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LINEAR MODELS FOR REDUCTIVE

GROUP ACTIONS ON AFFINE QUADRICS

PAR

MICHAEL DOEBELI (*)

RESUME. — Nous etudions les actions des groupes reductifs sur les quadriques
affines complexes dont Ie quotient est de dimension 1. Une telle action est dite
linearisable si elle est equivalente a la restriction d'une action lineaire orthogonale
dans Pespace affine ambiant de la quadrique. Une action lineaire satisfait a certaines
conditions topologiques. Nous recherchons si ces conditions sont valables pour des
actions generales. Si c'est Ie cas, il est naturel de se demander si une action donnee
possede un modele lineaire, c'est-a-dire si il existe une action lineaire avec les memes
types d'orbites et avec des representations slices equivalentes. Nous montrons qu'un
modele lineaire existe si 1'action a un point fixe ou si Ie groupe d'isotropie principal
est connexe. Enfin, nous faisons une classification de toutes les actions lineaires dont
Ie quotient est de dimension 1.

ABSTRACT. — We study reductive group actions on complex affine quadrics with
1-dimensional quotient. Such an action is called linearizable if it is equivalent to the
restriction of a linear orthogonal action in the ambient affine space of the quadric.
A linear action on the quadric satisfies certain topological conditions. We examine
whether these condititons also hold for general actions. In case they do it is natural to
ask whether a given action has a linear model, i.e., whether there is a linear action with
the same orbit types and equivalent slice representations. We show that a linear model
exists if the action has a fixed point or if the principal isotropy group is connected.
Finally, we classify all linear actions with 1-dimensinal quotient.

1. Introduction

1.1. - Let Qn •= {(^...,^+1) C C^ | Si\2 = ^ C C^
denote the n-dimensional affine quadric over the field of complex num-
bers C. Let G be a (linear) algebraic group. Every orthogonal represen-
tation p : G —^ On+i(C) determines an action of G on Qn. These actions
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506 M. DOEBELI

— we call them linear actions — are well understood. Of course, the
geometry of the situation does not change if we replace a given action
by a conjugate one within the group Aut Qn of algebraic automorphisms
of Qn- We call an action of G on Qn linearizable if it is conjugate to a
linear action of G on Qn'

1.2. — The case n = 1 is easy. Here

Qi ^ C - C \ {0} and Aut Qi ^ C* x ̂  = 02,

and so every group action is linear. The situation changes dramatically
for n > 2. In these cases Aut Qn can be given the structure of an infinite
dimensional algebraic group, see [11]. More is known only for n = 2 where
this group can be written as an amalgamated product, see [10, p. 94].
The following example illustrates that Aut Qn is indeed very big even for
small n and shows that unipotent group actions need not be linearizable.
Consider Qs, which we identify with SL2(C). Choose a (7-invariant regular
function f on SL2(C), where U denotes the subgroup of matrices with Fs
in the diagonal and 0 in the lower left entry. Consider the following action
of the additive group C~^~ on SLs :

t . h ' - ( 1 tf^}^^1 -tfw}' "'- ^0 1 ) h {O 1 ) '

where t € C~^ and h C SL2. We claim that this action is not linearizable
as soon as / is not a constant. In fact, the linear actions of C~^~ on SLa
are easily classified. Under the double cover SLs x SL^ —> SO^ the
S04-action on Q^ corresponds to the action of SL^ x SLa on SLa given
by (^; 9 ' ) ' h = 9^9'~ • Thus a linear action C"*" —> 804 on Q^ is given by the
corresponding morphism C"^ —> SL^ x SL^ as an action on SLs. It follows
that such an action must be equivalent to either the trivial action, the one
given by conjugation or the one given by left (or right) multiplication. It is
now straightforward that of these only the trivial action or the one given
by conjugation can be equivalent to the action defined above, and that
such an equivalence is only possible if the function / is constant.

1.3. — Because of the previous example we restrict our attention
to reductive groups (7, i.e., to groups which don't have any non-trivial
unipotent normal subgroups. (Equivalently, every rational representation
of G is completely reducible.)

Linearization problem : Is every action of a reductive group on an affine
quadric linearizable ?

TOME 122 — 1994 — ?4



REDUCTIVE GROUP ACTIONS ON AFFINE QUADRICS 507

So far no example of a non-linearizable reductive group action on Qn
is known. However, we do not believe that every such action is lineari-
zable, except under certain «smallness» assumptions. For example, every
reductive group action on Q^ is linearizable. This follows from the struc-
ture theorem for Aut Q^ mentioned above. We will show among other
things that linearization is possible for actions for which the only inva-
riant regular functions on Qn are the constants, see § 2. Therefore, the
classification of these cases is achieved by classifying all orthogonal re-
presentations (V, G) for which the ring of invariant functions Ofy)0 is
generated by the invariant quadratic form.

1.4. — In case linearization holds the G-action has to satisfy certain
topological conditions, e.g. the generic orbit of G on X = Qn has to be
closed. Moreover, every slice representation (TVa;, G^) has to be orthogonal,
where x C X is a point on a closed orbit, Gx is the stabilizer of x and
7V^ = TxX/TxGx is the normal space to the orbit. This follows from the
fact that these properties hold for orthogonal representations, see [22, § 5].
This leads to the following

DEFINITION. — An orthogonal representation (V, G) is called a linear
model for an action of G on the quadric X = Qn if X has the same orbit
types and equivalent slice representations as the quadric

Qv •= {veV | (v,v) = 1} C V

with the linear G-action.

1.5. — The aim of this paper is to study the topology of a connected
reductive group action on an affine quadric X under the assumption that
the ring of invariants has (Krull-) dimension 1, i.e., that the algebraic
quotient X//G (see 1.9) is 1-dimensional. It turns out that for our results
it is enough to assume that X is an irreducible, smooth affine variety
which is homotopy equivalent to a real sphere.

PROPOSITION 1. — Under the assumptions above we have :

(1) X//G ̂  A, the affine line.

(2) There are two points yi,y2 ^ A such that the principal stratum
^A\{^/i,7/i}.

(3) The generic fiber of the quotient map (i.e., the fiber over the
principal stratum) is a G-orbit, which means that the generic orbit
is closed.

This is proved in sections 3.2 and 3.4.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



508 M. DOEBELI

1.6. — The results in PROPOSITION 1 are obvious for linear actions on
quadrics, or, more generally, if there is a linear model. We believe that
the assumptions in 1.5 insure the existence of a linear model. However,
we have been able to prove existence only under additional hypotheses.

