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STRICTLY ERGODIC, UNIFORM POSITIVE
ENTROPY MODELS
PAR

ELt GLASNER and BENJAMIN WEISS (*)

RESUME. — Le théoréme suivant, de type Jewett-Krieger est démontré. Soit
(£2,m, T) un processus ergodique d’entropie positive; il existe alors un systéme dyna-
mique strictement ergodique (X, p,T), d’entropie uniformément positive, isomorphe
a (2, m, T). D’autres résultats concernant les extensions et les couplages des systémes
d’entropie uniformément positive sont donnés.

ABSTRACT. — The following Jewett-Krieger type theorem is proved : given any
ergodic process (2, m,T) of positive entropy, there exists a strictly ergodic, uniform
positive entropy (u.p.e.), dynamical system (X, u,7") which is measure theoretically
isomorphic to (2, m,T). Other results about extensions and joinings of u.p.e. systems
are given.

1. Introduction

The class of uniform positive entropy (u.p.e.) dynamical systems was
introduced in [B1], as one candidate for an analogue in topological dyna-
mics of the basic notion of a K-process in ergodic theory. In particular
every non-trivial factor of a u.p.e. dynamical system has positive topo-
logical entropy. The precise definition of u.p.e. is as follows. Let (X,T)
be a dynamical system; an open cover U = {U,V} of X is called a stan-
dard cover if both U and V' are none-dense in X. The system (X, T) has
uniform positive entropy (u.p.e.) if for every standard cover U of X, the
topological entropy A(U,T) > 0. Further developments of the theory of
u.p.e. systems were obtained in [B2] and [B-L].

[B2] concludes with the question : do there exist non-trivial minimal
u.p.e. dynamical systems? We prove here the following :
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400 E. GLASNER AND B. WEISS

THEOREM A. — Let (X, T) be a dynamical system. Suppose there erists
a T-invariant probability measure p on X with Supp(p) = X, such that
the process (X, u,T) is a K-process; then (X,T) is u.p.e.

Combining this result with the representation theorem of JEWETT
and KRIEGER, (see [D-G-S]) we immediately get a wealth of examples
of strictly ergodic (hence a fortiori, minimal) u.p.e. dynamical systems.
Another corollary of THEOREM A, (COROLLARY 3.2) is obtained when
one recalls the construction in [W1], of a universal minimal dynamical
system (X, T') with the property that for every measure theoretical ergodic
process (2,m,T), there exists an invariant probability measure p on X
such that (X, u,T) is isomorphic to (2, m,T). By THEOREM A, (X,T) is
u.p.e. and it therefore serves as a minimal u.p.e. model for every ergodic
process.

Let us call an extension of dynamical systems (X,T) — (Y, T), solid
if whenever A C X is closed and 7[A] =Y, then there exists a sequence n;
with lim 7™ A = X, (in the space 2% of closed subsets of X, with respect
to the Hausdorff topology). It is easy to check that an almost 1-1 extension
of minimal dynamical systems is solid.

The extension (X,T) —— (Y,T) is called weakly solid if whenever
W C X x X is a closed T' x T-invariant subset with 7 x 7[W] =Y x Y,
then W = X x X. As we shall see (PROPOSITION 4.1), every proximal
extension of minimal systems is weakly solid and every solid extension is
weakly solid.

TueoreM B. — If (Y,T) is a minimal u.p.e. dynamical system
and (X,T) = (Y,T) is a weakly solid extension with (X,T) minimal,
then (X,T) is u.p.e.

From THEOREMS A and B, using theorems of WEiss, [W2] and
FUrsTENBERG and WEiss, [F-W], we now deduce :

TureorREM C. — Given an arbitrary ergodic process (Q,m,T) of positive
entropy, there exists a strictly ergodic, uniform positive entropy dynamical
system (X, T) with invariant measure p, such that the processes (2, m,T)
and (X, p,T) are measure theoretically isomorphic.

