[Le spectre d'action au voisinage des tores invariants à torsion définie]
On montre que la forme normale de Birkhoff au voisinage d’un tore KAM à torsion définie est donnée par la fonction
We show that the Birkhoff normal form near a positive definite KAM torus is given by the function
Keywords: lagrangian systems, Aubry-Mather theory, minimizing orbits, averaged action, invariant torus, normal forms, action spectrum
Mot clés : systèmes lagrangiens, théorie d'Aubry-Mather, orbites minimisantes, action moyennée, tores invariants, formes normales, spectre d'action
@article{BSMF_2003__131_4_603_0, author = {Bernard, Patrick}, title = {The action spectrum near positive definite invariant tori}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {603--616}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {131}, number = {4}, year = {2003}, doi = {10.24033/bsmf.2457}, mrnumber = {2044497}, zbl = {1053.37035}, language = {en}, url = {https://www.numdam.org/articles/10.24033/bsmf.2457/} }
TY - JOUR AU - Bernard, Patrick TI - The action spectrum near positive definite invariant tori JO - Bulletin de la Société Mathématique de France PY - 2003 SP - 603 EP - 616 VL - 131 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2457/ DO - 10.24033/bsmf.2457 LA - en ID - BSMF_2003__131_4_603_0 ER -
%0 Journal Article %A Bernard, Patrick %T The action spectrum near positive definite invariant tori %J Bulletin de la Société Mathématique de France %D 2003 %P 603-616 %V 131 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2457/ %R 10.24033/bsmf.2457 %G en %F BSMF_2003__131_4_603_0
Bernard, Patrick. The action spectrum near positive definite invariant tori. Bulletin de la Société Mathématique de France, Tome 131 (2003) no. 4, pp. 603-616. doi : 10.24033/bsmf.2457. https://www.numdam.org/articles/10.24033/bsmf.2457/
[1] « Homoclinic orbits to invariant sets of quasi-integrable exact maps », Ergod. Th. Dynam. Sys. 20 (2000), p. 1583-1601. | MR | Zbl
-[2] Introduction to Symplectic Topology, Oxford Math. Monographs, 1995. | MR | Zbl
& -[3] « Inégalités a priori pour des tores lagrangiens invariants par des difféomorphismes symplectiques », Publ. Math. IHES 70 (1989), p. 47-101. | Numdam | Zbl
-[4] KAM Theory and Semiclassical Approximations to Eigenfunctions, Springer, 1993. | MR | Zbl
-[5] « Action minimizing invariant measures for positive definite Lagrangian systems », Math. Z. 207 (1991), p. 169-207. | MR | Zbl
-[6] « Aubry-Mather theory and the inverse spectral problem for planar convex domains », Israel J. Math. 113 (1999), p. 285-304. | MR | Zbl
-[7] -, « Symplectic invariants of elliptic fixed points », Comment. Math. Helv. 75 (2000), p. 681-700. | MR | Zbl
- Marked Length Spectral determination of analytic chaotic billiards with axial symmetries, Inventiones mathematicae, Volume 233 (2023) no. 2, p. 829 | DOI:10.1007/s00222-023-01191-8
- The Aubry Set and Mather Set in the Embedded Contact Hamiltonian System, Acta Mathematica Sinica, English Series, Volume 38 (2022) no. 7, p. 1294 | DOI:10.1007/s10114-022-0531-x
- Symplectic Homogenization, Journal de l’École polytechnique — Mathématiques, Volume 10 (2022), p. 67 | DOI:10.5802/jep.214
- Viscous stability of quasi-periodic tori, Ergodic Theory and Dynamical Systems, Volume 34 (2014) no. 1, p. 185 | DOI:10.1017/etds.2012.120
- The dynamics of pseudographs in convex Hamiltonian systems, Journal of the American Mathematical Society, Volume 21 (2008) no. 3, p. 615 | DOI:10.1090/s0894-0347-08-00591-2
- Symplectic aspects of Mather theory, Duke Mathematical Journal, Volume 136 (2007) no. 3 | DOI:10.1215/s0012-7094-07-13631-7
Cité par 6 documents. Sources : Crossref