PROPOSITION 2. — Under the assumptions of 1.5 a linear model exists
in the following cases :

(1) The G-action on X has a fixed point.
(2) The principal isotropy group of the action is connected, and the

dimension of the slice representations is > 2.

This is proved in sections 4.8 and 4.9.

1.7. — The analogous situation of compact group actions on real
spheres has been studied extensively. For example, BOREL, MONTGOMERY
and SAMELSON classified all transitive compact group actions on spheres
(see [19], [2] and [3]). The case of orbit space dimension 1 has been
analyzed by WANG [25] and ASOH [1]. Their results are essential in our
approach.

1.8. — We have been guided by the work of KRAFT, LUNA and
SCHWARZ on the linearization problem for reductive group actions on affine
space C71. In this classical setting the question is whether a given action is
equivalent to a representation, and these authors have tackled the problem
under the assumption that the quotient dimension is equal to 1, see [14]
and [16]. (Note that actions with quotient dimension 0 are linearizable
by Luna's slice theorem.) They first prove with topological methods the
existence of a fixed point and then compare the tangent representation
at this point with the given action. Although linearization holds in
many cases, the first non-linearizable actions on C71 were discovered by
SCHWARZ [23] in this context. Moreover, using the results of SCHWARZ,
KNOP [12] proved that every non-commutative, connected reductive group
has non-linearizable actions on some C71. Our approach to the linearization
problem on quadrics is the analogon to the one taken in [16]. There the
fixed point gives a linear model as the tangent representation at this point.
Here we have to carry the topological analysis much further to show that
a linear model exists. In section 5.1 we classify all these models, i.e., all
linear actions on quadrics with 1-dimensional quotient. This classification
will be used in a subsequent paper to show that the existence of a linear
model suffices to prove that linearization holds.

1.9. — To conclude this introduction, we state the conventions and
notation valid in this paper as well as some general facts. Our varieties

TOME 122 — 1994 — ?4



REDUCTIVE GROUP ACTIONS ON AFFINE QUADRICS 509

will be defined over the complex numbers. Let G be a reductive algebraic
group acting on an affine variety X. We denote by 0(X) the C-algebra of
regular functions and by Of^X)0 the subalgebra of G-invariants. A famous
theorem of Hilbert asserts that 0{X)0 is a finitely generated C-algebra
(see [13, 11.3.2]). Let X//G denote the corresponding affine variety, and
let TVx '- X —> X//G denote the morphism corresponding to the inclu-
sion 0(X'}G c 0{X).

PROPOSITION (see [13, 11.3.2]).
(1) TTX is surjective.

(2) Every fiber of TTX contains a unique closed G-orbit^ hence TTX sets
up a bijection between the closed orbits in X and the points of X//G.

If V is an M- representation, where M is an algebraic group, we will
use the notation (V, M) to emphasize the group involved. Luna's slice
theorem provides a strong link between general reductive group actions
on smooth varieties and representation theory. We will often use this
important result. For a detailed treatment of the slice theorem we refer the
reader to the original article [18] of LUNA, or to the article [24] ofSLODOWY.

To make the connection to compact group actions we will need the
following well known facts (cf. [4] and [20]) :

LEMMA. — Let G be a linear algebraic group and H C G a closed
subgroup. Let K C G be a maximal compact subgroup such that L :=
K D H is a maximal compact subgroup of H. Then G/H = K ^L F^
where F is an L-representation^ z.e., G/H is a (differentiable) fiber
bundle over K/L with fibers isomorphic to a vectorspace. In particular,
the inclusion K/L ^-> G/H is a homotopy equivalence. If G and H
are both reductive then dim^(K/L) = dimc(G/H). If H is connected
then K/L is orientable, hence Poincare duality holds for the cohomology
ring H*(G/H^k) with coefficients in an arbitrary field k. []

This paper is the first part of my dissertation. I am indebted to
my advisors Hanspeter KRAFT and Gerald SCHWARZ for their help and
encouragement.

2. Linearization in case there are no invariants

2.1. — Let G be a connected reductive algebraic group, and let X be
an irreducible, smooth affine variety which is homotopy equivalent to a
real sphere in euclidian space. Let G act almost effectively on X, i.e., such
that the kernel of the action is finite.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



510 M. DOEBELI

THEOREM. — Suppose that the only G-invariant functions on X are
constant. Then the action is transitive and we have :

(1) if n is even, then G is simpler

(2) ifn is odd, then G is either simple or of the form G = (Gi x R)/N
where G\ is a simply connected simple group, R is either trivial, isomor-
phic to C* or to SLa, N is a finite normal subgroup oj G\ x R, and where
the subgroup of G corresponding to G\ is transitive on Qn-

Furthermore, the action is linearizable, i. e., equivalent to a linear action
of G on some affine quadric. In particular, the variety X is isomorphic
to an affine quadric.

Proof. — In the category of topological manifolds the first part of
the theorem was proved for spheres in a series of papers by BOREL,
MONTGOMERY and SAMELSON (cf. [2], [3] and [19]) : if K is a compact Lie
group acting transitively and effectively on the n-dimensional real sphere
gn ^ j^+i^ ̂ ^ ̂  statements (1) and (2) hold for K (replace C* by S1

and SL2 by SUs). That the action is linearizable in this setting can be
found in [21, §2].

To make the translation to the algebraic category, we first show that
if dim X//G = 0, then G acts transitively on X : it follows from the slice
theorem that there is a G-isomorphism

X^GxHV,
where H is a reductive subgroup of G and V is an H -module (here G x H V
denotes the bundle with fiber V which is associated to the principal H-
bundle G —^ G / H ) . Since V is contractible, we get for the cohomology
ring of X (with coefficients in an arbitrary field k) :

H^X)^H^G/H).
By the LEMMA in 1.9 we conclude that dim X = dim G / H , hence V = {0},
X ^ G / H , where H is the isotropy group of some point x C X. Now
choose maximal compact subgroups K C G, L C H, such that L = Kr\H.
Then, again by the lemma, K / L is a homotopy sphere. It is known that
K / L is therefore homeomorphic to a sphere (see [4, 4.61]), and we can
apply the theorem of Borel, Montgomery and Samelson mentioned above
to obtain statements (1) and (2). The fact that the action is linearizable
follows by complexifying the real orthogonal representation of K in R77^1

which « realizes » the sphere S71 = K / L . []
It should be mentioned that so far there is no direct proof of lineariza-

tion in the compact case : one needs the classification of transitive actions
on spheres, which is quite tedious. Thus, already for quotient dimension 0
linearization on affine quadrics is quite hard to obtain.