Using a generic construction of skew product dynamical systems we
further use THEOREMS A and B to get

THEOREM D. — There exist two minimal u.p.e. dynamical systems and
a minimal joining of the two, which is not even weakly mizing (hence, a
fortiori, not u.p.e.)
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STRICTLY ERGODIC POSITIVE ENTROPY MODELS 401

In section 2 we recall the definitions of entropy pairs and u.p.e. systems
and list the basic results obtained in [Bl] and [B2] for such systems.
Tueorems A, B, C and D are proved in sections three, four, five and
six respectively. We use standard notation and terminology of ergodic
theory and topological dynamics. To avoid confusion however; we call a
measure preserving transformation on a Borel space (2, B, m,T) a process
(and omit the o-algebra B), and a topological transformation or a flow
(i.e. a pair (X,T) where X is a compact metric space and T a self-
homeomorphism of X) a dynamical system (or just system). With only a
few exceptions we denote by T the acting transformation in every process
or system we consider.

The first author wishes to thank Francois BLANCHARD for suggesting
the problem of finding minimal u.p.e. models for ergodic processes and
for his hospitality.

2. Entropy pairs and u.p.e. systems

Let (X,T) be a dynamical system; an open cover Y = {U,V'} of X is
called a standard cover if both U and V are none-dense in X. (X,T) has
uniform positive entropy (u.p.e.) if for every standard cover U of X, the
topological entropy h(U,T) > 0. A pair (z,z') € X x X is an entropy
pair if for every standard cover U with z € int(U¢) and =’ € int(V°),
hU,T) > 0.

Denote the set of entropy pairs by E = Ex. Let A = {(z,z) : z € X }.
The following facts are proved in [B1], [B2].

1) h(X,T) > 0 implies E # 0,

2) (X,T) isupe. iff £ =X x X\A,

3) ECEUA,

4) E (hence also E) is T x T invariant,

5) if (X,T) — (Y, T) is a homomorphism then 7 x n[Ex] = Ey,
6) u.p.e. implies weak mixing,

7) every non-trivial factor of a u.p.e. system has positive topological
entropy.

As a warm up, we next give a slightly different proof of 1) than that
given in [B2].

ProposiTioN 1.1. — If h(X,T) > 0, then E # 0.

Proof. — Assume on the contrary that h(X,T) > 0 and E = §. Let

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



402 E. GLASNER AND B. WEISS
6 > 0 be given and for every
(z,2") € Ks ={(2,7') € X x X : d(z,2") > 6},

let Y = {U,V} be a standard cover with z € int(U°), z’ € int(V°) and
h(U,T) = 0. Choose € > 0 with B(z) C int(U¢) and Bc(z') C int(V°)
and let

U(z,2') = (Be(z))", V(z,2') = (Be(z))".

Then U(z,z') := {U(z,z'),V(z,z')} < U and therefore
h(U(z,2'),T) < h(, T) = 0.
Let {(z;,})}%_, be a finite set in K5 such that {B; x B/}¥_, is a cover

of K&, where B Be(zl, ;)(1‘,) and B Be(a:,,aci)( )

Now let U = {U; = (B)°, Vi = (B)°}, 1<i<kand V=V U
Then :

k
h(V,T) < Z h(U;, T) = 0.

‘We show next that :
max{diam(W) : W € V} <.

Suppose W = WiNnWon---NW, € Vf=1 U; is non-empty, where for
each i, W; = U, or V;. Let z € W; if (z,2') € K; then there exists ¢ with
(z,z') € B; x B]. Hence z ¢ U; so that z € W; = V;. However 2’ € B]
implies 2’ ¢ V; hence ' ¢ W. This proves our claim and since § > 0 is
arbitrary, we deduce that h(X,T) = 0. This contradicts our assumption
and the proof is complete. ]

REMARKS

1) This proof yields the following result : if (X, T) is expansive with
a constant § > 0 then A(X,T) > 0 implies E N K5 # 0.

2) Using a similar argument, applied to sets of the form
K§={(z,2'): 6 < d(z,2') < €},

one can show that h(X,T) > 0 implies EN A # 0.

TOME 122 — 1994 — ~n° 3
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3. K implies u.p.e.

As usual we let, for a probability vector (p1,p2,...,Pn),

H(p1,p2,...,pn) =~ Y _ pilogp;.

ProposiTION 3.1.— Let (X, T) be a dynamical system, p an ergodic T'-
invariant probability measure on X which is positive on non-empty open
sets. Let U = {U,V'} be a standard cover of X and let A=U°, B=V°,
C =UnV. Let P ={A,B,C} be the corresponding partition and put
a = p(A), B =uB), v=uC) and (o, § > 0). Then with h = h,(P,T)
and b/ = h(U,T) we have :

h <h'+ H(y,1-7).

