[Une dichotomie uniforme pour des cocycles à valeurs dans au-dessus d’une dynamique minimale]
On considère des cocycles continus à valeurs dans au-dessus d’un homéomorphisme minimal d’un ensemble compact de dimension finie. On montre que le cocycle générique soit est uniformément hyperbolique, soit possède une croissance sous-exponentielle uniforme.
We consider continuous -cocycles over a minimal homeomorphism of a compact set of finite dimension. We show that the generic cocycle either is uniformly hyperbolic or has uniform subexponential growth.
Keywords: cocycle, minimal homeomorphism, uniform hyperbolicity, Lyapunov exponents
Mot clés : cocycle, homéomorphisme minimal, hyperbolicité uniforme, exposants de Liapounov
@article{BSMF_2007__135_3_407_0, author = {Avila, Artur and Bochi, Jairo}, title = {A uniform dichotomy for generic ${\rm SL}(2,{\mathbb {R}})$ cocycles over a minimal base}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {407--417}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {135}, number = {3}, year = {2007}, doi = {10.24033/bsmf.2540}, mrnumber = {2430187}, zbl = {1217.37017}, language = {en}, url = {http://www.numdam.org/articles/10.24033/bsmf.2540/} }
TY - JOUR AU - Avila, Artur AU - Bochi, Jairo TI - A uniform dichotomy for generic ${\rm SL}(2,{\mathbb {R}})$ cocycles over a minimal base JO - Bulletin de la Société Mathématique de France PY - 2007 SP - 407 EP - 417 VL - 135 IS - 3 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/bsmf.2540/ DO - 10.24033/bsmf.2540 LA - en ID - BSMF_2007__135_3_407_0 ER -
%0 Journal Article %A Avila, Artur %A Bochi, Jairo %T A uniform dichotomy for generic ${\rm SL}(2,{\mathbb {R}})$ cocycles over a minimal base %J Bulletin de la Société Mathématique de France %D 2007 %P 407-417 %V 135 %N 3 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/bsmf.2540/ %R 10.24033/bsmf.2540 %G en %F BSMF_2007__135_3_407_0
Avila, Artur; Bochi, Jairo. A uniform dichotomy for generic ${\rm SL}(2,{\mathbb {R}})$ cocycles over a minimal base. Bulletin de la Société Mathématique de France, Tome 135 (2007) no. 3, pp. 407-417. doi : 10.24033/bsmf.2540. http://www.numdam.org/articles/10.24033/bsmf.2540/
[1] « Genericity of zero Lyapunov exponents », Ergodic Theory Dynam. Systems 22 (2002), p. 1667-1696. | MR | Zbl
-[2] « The Lyapunov exponents of generic volume-preserving and symplectic maps », Ann. of Math. (2) 161 (2005), p. 1423-1485. | MR | Zbl
& -[3] « Multiple Rokhlin tower theorem: a simple proof », New York J. Math. 3A (1997/98), p. 11-14. | MR | Zbl
& -[4] « On the multiplicative ergodic theorem for uniquely ergodic systems », Ann. Inst. H. Poincaré Probab. Statist. 33 (1997), p. 797-815. | Numdam | MR | Zbl
-[5] Cống - « A generic bounded linear cocycle has simple Lyapunov spectrum », Ergodic Theory Dynam. Systems 25 (2005), p. 1775-1797. | MR | Zbl
[6] Modern dimension theory, Bibliotheca Mathematica, Vol. VI. Edited with the cooperation of the “Mathematisch Centrum” and the “Wiskundig Genootschap” at Amsterdam, Interscience Publishers John Wiley & Sons, Inc., New York, 1965. | MR | Zbl
-[7] « Some questions and remarks about cocycles », in Modern dynamical systems and applications, Cambridge Univ. Press, 2004, p. 447-458. | MR | Zbl
-Cité par Sources :