[Une approximation des irrationnels quadratiques]
Soit un irrationnel. Plusieurs auteurs ont étudié les nombres
Let be irrational. Several authors studied the numbers
Keywords: approximation property, quadratic irrationals, continued fractions
Mot clés : propriété d'approximation, nombres quadratiques irrationnels, fractions continues
@article{BSMF_2002__130_1_35_0, author = {Komatsu, Takao}, title = {An approximation property of quadratic irrationals}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {35--48}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {130}, number = {1}, year = {2002}, doi = {10.24033/bsmf.2411}, mrnumber = {1906191}, zbl = {1027.11047}, language = {en}, url = {http://www.numdam.org/articles/10.24033/bsmf.2411/} }
TY - JOUR AU - Komatsu, Takao TI - An approximation property of quadratic irrationals JO - Bulletin de la Société Mathématique de France PY - 2002 SP - 35 EP - 48 VL - 130 IS - 1 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/bsmf.2411/ DO - 10.24033/bsmf.2411 LA - en ID - BSMF_2002__130_1_35_0 ER -
%0 Journal Article %A Komatsu, Takao %T An approximation property of quadratic irrationals %J Bulletin de la Société Mathématique de France %D 2002 %P 35-48 %V 130 %N 1 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/bsmf.2411/ %R 10.24033/bsmf.2411 %G en %F BSMF_2002__130_1_35_0
Komatsu, Takao. An approximation property of quadratic irrationals. Bulletin de la Société Mathématique de France, Tome 130 (2002) no. 1, pp. 35-48. doi : 10.24033/bsmf.2411. http://www.numdam.org/articles/10.24033/bsmf.2411/
[1] « On a property of Pisot numbers and related questions », Acta Math. Hungar. 73 (1996), p. 33-39. | MR | Zbl
-[2] « Linear diophantine problems », Arch. Math. (Basel) 66 (1996), p. 19-29. | MR | Zbl
& -[3] « On a problem of Tamás Varga », Bull. Soc. Math. France 120 (1992), p. 507-521. | EuDML | Numdam | MR | Zbl
, & -[4] « Characterization of the unique expressions and related problems », Bull. Soc. Math. France 118 (1990), p. 377-390. | EuDML | Numdam | MR | Zbl
, & -[5] -, « On the sequence of numbers of the form , », Acta Arith. 83 (1998), p. 201-210. | EuDML | MR | Zbl
[6] « On developments in noninteger bases », Acta Math. Hungar. 79 (1998), p. 57-83. | MR | Zbl
& -[7] « Unique developments in non-integer bases », Amer. Math. Monthly 105 (1998), p. 636-639. | MR | Zbl
& -[8] « An approximation property of Pisot numbers », J. Number Theory 80 (2000), p. 218-237. | MR | Zbl
, & -[9] « The three gap theorem (Steinhaus conjecture) », J. Austral. Math. Soc. Ser. A 45 (1988), p. 360-370. | MR | Zbl
-[10] Diophantine approximation, Lecture Notes in Math., vol. 785, Springer-Verlag, 1980. | MR | Zbl
-Cité par Sources :