TOME 122 — 1994 — ?4
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2.2.—The classification of linear transitive actions (in the sense of 1.1)
on varieties X as above is given by the next result.

PROPOSITION. — The following Table 1 classifies all representations
(G^V) of connected reductive groups G with 1-dimensional quotient such
that the generic fiber F of the quotient map is homotopy equivalent to a
sphere. If H denotes the principal isotropy group then F ^ G/H. In case
dim V > 2 the representation (G, V) is orthogonal, and it is completely
determined by the pair G D H.

Table 1

G

C*
An (n > 1)
C* x An (n> 1)
Bn (n > 2)
Dn (n ̂  3)
Cn (n > 2)
C* x Cn (n> 2)
Ai x Cn (n> 2)
AI X AI

Al
A3
B3

B4

€2

G^

V

S^CS-b, a , 6 > 0
c^i (D Ct?*
(Ea(g)^)e(Sa(Wi)*, a > 0
CJi

CJi

uj\ ©a;*
(Sa(g)^)©(I;a^^)*
^i 0 (^[
^i (^) c<;^
2a;i
^2

0:3

a;4
^2

^1

H

cyclic
An-l

C* x A ^ i
£'n

-Bn-1

Cn-1

C* x < ^ i
AI X ( 7 n i

Al

C*
C'2

G'2

^3

Ai x Ai
A2

(For the notation we refer to section 5.2.)

Proof. — It is clear that all orthogonal representations with 1-
dimensional quotient must be included in a list of representations as in the
proposition. Such an orthogonal representation is either irreducible or of
the form (W © TV*, G), where W is an irreducible (7-representation with
0-dimensional quotient and where W* denotes the dual representation.
Using the fact that, by THEOREM 2.1, there is always a simple normal
subgroup of G which is already transitive on the invariant quadric, one

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



512 M. DOEBELI

obtains a list of all these orthogonal representations by examining the
tables in [17]. Now suppose that we are given a representation (V, G) as
in the proposition. Then the generic fiber of the quotient map is an orbit :
by the slice theorem the generic fiber is of the form G x11 TV, where N
is the nullcone of the generic slice representation, and as in the proof of
THEOREM 2.1 we must have N = {0} for cohomological reasons. Thus the
representation (V, G) is stable, i.e., the generic orbit is closed, and it fol-
lows easily that V is either irreducible or the sum of irreducible represen-
tations with 0-dimensional quotient. Since G / H is homotopy equivalent
to a sphere, there is by THEOREM 2.1 an orthogonal representation (V, G)
with 1-dimensional quotient and generic orbit isomorphic to G / H . Again
using the fact that G has a simple normal subgroup which is transitive
on G/H and by looking at the tables in [17], one can conclude that in
fact the representations V and V must be equivalent, except possibly if
G ^ C*, i.e., if dimV = 2. In this case there are infinitely many non-
equivalent representations which induce transitive actions on G/H ^ C*.
They are given by weights a, —b on C2, where a ,& > 0. These represen-
tations together with all orthogonal representations with 1-dimensional
quotient therefore exhaust all possibilities. They are listed in Table 1.
The last statement in the proposition follows from this classification. []

3. The Leray spectral sequence of the quotient map

3.1. — Let G and X be as in § 2, and let TT : X -^ X//G be the quotient
map. In the next two paragraphs we analyze the Leray spectral sequence
associated to TT and derive several results concerning the cohomology of
the closed orbits on X as well as of the orbits in the slice representations.
Ultimately, it was our goal to use the topological information to prove
the existence of linear models. However, we only achieved this under
additional assumptions. In any case, the topological results show that
our actions look like linear actions to some extent. For instance, it is
well known that for a compact group action on the real sphere S71 with
1-dimensional quotient the principal stratum consists of the quotient
space minus 2 points (see [25, § 3]). But then the same holds for a linear
action, since an orthogonal representation of a reductive group over C is
always the complexification of a real representation of a compact group.
Moreover, in the complexification of a compact group action the generic
orbit is closed. In 3.4 we show that the same properties hold for general
G-actions on X with 1-dimensional quotient.

3.2. — We first show that in our situation the quotient is isomorphic
to the affine line A.

TOME 122 — 1994 — N° 4
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LEMMA. — If dim X//G = 1, then X//G ^ A.

Proof. — By [15, cor. 3.4] the quotient map TT : X —^ X//G induces a
surjective map of the corresponding fundamental groups. Thus 7T-^{X//G)
is trivial since ^i(X) is. Furthermore, X//G is affine and normal, since X
has these properties, and X//G is therefore also non-singular (since it is 1-
dimensional). Thus, X//G is (topologically) a compact Riemannian surface
with a finite, positive number of points deleted. Since 7Ti(Xy/G) = 0, the
claim follows easily. []

3.3. — For details of the results in this section we refer the reader to
chapter II of [16]. Let G be a connected reductive group and Z a smooth,
affine G-variety with quotient TT : Z —^ Z / / G . Let k be an arbitrary field,
and let Hq be the q-ih direct image under TT of the constant sheaf k x Z,
which we also denote by k :

7^ := R^^k.

By definition, W is the sheaf associated to the presheaf :

U ̂  H^TT-^U), k), U C Z / / G .

Let Z / / G = |j^ Yi be the Luna stratification of the quotient. If y^ G V^,
let Oy^ denote the closed orbit in the fiber Tr"1^). It follows from the
slice theorem that there is a fundamental system U of neighborhoods U
of yi with the following properties : For all U € U and for all y € U Fl Yi
the inclusions Oy <—^ /7T~l(y) ̂  7^~1(U) are homotopy equivalences. Using
this one can show :

PROPOSITION.
(1) The restriction ofW to Yi is locally constant/or every i.

(2) The stalk of W in y C Z//G is given by :

n^=H^7^-l(y)^k)=H^Oy^k).

(3) For U € U, the inclusions Oy^ c-^ Tr"1^) ̂  Tr"^?/) induce an
isomorphism in cohomology

y^-\U}^k)-^H^Oy^k).

The inverse of this isomorphism is given by a G-invariant retraction
Tr"1^) —^ Oy^. For every other y C t7, the inclusion

Oy^^-\y)^^-\U)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



514 M. DOEBELI

gives a homomorphism H*(0y^k) —> H^(Oy^k) which is induced by a
G-equivariant map Oy —> Oy^.

