbl
, & -[8] Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, 1941. | MR | Zbl
& -[9] « Equivariant -theory and the Novikov conjecture », Invent. Math. 91 (1988), p. 147-201. | MR | Zbl
-[10] « Central sequences in -algebras and strongly purely infinite algebras », in Operator Algebras: The Abel Symposium 2004, Abel Symp., vol. 1, Springer, 2006, p. 175-231. | MR | Zbl
-[11] Classification of nuclear -algebras, Encyclopaedia Math. Sci, vol. 126, Springer, 2002. | MR | Zbl
-[12] « Strongly self-absorbing -algebras », Trans. Amer. Math. Soc. 359 (2007), p. 3999-4029. | MR | Zbl
& -[13] « Localizing the Elliott conjecture at strongly self-absorbing -algebras », preprint, arXiv:0708.0283, 2007. | MR
-[14] -, « Simple -algebras with locally finite decomposition rank », J. Funct. Anal. 243 (2007), p. 394-425. | MR | Zbl
Cité par Sources :