Proof. — Let % > € > 0 be given. The ergodic theorem implies the

existence of a positive integer ny such that for n > n; the set F' = F,, of
(P, n, €)-good points in X (i.e. those points x, whose atom or «namey in
the partition Pé‘—l =PVTP---VT" 1P, has up to € the right frequency
of letters A, B,C), has measure > 1 —e.

For any n let N,, = N(n,¢) be the minimal cardinality of a set of P!
names sufficient to cover all but a set of measure 2¢ of X. Then, by the
Shannon-MacMillan theorem (see e.g. [R, p. 72]) :

1
h= lim — logN(n,e¢).

n—oo N

G={GePy': e ") < 1(G) < e‘"(h_e)},
¢ ={GeG:GNF +0},
g/l — g\gl

Then clearly p(|JG”) < € and again by the Shannon-MacMillan theorem,
for n large enough p(JG) > 1 — ¢, whence p(UG’) > 1 — 2¢. If we let
N’ = N, = cardinality of G’, then clearly N} > N,.. Thus we have :

h = lim 1 log N, Sli_ml log N},.
n n

We may therefore choose ny such that for n > ns :
*) enlh—e) < Nj.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



404 E. GLASNER AND B. WEISS
Finally, choose ng with the property that for n > ng
en(h'—e) < #W < en(h'+e)’

where, W is a subcover of L{(’)’_l of minimal cardinality. Take n >
max{ni,n2,ng}. Given G € G’ there exists W € W for which FNGNW
is not empty. Write

W=WonT'Win---NnT""W,_,,
G=DyNT'Din---NnT""D,_,

where W; € {U,V}, D; € {A,B,C} = P, 0 < j < n— 1. Let
z € FNGNW, then since z is in F', there are ¢ C’s among the D;’s where
n(y —e€) < g < n(y+¢€). These ¢ C’s can appear anywhere, but once we
know which of the D;’s are C’s, at any other position, the appearance of
either A or B is determined by reading whether W; is U = A° or V = B°.
Thus we get (n(y"ie)) as an upper bound on the number of names in G’

intersecting W. We now deduce :

/ n n(h'+e n
N S#W-(n(vie))Se (h+)'<n('y:|:e))'

Use Stirling’s formula to get

n n! H(y+e,1—(v%e))
— < nH (vyxe, Yxe
(n(viE)) (n(y+£e)!(n(l—(yxe))! ~ Kvne ’
hence :
(**) NI S K\/ﬁ en[H(’y:ﬁ:e,l—(’yie))-ﬁ—h'-’-e].

From (*) and (**) we get

en(h—e) < Kﬁ en[H('y:I:e,l—('y:te))+h'+e]’
hence :
log K
h—e< _o_g_n___\/ﬁ +H(ytel—(y+e)+h +e

Finally let first n — 0o and then € — 0 to get h < H(v,1—7)+h'. []
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A proof of theorem A.— Keeping notations as in the previous proposi-
tion, we now assume that (X, u, T') is a K-process. For every integer m > 0

H(aa B, ’Y) > h(P, Tm) = H(’P | (7 T—mkP)
k=1

ZH(P[ (7 T—kP) — > H(P|7),

k=m

where 7 = (oo_, \/re,, T~*P is the tail field, which by assumption is
trivial. Thus :
H(P|7)=H(P)=H(xB,7)

Therefore given € > 0, there exists an integer m with h(P,T™) > H(P)—e.
Since the dynamical system (X, T™) is u.p.e. if and only if (X, T) is u.p.e.,
we now assume for convenience’s sake and with no loss of generality,
that h = h(P,T) > H(e, 8,7) — €.

We have, by ProposiTION 3.1,

H(a,B,7) —e<h<h+H(y,1-7).

