[Carrés de convolution des mesures singulières]
Si , alors il existe une mesure de probabilité avec support de dimension d’Hausdorff tel que est une fonction Lipschitz de classe .
If , then there exists a probability measure such that the Hausdorff dimension of the support of is and is a Lipschitz function of class .
Keywords: convolution square, self convolution, singular measure
Mot clés : convolution carr'ee, mesure singuliére
@article{BSMF_2008__136_3_439_0, author = {K\"orner, Thomas}, title = {On a theorem of {Saeki} concerning convolution squares of singular measures}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {439--464}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {136}, number = {3}, year = {2008}, doi = {10.24033/bsmf.2562}, mrnumber = {2415349}, zbl = {1183.42004}, language = {en}, url = {http://www.numdam.org/articles/10.24033/bsmf.2562/} }
TY - JOUR AU - Körner, Thomas TI - On a theorem of Saeki concerning convolution squares of singular measures JO - Bulletin de la Société Mathématique de France PY - 2008 SP - 439 EP - 464 VL - 136 IS - 3 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/bsmf.2562/ DO - 10.24033/bsmf.2562 LA - en ID - BSMF_2008__136_3_439_0 ER -
%0 Journal Article %A Körner, Thomas %T On a theorem of Saeki concerning convolution squares of singular measures %J Bulletin de la Société Mathématique de France %D 2008 %P 439-464 %V 136 %N 3 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/bsmf.2562/ %R 10.24033/bsmf.2562 %G en %F BSMF_2008__136_3_439_0
Körner, Thomas. On a theorem of Saeki concerning convolution squares of singular measures. Bulletin de la Société Mathématique de France, Tome 136 (2008) no. 3, pp. 439-464. doi : 10.24033/bsmf.2562. http://www.numdam.org/articles/10.24033/bsmf.2562/
[1] A treatise on trigonometric series. Vols. I, II, Authorized translation by Margaret F. Mullins. A Pergamon Press Book, The Macmillan Co., 1964. | MR | Zbl
-[2] Essays in commutative harmonic analysis, Grund. Math. Wiss., vol. 238, Springer, 1979. | MR | Zbl
& -[3] Probability and random processes, third éd., Oxford University Press, 2001. | MR | Zbl
& -[4] « On convolution squares of singular measures », Colloq. Math. 100 (2004), p. 9-16. | MR | Zbl
& -[5] Set theory, Chelsea Publishing Company, New York, 1957. | MR | Zbl
-[6] « Probability inequalities for sums of bounded random variables », J. Amer. Statist. Assoc. 58 (1963), p. 13-30. | MR | Zbl
-[7] Ensembles parfaits et séries trigonométriques, Actualités Sci. Indust., No. 1301, Hermann, 1963. | MR | Zbl
& -[8] « Small subsets of finite abelian groups », Ann. Inst. Fourier (Grenoble) 18 (1968), p. 99-102 V. | Numdam | MR | Zbl
-[9] Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, 1966. | MR | Zbl
-[10] « On convolution squares of singular measures », Illinois J. Math. 24 (1980), p. 225-232. | MR | Zbl
-[11] « Fourier-Stieltjes Transforms and Singular Infinite Convolutions », Amer. J. Math. 60 (1938), p. 513-522. | JFM | MR
& -Cité par Sources :