Appendix to the article of T. Peternell: the Kodaira dimension of Kummer threefolds
[La dimension de Kodaira des variétés de Kummer]
Bulletin de la Société Mathématique de France, Tome 129 (2001) no. 3, pp. 357-359.

Nous montrons que les variétés de Kummer T/G de dimension 3 et de dimension algébrique 0 sont de dimension de Kodaira nulle.

We prove that Kummer threefolds T/G with algebraic dimension 0 have Kodaira dimension 0.

DOI : 10.24033/bsmf.2401
Classification : 32J17, 32Q15
Keywords: kähler threefolds, Kodaira dimension
Mot clés : variétiés kählériennes, dimension de Kodaira
@article{BSMF_2001__129_3_357_0,
     author = {Campana, Fr\'ed\'eric and Peternell, Thomas},
     title = {Appendix to the article of {T.~Peternell:} the {Kodaira} dimension of {Kummer} threefolds},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {357--359},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {129},
     number = {3},
     year = {2001},
     doi = {10.24033/bsmf.2401},
     mrnumber = {1881200},
     zbl = {1001.32009},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/bsmf.2401/}
}
TY  - JOUR
AU  - Campana, Frédéric
AU  - Peternell, Thomas
TI  - Appendix to the article of T. Peternell: the Kodaira dimension of Kummer threefolds
JO  - Bulletin de la Société Mathématique de France
PY  - 2001
SP  - 357
EP  - 359
VL  - 129
IS  - 3
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/bsmf.2401/
DO  - 10.24033/bsmf.2401
LA  - en
ID  - BSMF_2001__129_3_357_0
ER  - 
%0 Journal Article
%A Campana, Frédéric
%A Peternell, Thomas
%T Appendix to the article of T. Peternell: the Kodaira dimension of Kummer threefolds
%J Bulletin de la Société Mathématique de France
%D 2001
%P 357-359
%V 129
%N 3
%I Société mathématique de France
%U http://www.numdam.org/articles/10.24033/bsmf.2401/
%R 10.24033/bsmf.2401
%G en
%F BSMF_2001__129_3_357_0
Campana, Frédéric; Peternell, Thomas. Appendix to the article of T. Peternell: the Kodaira dimension of Kummer threefolds. Bulletin de la Société Mathématique de France, Tome 129 (2001) no. 3, pp. 357-359. doi : 10.24033/bsmf.2401. http://www.numdam.org/articles/10.24033/bsmf.2401/

[1] C. Banica & O. Stanasila - Algebraic methods in the global theory of complex spaces, Wiley, 1976. | MR | Zbl

[2] A. Fletcher - « Contributions to Riemann-Roch on projective 3-folds with only canonical singularities », Proc. Symp. Pure Math., vol. 46, 1987, p. 221-231. | MR | Zbl

[3] Y. Kawamata., K. Matsuda & K. Matsuki - « Introduction to the minimal model problem », Adv. Stud. Pure Math., vol. 10, 1987, p. 283-360. | MR | Zbl

[4] Y. Miyaoka - « The Chern classes and Kodaira dimension of a minimal variety », Adv. Stud. Pure Math., vol. 10, 1987, p. 449-476. | MR | Zbl

[5] T. Peternell - « Minimal varieties with trivial canonical class, I », Math. Z. 217 (1994), p. 377-407. | MR | Zbl

[6] M. Reid - « Young person's guide to canonical singularities, Part 1 », Proc. Symp. Pure Math., vol. 46, 1987, p. 345-414. | MR | Zbl

[7] K. Ueno - Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Math., vol. 439, Springer, 1975. | MR | Zbl

Cité par Sources :