(4) If Z//G ^ A, and if A \ {1/1, ...,]/r} <ts the principal stratum of
Z//G^ then for every simply connected neighborhood V of yi which does
not contain any of the points y^ j ^=- z, the inclusions

Oy^TT-^y^CTr-^V)

are homotopy equivalences. In particular^ the isomorphisms

^(V) ——^^ f^au 9.

These isomorphisms are given by a G-equivariant retraction

^-1(V) __^ Qy,.

Proof. — (1) to (3) are proved in [16, Prop. 11.1.3]. Using that the
variety Z is a trivial topological (7-bundle over every simply connected
set contained in the principal stratum of the quotient, the generalization
from (3) to neighborhoods V as in (4) is straightforward. []

3.4. — We go back to the given action of G on X.

PROPOSITION.
(1) There are exactly two non-principal fibers O/TT. Furthermore^ the

principal fibers are closed G-orbits.

(2) For 1 < q < n — 2 we get an isomorphism

H^Oy^k) © H^Oy^k) ̂  H^G/H, k),

where the inclusions Hq(0y^k) c-^ Hq(G/H^ k), % = 1,2, are induced by
G-equivariant maps ( p i : G/H —> Oy^.

(3) H^^G/H, k) = k, hence Poincare duality holds for H^G/H, k).

Proof. — For the map TT : X —> A there is a Leray spectral sequence :

^(A.^^^+^X.A:).

Let A \ {^/i,...,^} be the principal stratum, and let 5^, i = l,...,r,
be r open, parallel strips in A = M2 with the following properties :

• A=UI=i^ V i ^ S , .
• Sz Ft 5^4-1 is a non empty strip which contains none of the points yj

fo r j = l,...,r.
• 5', n Sj = 0 for \j - i ^ 2.

TOME 122 — 1994 — ?4



REDUCTIVE GROUP ACTIONS ON AFFINE QUADRICS 515

By 3.3 (1), the restriction ofW to Si is locally constant along Sz\{yi}.
Therefore, by [16, II.2.1], the restrictions 'Hq\Si are acyclic :

^(^k)={^ ^^^
10 otherwise.

It follows that the cohomology of the sheaves W on A can be calculated
as the Cech-cohomology of the covering A = U[=i ^r The alternating
Cech-complex has the form :

r r-1

(i) o^(3)^°(^,W)^(9^°(^n ̂ +1,^)^0.
i=i i=i

For the cohomology groups I:P(A,W), (i) gives the exact sequence :

r r-1

(ii) 0 -> ^°(A,W) —^(^H°(S^) J^^H°{S, n ^+i,W)
1=1 i=i

—^(A.^^O.

In particular, HP(A, W) = 0 for p > 2 and for all q, i.e., the Leray spectral
sequence of the quotient degenerates. Since X is homotopy equivalent to
a sphere, it follows that :

(iii) ^°(A,W7) C ̂ (A.W1) ^ ̂ (X, A:) = { k lf 9 = ° or 9 = n'
10 otherwise.

From 3.3 and by definition of the strips 5^, for all i = 1,...,7* we get
canonical isomorphisms :

H0^,^) = H^S,) ̂  H^ ̂  H^Oy^k).

We also get an isomorphism

H°(Si n ^+1, U^ = U^Si n ^+1) ̂ H^ H^G/H, k)

by fixing the principal isotropy group H and choosing a point x € Oy
whose stabilizer is H. Thus (ii) can be written as

(iv) 0 ̂  ff°(A,7^) —> Q)H^Oy,,k) -^ Q)H^G/H,k)
%=1 1=1

—^(A,^9)-^,

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



516 M. DOEBELI

where the components of (f) are induced by the (7-equivariant maps
G / H -> Oy^ Since dimOy, < n, for q = n we get HQ{K,/Hn) = 0
from (iv), and therefore by (iii) :

r^A ^n-iHi^Hn-l)=k.

By (iii) we also have ^°(A, 7^-1) = 0. For q = n - 1 we thus obtain the
exact sequence :

r-^Oy^k)^1^)^-1

^=1 1=1
(v) Q^^H^^Oy^-.^H^^G/H^)

—^Hl(A,-Hn-l)=k->0.

Since H°(A,n1) = 0 by (iii), the map

r-l

^H\Oy^k)-.@H\G/H^k)
^=1 z=l

obtained from (iv) for q = 1 is injective. It then follows from [16,
lemma 11.4.3] that dim Oy, < dim G / H , and we therefore get from (v) : '

r-l

Q)Hn-\G/H,k)=k.
i=l

It follows that r = 2 and that H^^G/H, k) = k for every field k, hence
dimGy^ = n - 1. Since G / H has the homotopy type of a compact
manifold of the same (real) dimension by LEMMA 1.9, it follows that
Poincare dualtiy holds for the cohomology ring H " ( G / H , k). We have
proved (1) and (3). For 1 < q < n - 2 we get from (iii) and (iv)

0 = H°(^ W) —. H^Oy,, k) © H^Oy^k} -^ H^G/H, k)

-^Hl(A,nq)=^

and (2) follows as well. []

3.5 Remark. — Let K c G be a maximal compact subgroup of G
such that L :== K n H is a maximal compact subgroup of H. By
choosing points x, on the closed orbits Oy, appropriately we can assume
that the groups L, := K n 6^ are maximal compact subgroups of the
stabilizers G,,. The inclusions K / L , c Oy^ K / L c G/H are homotopy
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equivalences by LEMMA 1.9. Moreover, there are X-equivariant retractions
0^ -^ K / L i and G/H -^ K / L (see LEMMA 1.9). It follows that we can
replace Oy, by K / L i and G/H by K / L in the second statement of the
last proposition : for 1 < q < n — 2 there are isomorphisms

H^K/L^k) C H^K/L^ k) -^ H ^ K / L , k),

where the inclusions H q { K / L i , k) ̂  H q ( K / L , k) are induced by JC-equi-
variant maps K / L —> K / L z . Since these maps are JC-equivariant, it is easy
to see that we can assume that L C Li H L^ and that they are just the
natural projections. From now on K, L, I/i, L^ and their complexifications
G, H, H ^ . H ' 2 will always refer to such a choice of these groups.

4. Existence of linear models

4.1.—Let ipz : G/H -^ G / H i be the natural projections, i = 1,2, where
the Hz are as in Remark 3.5. They induce exact homotopy sequences

. . . ——— TT^G/H) -^ 7T,(G/Hi) ——— 7To{Hi/H) -^ 0.