Now if (X,T) is not u.p.e., there exists a standard U for which
h' = hiop(U,T) = 0 and since € is arbitrary, we get

H(a,ﬂ,’)’) S H(")/,l—’)’),

which is absurd since o and ( are positive. This completes the proof of
THEOREM A. []

REMARK. — Using Jewett-Krieger theorem we can, given an ar-
bitrary K-process (2, m,T), find a strictly ergodic dynamical system
(X, 1, T) which is measure theoretically isomorphic to (Q,m,T). Ap-
plying theorem A we now deduce that (X, u, T') is also u.p.e. This answers
F. BLANCHARD’s question about the existence of minimal u.p.e. systems.

Of course it is natural to ask whether every minimal (or strictly ergodic)
u.p.e. dynamical system necessarily admits an invariant measure with
respect to which it is a K-process. We shall see in section 5 that there are
many examples of strictly ergodic u.p.e. dynamical systems which do not
" admit such measures.

Another corollary of THEOREM A is the existence of a universal minimal
u.p.e. system, in the following sense.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



406 E. GLASNER AND B. WEISS

CoROLLARY 3.2. — There ezists a minimal u.p.e. dynamical system
(X, T) with the property that for every ergodic process (Q,m,T), there is
an invariant probability measure p on X such that the processes (X, p,T)
and (2, m,T) are measure theoretically isomorphic.

Proof. —In [W1] a minimal system (X, T’) is constructed which has the
property stated in the corollary. Since for some y, (X, u, T') is a K-process,
THEOREM A implies that (X, T) is also u.p.e.

4. Weakly solid extensions preserve u.p.e.

ProposiTION 4.1.
1) A minimal almost 1-1 extension is solid.
2) A minimal prozimal extension is weakly solid.

3) A solid extension is weakly solid.

Proof.

1) In fact minimal almost 1-1 extensions are characterized by a much
stronger property which is purely topological : if (X,T) — (Y,T) is a
homomorphism of minimal systems then 7 is almost 1-1 if and only if
whenever A C X is a closed subset with 7[A] =Y then A = X.

Suppose 7 is almost 1-1, then the sets Yo = {y € Y : |7~ (y)| = 1}
and 7~ 1[Yp] = Xy are dense G5 subsets of X and Y respectively. (It is for
the density of X, that we need the minimality.) Thus if 7[A] = Y then
necessarily Xg C A and A = X, since A is closed.

Conversely, assume our condition holds and let V # () be an open
set in X. Then A = V¢ # X is closed, and our condition implies that
ANnal(y) = 0 for some y € Y; ie 7 '(y) C V. Now the map
77! 1 Y — 2% is upper-semi-continuous and therefore has a dense Gj
subset Yy C Y of continuity points. If yo € Yo, zo € 7 '(yo), and
Voo \\ {z0} is a decreasing sequence of open balls around z¢, then there
exists a sequence {y,} C Y with 7=1(y,) C V,,. Clearly y, — yo and the
continuity of 7! at yqo yields :

{zo} =lim7 ™ (y) = 77 (yo).
Thus |7~ (y)| = 1 for every y € Y, and 7 is almost 1-1.

2) Let (X,T) - (Y, T) be a proximal extension of minimal systems.

Let W C X x X be a closed T x T-invariant set with 7 x 7[W] =Y x Y.
Given n € Z, let zp be some point in X. By assumption there exists
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a point (z1,z2) € W with 7 x n(z1,22) = 7 X w(xo,T"x0). Since 7 is
proximal, there exists a unique minimal set in the orbit closure of (z1, z2)
in X x X and this has to be A, = {(z,T"z) : ¢ € X}. Thus A,, C W,
and since | J,,cz An is dense in X x X, we deduce W = X x X.

3) Let (X,T) — (Y, T) be a solid extension of minimal systems, and
let W C X x X be a closed T' x T-invariant set with 7 x 7f[W] =Y x Y.
For each y' €Y, let :

Wy ={zeX: I(z,a)eW, n()=y}.

Denoting by p; the projection on the first component, we have

Wy =pi[(mx 1)~ Y x {y'} n W],
and by our assumption 7[W,/] = Y. Since 7 is solid, there exists a sequence
n; with imT™W,, = X. Without loss of generality we may assume
that y” = lim T™iy’ exists. Choose m; such that lim T™iy"” = ¢’ and then,
iterating 7™ and T™:, choose a sequence k; for which lim 7%y = ¢/
and im T*W,, = X.

