A uniform dichotomy for generic SL (2,) cocycles over a minimal base
[Une dichotomie uniforme pour des cocycles à valeurs dans SL (2,) au-dessus d’une dynamique minimale]
Bulletin de la Société Mathématique de France, Tome 135 (2007) no. 3, pp. 407-417.

On considère des cocycles continus à valeurs dans SL (2,) au-dessus d’un homéomorphisme minimal d’un ensemble compact de dimension finie. On montre que le cocycle générique soit est uniformément hyperbolique, soit possède une croissance sous-exponentielle uniforme.

We consider continuous SL (2,)-cocycles over a minimal homeomorphism of a compact set K of finite dimension. We show that the generic cocycle either is uniformly hyperbolic or has uniform subexponential growth.

DOI : 10.24033/bsmf.2540
Classification : 37H15
Keywords: cocycle, minimal homeomorphism, uniform hyperbolicity, Lyapunov exponents
Mot clés : cocycle, homéomorphisme minimal, hyperbolicité uniforme, exposants de Liapounov
@article{BSMF_2007__135_3_407_0,
     author = {Avila, Artur and Bochi, Jairo},
     title = {A uniform dichotomy for generic ${\rm SL}(2,{\mathbb {R}})$ cocycles over a minimal base},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {407--417},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {135},
     number = {3},
     year = {2007},
     doi = {10.24033/bsmf.2540},
     mrnumber = {2430187},
     zbl = {1217.37017},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/bsmf.2540/}
}
TY  - JOUR
AU  - Avila, Artur
AU  - Bochi, Jairo
TI  - A uniform dichotomy for generic ${\rm SL}(2,{\mathbb {R}})$ cocycles over a minimal base
JO  - Bulletin de la Société Mathématique de France
PY  - 2007
SP  - 407
EP  - 417
VL  - 135
IS  - 3
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/bsmf.2540/
DO  - 10.24033/bsmf.2540
LA  - en
ID  - BSMF_2007__135_3_407_0
ER  - 
%0 Journal Article
%A Avila, Artur
%A Bochi, Jairo
%T A uniform dichotomy for generic ${\rm SL}(2,{\mathbb {R}})$ cocycles over a minimal base
%J Bulletin de la Société Mathématique de France
%D 2007
%P 407-417
%V 135
%N 3
%I Société mathématique de France
%U http://www.numdam.org/articles/10.24033/bsmf.2540/
%R 10.24033/bsmf.2540
%G en
%F BSMF_2007__135_3_407_0
Avila, Artur; Bochi, Jairo. A uniform dichotomy for generic ${\rm SL}(2,{\mathbb {R}})$ cocycles over a minimal base. Bulletin de la Société Mathématique de France, Tome 135 (2007) no. 3, pp. 407-417. doi : 10.24033/bsmf.2540. http://www.numdam.org/articles/10.24033/bsmf.2540/

[1] J. Bochi - « Genericity of zero Lyapunov exponents », Ergodic Theory Dynam. Systems 22 (2002), p. 1667-1696. | MR | Zbl

[2] J. Bochi & M. Viana - « The Lyapunov exponents of generic volume-preserving and symplectic maps », Ann. of Math. (2) 161 (2005), p. 1423-1485. | MR | Zbl

[3] S. J. Eigen & V. S. Prasad - « Multiple Rokhlin tower theorem: a simple proof », New York J. Math. 3A (1997/98), p. 11-14. | MR | Zbl

[4] A. Furman - « On the multiplicative ergodic theorem for uniquely ergodic systems », Ann. Inst. H. Poincaré Probab. Statist. 33 (1997), p. 797-815. | Numdam | MR | Zbl

[5] N. Đình Cống - « A generic bounded linear cocycle has simple Lyapunov spectrum », Ergodic Theory Dynam. Systems 25 (2005), p. 1775-1797. | MR | Zbl

[6] J.-I. Nagata - Modern dimension theory, Bibliotheca Mathematica, Vol. VI. Edited with the cooperation of the “Mathematisch Centrum” and the “Wiskundig Genootschap” at Amsterdam, Interscience Publishers John Wiley & Sons, Inc., New York, 1965. | MR | Zbl

[7] J.-C. Yoccoz - « Some questions and remarks about SL (2,𝐑) cocycles », in Modern dynamical systems and applications, Cambridge Univ. Press, 2004, p. 447-458. | MR | Zbl

Cité par Sources :