Here 7To(Hi/H) is a group. This is a consequence of the more general
fact that if the reductive group G acts on the affine variety Z with
principal isotropy group H and such that Z//G° is irreducible (where G°
denotes the connected component of the identity of G), then 7To(G/H) is
a group : the principal isotropy group M of the action of G/G° on Z//G°
is the kernel of this action, because the fixed points (Zy/G0)7^ must have
the same dimension as Z / / G ° , hence (^//G^ = Z / / G ° , since the latter
is irreducible. Thus M is normal in G/G°, and the claim follows from the
fact that (G/G°)/M = ̂ (G/H).

The following lemma, which is an application of the theorem of Van
Kampen, will show that the generic orbits of the slice representations are
connected (see also [25, 4.3]).

LEMMA. — The amalgamated product of the diagram
(^pi ^2*

7T,(G/H,) ————— 7Ti(G/^) ————— 7Ti(G/^2)

is trivial. In particular, (p^ and (p^ are both surjective. More precisely,
(^i^(Ker(^2*) = ̂ i(G/H-i), and similarly for (^2*-

Proof. — Let 6'i and 62 be strips which cover the quotient A as in
the proof of 3.4, and let Ti := TT"^). The inclusions Oy, ̂  Ti and
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Oy ^-> Ti D Ta (for ?/ 6 TI D Ta) are homotopy equivalences by PROPOSI-
TION 3.3 (4). We therefore get a commutative diagram as follows :

7Ti(G/^i) ———— 7T,(G/H) ———— TT^G/H^)

T T \
»i(0»,) ———— »l(0») ———— »i(0»,)

1 1 1
TTlCTi) ^————— TTiCTinTs) —————> 7Ti(T2).

Here the top horizontal maps are induced by the natural projections,
and all vertical arrows are isomorphisms. It is a consequence of the
theorem of Van Kampen and of TTI (X) = 0 that the amalgamated product
of the bottom line of this diagram is trivial, hence the first claim. Since
the TVQ^Hi/H) are groups, it follows from the exact sequences in 4.1
that the images of the (^ are normal subgroups of 7T\(G/Hi). This
implies the remaining claims. \\

4.2. — From the exact sequence in 4.1 we get that 7To(^/H) is trivial
for i = 1,2, i.e. :

COROLLARY. — H^/H and H^/H are both connected. \\

4.3. — Recall that all slice representations occuring in an orthogonal
representation are again orthogonal. Thus the generic orbits of the slice
representation of a linear action on X are quadrics (since the quotient
dimension of these representations is 1). If the principal isotropy group H
is connected, we can show that, at least topologically, the same holds for
general actions.

PROPOSITION. — Suppose that H is connected. Then H^/H and H^/H
are Z-cohomology spheres, hence homotopy equivalent to spheres.

Proof. — For i = 1,2 we consider the spectral sequences for the
fibrations

H , / H —— G/H -^ G / H ,

with coefficients an arbitrary field k. Since H is connected, so are H^
and H^ by 4.1, and consequently these spectral sequences have ordinary
coefficients

E ^ ^ H ^ G / H ^ H ^ H . / H ^ k ) } for j^ > 0
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(see [5, 4.1 (ii)]). Note that since all the groups involved are connec-
ted, Poincare duality holds for the cohomology rings H * ( H i / H ^ k ) and
H " ( G / H i , k ) , see LEMMA 1.9.

We can assume that dimG/H^ >_ dimG/H'2 and H\ -^ G. There is
an s > 0 such that :

H ^ H ^ / H , k) ̂  0 and H ^ H ^ / H , k) = 0 for 0 < j < s.

By PROPOSITION 3.4 (2), the induced maps H " ( G / H i , k} -^ H^G/H, k)
are injective. This means that all differentials dr of the spectral sequences
have trivial image in

E^° =E^ ^H^G/H^k).

Hence all differentials of the spectral sequence for G/H —>• G/H\ vanish on
E^8 = H8 ( H ^ / H , k). It follows that H^G/H, k) ̂  0, and so by Poincare
duality

ir^^-^G/^AO^o.
By PROPOSITION 3.4 (2) and from dimG/^"i > dimG/H-^^ we obtain
H J ( G / H , k) = 0 for dimG/^i < j < dim G / H . Thus

dim G/H -s < dim G / H ^

follows from dim G/H — s < dim G / H . Since s ^ dimH^/H, we get that
s = d i m H ^ / H . These arguments are valid for arbitrary coefficients k,
hence H ^ / H is a Z-cohomology sphere. It also follows that the considered
spectral sequence degenerates, i.e.,

H^G/H, k) ̂  H ^ H ^ / H , k) (g) H^G/H^k)

as graded vector spaces.
If dimG/H^ = dimG/H^^ the same conclusions hold of course

for H ' 2 / H . If dimG7.Hi > dimG/H'2^ we first observe that since Poin-
care duality holds for H * ( H ^ / H ^ A;), there is an £ > 0 such that

H\H^/H, k) + 0 and H ^ H ^ / H , k) = 0 for 0 < j < £.

As before all differentials of the spectral sequence corresponding to
G/H -^ G / H ' 2 vanish on E^ = H\H^/H, k). It follows that

H^G/H^k)^ H\G/H^k)^
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hence by PROPOSITION 3.4 (2) that H^G/H^k) + 0. We also conclude
that H^G/H^, k) = 0, for 0 < j < £. With Poincare duality we get :

H^G/H^k)=^° i^-dimG/^-^
I 0 for dim G / H ^ - £ < j < dim G / H ^ .

For the ^-term of the spectral sequence for G / H -^ G / H ^ we thus find
the following : the term E^ with highest degree such that E^3 -^ 0
and such that i + 0 is the term ^imG/^,dim^ g^ ̂  ̂ ^
sequence degenerates, it follows from 3.4 (2) that this term corresponds
to the highest degree term in H*{G/H^ k), hence that

dim G / H ^ - £ + dim H ^ / H = dim G / H ^ .

Consequently :

£ = dim G / H ^ + dim H ^ / H - dim G/H^
= dim G/H - dim G/H^
=dimH2/H.

Therefore H ^ / H is also a Z-cohomology sphere. That H ^ / H and H ^ / H are
actually homotopy spheres follows now from the theorem of Hurewicz and
the fact that the groups 71-1 ( H ^ / H ) are abelian because H is connected. Q

4.4. — If a linear action on the variety X has a fixed point then the
other exceptional closed orbit is a fixed point as well, and the generic orbit
is a quadric. For general actions we have :

PROPOSITION. — // one of the exceptional closed orbits is a fixed point,
then the other one is a fixed point as well, and the generic orbit G / H is
a 'L-cohomology sphere.