Since W is T' x T-invariant, we have

X =lmT*W, = lim Wy, C Wy,
whence Wy, = X. Thus given 3’ € Y and x € X there exists 2’ € X such
that 7z’ = ¢’ and (z,z’) € W. Fixing = we see that

We={a' € X:(z,2') e W}

satisfies 7[W?*] = Y. Using solidity again, choose a sequence ¢; with
lim 7%z = z and limT%W? = X. Then also

X = imT4W® = im W7 ¢ we,
and W? = X. Since x was arbitrary we get W = X x X. []

A proof of theorem B. — Denote by Ex and Ey the sets of entropy
pairs in X x X and Y x Y respectively; then by assumption Ey =Y xY
and hence :

7T><7T[Ex] =Ey=YXY

Since _E’ x is closed and T x T-invariant and since 7 is weakly solid, we
have Ex = X x X and the proof is complete. |[]

COROLLARY 4.2. — The class of minimal u.p.e. dynamical systems is
closed under minimal prozimal extensions.

Proof.— This corollary follows immediately from THEOREM B and from
ProposiTION 4.1 []

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



408 E. GLASNER AND B. WEISS

5. The representation theorem

Our main tool in proving THEOREM C is the following construction of
FUrsTENBERG and WEIss, [F-W].

THEOREM 5.1. — Let (Y, T') be a non-periodic dynamical system and let
(X,T) = (Y, T) be an extension of (Y,T), where (X, T) is topologically
transitive. Then there exist an almost 1-1 extension (X,T) —— (Y,T), a
Borel subset Xo C X and a Borel measurable map Xo —— X satisfying :

)
) ™

3) fisa Borel isomorphism of X¢ onto its image Xy in X, and
4)

w(Xo) = 1 for any T-invariant measure p on X .

REMARK. — It is important to note that from the proof of THEOREM 5.1
given in [F-W], one can deduce some additional information on the
structure of the space of the T-invariant measures on X. In particular
it can be seen that if (X, T) is uniquely ergodic, one can construct (X, T’
as above with the further property that it is itself uniquely (hence strictly)
ergodic.

We are now ready to prove THEOREM C.
A proof of theorem C. — We start with an ergodic process (2, m,T)
with h,(T") > 0. By Sinai’s theorem, a factor map
(Q,m,T) -2 (', m, T)

exists where the process (', m/,T) is Bernoulli and in particular a K-
process. Using a relative version of Jewett-Krieger theorem, [W2], we can
find a (continuous) homomorphism of strictly ergodic dynamical systems
(X, i, T) = (Y,v,T) such that the diagram

(Q)ma T) (Ql?m,:T)

I [

(X, 3,T) ——— (Y,1,T)

is commutative and the double edged arrows denote measure theoretical
isomorphisms. By THEOREM A then, the system (Y,v,T) is u.p.e.

TOME 122 — 1994 — n° 3



STRICTLY ERGODIC POSITIVE ENTROPY MODELS 409

Next use THEOREM 5.1 (and the remark that follows it) to construct a
commutative diagram

6
X,m,T) —— (X,5,7T)

N A

(KV7T)

where (X, u,T) is strictly ergodic, 7 is an almost 1-1 extension and 6,
defined on a full-measure Borel subset Xo C X is a Borel isomorphism
of X, onto its image Xy C X.

Finally we use THEOREM B to deduce that (X, u, T) is a strictly ergodic
u.p.e. dynamical system which is measure theoretically isomorphic to the
original process (2, m,T). []

REMARKS

1) By the variational principle, a strictly ergodic, u.p.e. dynamical
system (X, p,T) satisfies h,(T) > 0. Thus, in fact, THEOREM C gives
a necessary and sufficient condition for an ergodic process (Q,m,T)
to possess a strictly ergodic u.p.e. model; namely that it has positive
(measure theoretical) entropy.

2) In [L], E. LEHRER proved a version of the Jewett-Krieger theorem
which provides a topologically mixing, strictly ergodic model for every
ergodic process. By CorOLLARY 3.2 ,every ergodic process possesses a
minimal,topologically mixing, u.p.e. model. Is it true that every minimal
u.p.e. system is necessarily topologically mixing? (In [B2] there are
examples of (non-minimal) u.p.e. systems which are not topologically
mixing.)