Proof. — We assume that H^ = G. By 3.4 we then have

(*) H P { G / H , k ) = H P { G / H ^ k )

for all p = 0 ,1 , . . . , d - 1, where d = dim G/H and k is an arbitrary field.
To prove the proposition it is therefore enough to show that H^ = G.

We first claim that dimH^/H > 1. For if dimH^/H = 1, then one
easily sees that H ^ / H ^ C* (use LEMMA 1.9 and the fact that H ^ / H
is connected by COROLLARY 4.2). It is then clear that the spectral
sequence for

H ^ / H —— G / H —— G / H ^
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has ordinary coefficients if we choose k = ̂ . Then £^'1 ^ 0 for the
considered spectral sequence, and as in the second part of the proof
of PROPOSITION 4.3 we can now conclude that H^^G/H-^^) -^ 0, which
is absurd since H^ = G. Thus dimH^/H > 1.

From this in turn it follows that ^{G/H, k) = 0 for all fields k. For if
^(G/H.k) ̂  0, then, by Poincare duality (see 3.4 (3)),

J^G/^^O,

and by (*) above also H^^G/H^ k) ^ 0, hence dimH^/H = 1, a
contradiction. In particular, TT^(G/H) must be a perfect group by the
theorem of Hurewicz, i.e., a group which is equal to its commutator
subgroup. It now follows from the exact sequence in homotopy for the
fibration

H —>G —> G/H

that TVQ(H) is a perfect group as well, hence so is 71-0(^2), since H ^ / H is
connected and thus 7To(H) -^ 71-0(^2) is surjective. It is well known that
therefore Poincare duality holds for H * ( G / H ^ , k ) (see e.g. [6, chap.III,
lemma 2.3]). Using this as well as duality in H " ( G / H , k), one easily
concludes the following from formula (*) above. Let m := dimH^/H.
Then m divides d and we have :

H^G/H^R)=i

Hj(G/H,R)= [

R for j = 0, m, 2m, . . . , d - m,
0 otherwise;

R for j = 0, m, 2m, . . . . d,
0 otherwise.

For the Euler characteristic we get

(1) X{G/H) = x{G/H^) ± 1,

depending on whether m is even or odd. On the other hand, we have

(2) X{G/H)=X(G/H^)^WH)^

as it follows from the multiplicative properties of \ for fibrations. It is
well known that the Euler characteristic of a homogenous space is ^ 0
(see [2, § 2]). From this and from equations (1) and (2) above one easily
concludes that ^(G/H^) = 1. Again it is well known (loc. cit.) that this
can only happen if rank H^ = rankG. In [5, proof of 26.1] it is shown
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that the space G/H^ has cohomology only in even degrees, i.e., that
H^G/H^K) = 0 for odd j. By [6, chap.III, Thm. 2.1] the natural map

H^G/H^) -^ H^G/H^R)
is an inclusion, hence H^G/H^^) has cohomology only in even degrees
as well. But then \(G/H^) = 1 can only happen if H^ = G, since we know
that at least H^ G I H ^ {G/H^ R) = R. D

4.5. — We use a result of Bredon to show that in the fixed point case
the generic orbit is in fact a homotopy sphere.

PROPOSITION. — If there is a fixed point the generic fiber G / H is
homotopy equivalent to a sphere.

Proof. — Let K C G be a maximal compact subgroup of G such that
L := K D H is a maximal compact subgroup of H. By 4.4 K / L is a Z-
cohomology sphere. By theorem 1.1 in [7], K / L is therefore either a sphere
or the Poincare sphere S03(R)/J, where I is the icosahedral subgroup
of S03(IR). But if the latter were the case then the generic orbit of the
slice representation of G at the fixed points would be S03(C)/J, which is
impossible, because this homogenous space does not occur as generic orbit
of a 4-dimensional representation with 1-dimensional quotient. []

4.6 Remark. — If instead of requiring that H is connected we assume
in 4.3 that both exceptional isotropy groups H\ and H^ are connected,
then the spectral sequences of the fibrations

H , / H —— G/H —— G / H ,

still have ordinary coefficients, and the proof of 4.3 shows that under
this assumption the H ^ / H are Z-cohomology spheres as well. We can
now proceed as in the proof of 4.5 to conclude that H ^ / H are homotopy
equivalent to spheres. In particular, H is connected if dimH^/H > 1
or dimH^/H is > 1. Thus H being connected is equivalent to both H^
and H^ being connected if dimHi/H > 1 for i = 1 or i = 2.

4.7. — We can now prove the existence of a linear model in the fixed
point case provided that the dimension n of the quadric X is > 2.

PROPOSITION. — Assume dimX > 2. If the given G-action on X has
a fixed point then the action has a linear model.

Proof.—By PROPOSITION 4.4 the two exceptional closed orbits are fixed
points. By PROPOSITION 4.5 the generic fibers of the quotients of the
slice representations, which are just the tangent space representations
at the fixed points, are homotopy equivalent to spheres. It now follows
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from PROPOSITION 2.2 and from dimX > 2 that both of the slice
representations are therefore equivalent to a fixed, orthogonal repre-
sentation (TV, G) with 1-dimensional quotient. Let S denote a 1-dimen-
sional trivial G-module, and consider the G-module V := W © E. This
is clearly an orthogonal representation of G with 2-dimensional quotient.
Let / be a quadratic homogenous invariant on W, and let z be a coordinate
on S. Then Qy ''= {(^^) | /(^) + ^2 = 1} C V is a G-invariant quadric
such that the induced linear G-action on Qy has the following properties :
Q V / / G ^ A, there are exactly two fixed points on Qy, and the slice
representations at the fixed points are equivalent to (TV,G). Thus (V, G)
is a linear model for the given action. \\

4.8 Remark. — The reason for the assumption dimX > 2 is that
there are infinitely many non-equivalent representations on C2 inducing
a transitive action on C*, see PROPOSITION 2.2. It is easy to see that
if dimX = 2 and dimX//G = 1 then G ^ C*. Such an action must
have two fixed points and a generic orbit isomorphic to C*, but the slice
representations are not determined by these properties. However, one can
show (FIESELER, personal communication) with topological arguments,
using the first homology group at infinity, that X is isomorphic to a
quadric if and only if the two slice representations are orthogonal, i.e.,
given by weights 1 and —1 after factoring out the kernel of the action. In
this case the action has a linear model as in the last proposition.

4.9. — Using results of WANG [25] and ASOH [1] about compact group
actions on spheres with orbit space dimension 1 we now deal with the case
of connected principal isotropy groups H.

PROPOSITION. — A linear model exists if H is connected and if the
dimension of the slice representations is > 2.

Proof. — By Remark 3.5 we can find maximal compact subgroups
K^ L, Z/i and L^ in G, 7J, H^ and H^ respectively such that the following
is satisfied : for an arbitrary field k and for p = 1,... . dim K / L — 1

HP(K|L, k) = ̂ (J^/Li, k) © HP(K|L^ k).

Moreover, by 4.4 the spaces H i / H are homotopy spheres, z = l , 2 .
PROPOSITION 2.2 then shows that H i / H must be a quadric, and conse-
quently the spaces L ^ / L are spheres. Precisely such quadruples K,L,
1/1,^2 of compact groups were classified by WANG in [25] and by ASOH
in [I], who completed Wang's results. They studied compact group actions
on spheres and Zs-cohomology spheres respectively. Each such action gives

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



524 M. DOEBELI

rise to a quadruple as above, and the classsification of these actions is
achieved through the classification of the corresponding quadruples. The
assumption that the group L is connected is not necessary to get the re-
sults, which are summarized in [1, thm 6.1]. However, if L is connected
as in our situation it follows that there is a linear action of K on W1^1

such that the induced action on the sphere 6^ C M77^1 has 1-dimensional
orbit space and isotropy groups L, Li and 1/2, see [25, §13]. Consider
the complexification of this action. It is a linear action of G on an affine
quadric with isotropy groups H,H^ and H^ and with orthogonal slice
representations. If the dimension of these representations is > 2 it follows
from PROPOSITION 2.2 that they must be equivalent to the original ones
given by the G- action on X, for which the linear action of G on the quadric
is consequently a linear model. []

4.10 Remark. — Remark 4.6 shows that the last proposition remains
valid if we assume that both exceptional isotropy groups are connected
instead of assuming that the principal isotropy group is connected.

4.11 Remark. — If we drop the assumption about the dimension
of the slice representations, we get a linear model in a weaker sense
than that of definition 1.4. Indeed, if, say, the dimension of the slice
representation of H\ is 2, then dim H ^ / H == 1, and as already mentioned in
the proof of 4.4 it follows that H ^ / H ^ C*. Since H is connected, we have
H^ = S ' x H ' up to a finite covering, where 5" ^ C*. The 2-dimensional
slice representation is given by weights a and —b for 5", a, 6 > 0, and by
the trivial action of H ' . It then follows again from the results of Wang or
by direct arguments using PROPOSITION 3.4 that, up to a finite covering,
G is of the form G = S x H^ where S ^ C*.

Let (W^ ,^2) be the slice representation, and consider the G-represen-
tation Wi©W2^ where the 2-dimensional representation W\ is given by the
same weights a and -b as above for S and by the trivial action of H^, and
where S acts trivially on W^. It is easy to see that if a; and y are coordinates
on IVi, and if / is a homogenous generator of the G-invariants on W^, then
the restriction of the linear G-action on W\ © W^ to the invariant affine
smooth subvariety Q^ given as the zero set of the polynomial xbya + / — 1
has the following properties : the quotient is isomorphic to the affine
line A, the principal isotropy group is H, and there are exactly two
exceptional closed orbits, whose corresponding isotropy groups are H^
and H^ respectively. Thus the linear action of G on Q^ has the same local
data as the given action on X. If a == b and if W^ is an orthogonal G-
module (which it is if its dimension is > 2), then this construction gives
a linear model in the sense of 1.4, see also Remark 5.3.
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In connection with the question of whether or not the G-actions on X
and Q^ are equivalent the following problem arises. For which positive
integers a and b is the variety

m

Q^b) := {(.r.^i,... ,^) e C^2 | x^ + ̂ ? = l} c C^2

1=1

isomorphic to a quadric ? For example, the homological results mentioned
in Remark 4.8 imply that Q[(a,b) is isomorphic to the quadric Q^ only
ifa=b=l.

5. Classification of linear models

5.1. — According to the definition in 1.4, to obtain a list of all possible
linear models in our situation we have to classify all orthogonal represen-
tations (V,G) of connected reductive groups G such that dimV//G = 2.
We will consider almost faithful actions, i.e., actions with a finite kernel.

PROPOSITION. — If (V, G) is an almost faithful orthogonal representa-
tion with 2-dimensional quotient, then (V, G) is equivalent to one of the
representations in Tables 2-5.

Proof. — Since (V, G) is orthogonal, we can find a maximal compact
subgroup K C G and a real representation (W, K) such that (V, G) is
the complexification of (W,K) : (V, G) = {Wc.Kc) (see [22, Prop. 5.7]).
Suppose first that W is a reducible ^-representation : W = U C T.
Then V = Uc ® Tc as G-representation, where both Uc and Tc are
orthogonal with 1-dimensional quotient. Such representations are, up to
adding trivially acting factors to G, listed in Table 1 in 2.2. One can
assume that G = Gi x • • • x Gs x 5' where S ^ (C*)7'. The simplest
possibility for a representation (V = Uc © Tc, G) as above is now that we
can arrange the factors of G into two groups G[ and G^ such that the
following holds : G = G[ x G^ (Uc, G[) and (Tc, G^) are from Table 1, G[
acts trivially on Tc and G^ acts trivially on Uc. All such representations
are listed in Table 2. Furthermore, there are some «mixed)) cases, i.e.,
cases where the effective part of G on Uc doesn't act trivially on Tc.
This corresponds to arranging the factors of G into two groups G[ and
G^ as above, but these groups now «overlap)) in the sense that some
factors of G[ are also factors of G^. However, since Table 1 is fairly short,
it is easy to sort out these remaining possibilities using the fact that
both representations (Uc,G) and (Tc,G) are orthogonal, which makes it
easy to calculate principal isotropy groups and hence quotient dimensions.
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The resulting representations are listed in Table 3. This concludes the
case where (W^ K) is reducible, so assume that W is irreducible as K-
representation.