CoOROLLARY 5.2. — There exists a strictly ergodic, u.p.e. system
(X, u, T) which, as a process, is not K.

Proof. — Let (Y,v,T) be some strictly ergodic system which is a K-
process. Let (Z,T) be an irrational rotation of the circle and let A denote
Lebesgue’s measure on Z. Put

(X,i5,T)=(Y x Z,v x \, T xT)

and let 7 : X — Y be the projection. Now apply THEOREM 5.1 to obtain
the diagram

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



410 E. GLASNER AND B. WEISS

0 -

\/

(Y,v,T)

(X, u, T) is then a strictly ergodic, u.p.e. system which is measure theore-
tically isomorphic with (Y x Z, v x X, T xT) and hence not a K-process. ]

6. Joinings

In [B2] the question whether the product of two u.p.e. systems is also
u.p.e. is posed. (Remark that the analogous question is open even
for the topological mixing property; there however, FURSTENBERG has
shown that if two systems are weakly mixing and at least one of them is
minimal then their product is also weakly mixing, [F].) Here we consider
the related question about the nature of joinings of two minimal u.p.e. sys-
tems. We show that there exist two minimal u.p.e. systems and a minimal
joining of the two (i.e. a minimal subset of the product system) which is
not even weakly mixing. In fact using the machinery developed in [G-W]
and [G] and the basic idea of [P], we only have to draw some straightfor-
ward conclusions concerning the u.p.e. case.

A proof of Theorem D.— We recall the following setup from [G]. (Z, o)
is an arbitrary (metric) minimal dynamical system; Y a compact metric
space. The space of self-homeomorphisms of Yequipped with the topology
of uniform convergence of homeomorphisms and their inverses, is a polish
topological group, denoted by H(Y). We assume the existence of a path-
wise connected, closed subgroup G of H(Y') which acts minimally on Y.

Let X = Z xY and let X —— Z be the projection. With every

continuous map z — g, of Z into G, associate a homeomorphism G of X
onto itself given by :

G(z,y) = (2, 9zy).
Identify o with the map o x idy and put :

0)={G'o00G:G as above}.
Since every element of Sg(o) has the form
G loooG = (0249,,9:9),

TOME 122 — 1994 — ~° 3



STRICTLY ERGODIC POSITIVE ENTROPY MODELS 411

it follows that every T € Sg(o) has the form

T(z,y) = (02, hy),
for some continuous map z — h, of Z into G.

The following result is a stronger version of proposition 1.1 in [G].
A proof can be obtained by a slight reinforcement of the proof of that
proposition.

THEOREM 6.1. — Let (Z, o) be a metric minimal dynamical system, Y a
compact metric space and G a pathwise connected subgroup of H(Y') such
that (Y,G) is minimal. Then there exists a dense Gs subset R of Sg(o)
such that for every T € R the dynamical system (X, T) is minimal and
the extension (X, T) —— (Z,0) is solid.

Now let (Z,0) be a fixed metric minimal u.p.e. system. Put
Y=K={yeC:ly =1}

and let G = K, acting on itself as a group of translations. Then clearly
(Y,G) is minimal and THEOREM 6.1 applies. If T € Sg(o) has the form
T(z,y) = (0z,h,y) where z — h, is a continuous map from K = Z
to itself, let :

f(za y) = (UZ’ (_l)hzy)

Let R be the subset of Sg(o) given by THEOREM 6.1. It is easy to see
that for T € R (since (X, T) is weakly mixing) the system (X,T) is also
minimal. Since R is a residual subset of Sg(c), so is R and we can choose
T € RNR. Then the systems (X,T) and (X, f) are minimal and u.p.e.

Let now V C X x X be the set :

V={((zy),(z,£y)) : (2,9) € X}.
Then clearly V is T x T-invariant. Moreover the function ¢:V - K,
¢((2,9), (%) =y~ 'y

is an eigenfunction of (V,T x T) with eigenvalue —1. From this we
easily deduce that (V,T x f) is isomorphic to the product system
(X x {1,-1},T x flip), which is minimal and non-weakly-mixing. Thus
W, T x f) provides an example of a non u.p.e. minimal joining of the

minimal u.p.e. systems (X,T) and (X, JA") This completes the proof
of THEOREM D. []
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