To do the classification in this case we use results from the theory of
polar representations as worked out in [9] and [8]. First of all, it is easy
to see that (V, G) is a polar representation. Indeed, if H, H\ and H^
are the principal and the two exceptional isotropy groups, and if g, (), (}i
and ()2 are the respective Lie algebras, then, as an ^-representation, V is
isomorphic to Q / ^ ) © Q Q S, where 0 and S are H\ -invariant (resp. H^-
invariant) 1-dimensional subspaces of V, and where all subspaces are
mutually orthogonal. This follows from the slice theorem and the fact
that V is an orthogonal representation. If 0 ^ 0 C 6 and 0 7^ a € S, we
have, since (Xv^w) = —(v^Xw) for all X C Q and v^w C V,

0^ = s/()i C s/i), 0.cr = 0/1)2 C fl/i), 0.((9, a) = s/1),

and the claim follows by definition of polar representations. Now if (V, G)
is irreducible, too, then G is semisimple. Up to castling transformations
(see [17] for details), these representations must occur in the tables
in [17]. These tables list for each castling class the lowest dimensional
representation in this class. But by lemma 3 in [17], at most the lowest
dimensional representation in each class is polar. Since we already know
that the representations we are looking for are polar, they must occur in
the tables of [17] if they are irreducible. This leads to Table 4. It remains
to get the list of all reducible representations (V, G) for which (W, K)
is irreducible. In this case, W admits a complex structure and gives an
irreducible representation (W, G). Furthermore, we have

(V^G)=(Wc,Kc)=(WeW^G)

(for details see [8]). Since (W^K) is polar and irreducible, we can use
the tables in [8] and some easy dimension arguments to determine all the
possibilities. In fact there are only four, and they appear in Table 5. This
completes the proof of the proposition. []

5.2. — We want to explain the contents of the tables. Tables 2 to 5
contain the orthogonal representations of connected reductive groups
with 2-dimensional quotient according to the distinctions made in the
proof of 5.1 :

• Table 2 contains the representations of the form (V = V-y © V^^
G = G\ x G^), where (l^.G^), i = 1,2, are orthogonal representations
with 1-dimensional quotient (see Table 1 in section 2), and where G\ acts
trivially on V^ and G^ acts trivially on V\.
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• Table 3 contains the mixed cases, which are as above but without
the assumption that G\ and G^ act trivially on V^ and V\ respectively.

• Tables 4 and 5 contain those representations which are complexifica-
tions of real irreducible representations. Table 4 contains the ones which
remain irreducible after complexification, the others appear in Table 5.

In the tables G will denote the group that acts according to standard
notation. In the column V we list the representation using the notation
in [17] : uji denotes the irreducible representation corresponding to the fun-
damental weight cc^, nuji the one with highest weight nuj^ (where n C N).
So, a G Z, denotes the 1-dimensional representation of C* with weight a.
If G has more than one simple factor, the fundamental weights of the se-
cond factor (and the corresponding representation) are denoted by uj[, the
one of the third factor by ̂ ' . uj^ denotes the dual representation ofcc^, etc.
Under H, H\ and H^ we list the principal as well as the two exceptional
isotropy groups.

In Table 2, (a;, M) and (a/, N) are representations from Table 1, S and
S' denote 1-dimensional trivial representations of M and N respectively,
and M1 and N ' denote the principal isotropy groups of (a;, M) and (a;', N).

5.3 Remark. —From the representations in Tables 2 and 3 containing
a direct summand So 0 S^ one gets the linear models from Remark 4.11
by replacing this summand by a C*-representation of the form So © S-&
with a, b > 0.

Table 2

G

M
M x N

V

o;es
uj (g) s/ e s ̂  cc/

H

M'
M' x N '

H,

M
M' x N

H2

M
M x N '
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CO

r^

^3

ff

^ 0'
x x

0" 0' O6 ^ ^
X X X X X

^

. ^i 0 x x
T T ^? x T T T

1 ^ d ^ x ^ ^ ^ d d
: x x x ^ x x x x x

^ ^ b ^ D? ^ ^ ^ b b b b b

^ 0'
x x

^ d d d 4 d
x x ^ x x ^ x - T x^

,̂

g e ^ g
0 0 ^ 0

| x x x x
^? 0s 0s ^ ^ ^ ^ 0^ O6

x x x x x x x x x
O ^ U Q ^ Q ^ ^ ^ y y y y y

i—i ^
: 1 1

S ?

( M ^ C O C O - x - g g ^ . g y. r- „o u ^ CQ o o o u ^ b o b

^ ?

^ b ^ o b d -? b ^ b d b
^ ^ -- ^ - ^ - -^- -- ^-e i ^ ? ^ ?^ ^,^ ^ ^ 0 ^ ^ , 0? ^ ̂  ̂  i ? M ^ M ? M ^ M0 ^ 0 ( g ) e 3 ^ ( g ) ^ ^ ^ ^ ^^ — <g) ^ ^ o w e e ^ (i7 e ®
B ^ ^ 3 M, ^ M — a M c"

3' e ^ ̂  e M e ^ M e ^
® c ^ ^ ® ^ c^ e — 0 e — 0
*^ 3 co M ^ -x-r^ '̂  '̂ 1 * ^ Y"' a * o ^ a^^ei i i ^ ^ B " ia
W ^ ^ ^ ^ ^ ^ a W y ® © a ®

3 B a 3 ^ 3 ^ B M B M B
^ ^ ^ ^ ^ ^ ^F ^^-^ s—^ ^ ^-
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Table 4

G

Ai
A2

B2

D2

Cs
Ft
G2

AI X AI

C2XC^

(m^ 2)

y
4c<;i
^1^2

C^2

<^2

Cc;2

<^1

C^2

3o;i 0 c^
c^i (S) ̂ [

H

-D4

C* xC*
C* xC*
C* x C*
(Ai)3

£»4

C* xC*
2?4

Cm-2 x (Ai)2

^1

C* X Z2

Ai xC*
Ai xC*
Ai xC*
C2 x A i
^4

Ai xC*
C* X Z2

(7^-2 X (72

H2

C* X Z2

C* x A i
C* x A i
C* x A i
Ai x €2
£?4

C* x A i
C* X Z2

C 7 ^ i x (Ai)2

Table 5

G

C*xSOn
(n^3)

DQ

A4

C*xA4

v

(SaWi)
e^^^)*

0:4 ©0;5

^2 ® ^2

(^ 0^)

e(Sa0a;2)*

^
SO^-2XZ2

As
AixAi
C*xAixAi

Hi
SO«-2xC*

A4

AaxAl
C*xAixA2

Hi

SOn-l XZ2

53

C2

C*XC2
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