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ON THE HAUSDORFF DIMENSION OF JULIA SETS
OF MEROMORPHIC FUNCTIONS I
PAR

JANINA KOTUS (¥)

RESUME. — On donne dans cet article des estimations de la dimension de Hausdorff
des ensembles de Julia pour trois familles de fonctions méromorphes. La dynamique de
ces fonctions et la structure topologique de leurs ensembles de Julia ont été étudiées
par Devaney et Keen.

ABSTRACT. — In the paper it is given a lower bound for the Hausdorff dimension
of the Julia sets of three families of transcendental meromorphic functions. Dynamics
of these functions and topological structure of their Julia sets have been investigated
by Devaney and Keen.

0. Introduction

Let f:C — C denote a meromorphic function which we shall always
assume to be neither a constant nor a rational function of degree one.
For n € N, f* denotes the n-th iterate of f, and f~" = (f*)~!. The
Fatou set F'(f) is the set of the points z € C such that (f*), n € N, is
defined, meromorphic, and forms a normal family in some neighbourhood
of z. The complement of F'(f) in C is called the Julia set J(f) of f. J(f)
is perfect and has the property of complete invariance, that is, z € J(f)
if and only if f(2) € J(f).

Suppose f is transcendental meromorphic, has at least one pole and
f is not of the form fo = a + (2 — @) % exp(g(2)), where k € N, with
an entire g. Then J(f) is the closure of the set of preimages of co under
all f™. For certain maps of this type the Julia set has several properties
in common with those of entire functions. For example the Julia set may
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306 J. KOTUS

contain Cantor bouquets, which is a typical phenomenon encountered in
the study of entire functions. For some other the Julia set resembles Julia
sets of rational maps, e.g. J(f) is a Cantor set or a quasicircle. More
details of these and other basic properties of the sets F'(f) and J(f) can
be found in [1], [2], and [3].

An upper bound for the Hausdorff dimension of the Julia set of
meromorphic maps is two. The standard example when this bound
is attained is a function with J(f) = C, but this is not a unique
possibility. A sharp lower bound for the dimension of the Julia set of these
meromorphic functions is zero (a result announced by G. STALLARD).

In this paper we concentrate on the estimate of dimension of Julia sets
of certain families of maps. Dynamics of these maps has been investigated
in [4]. We prove the following theorems, where HD(J(f)) denotes the
Hausdorff dimension of J(f).

THEOREM 1. — Let fi(2) = A/(1 — e72%), A > 0. Then J(f») contains
a Cantor bouquet, and HD(J(fr))= 2.

THEOREM 2. — For f\(z) = 1/(A+ e7%?), A > 0, J(f,) is a Cantor

set. Moreover, the asymptotic estimate

c
HD(J(£2) 21 = o

holds for some C > 0 and A — 0.

Of course, the above inequality implies that our lower bound for
HD(J(f»)) tends to 1 if A tends to 0.

TueOREM 3. — Let fi(z) = Atanz, A € R and 0 < |A\| < 3. Then
J(fx) is a Cantor subset of R and

C
1>HD(J(f)) > [log Al

for some C >0 and A\ — 0.

The proofs of these estimates are based on the following result proved
by MCMULLEN [7].

LemMA 1. — For each k € N, let Ay be a finite collection of disjoint
compact subsets of R™, each of them has positive finite n-dimensional
measure, and define

U= |J A, A=()Us.
A € Ag k=1
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HAUSDORFF DIMENSION OF JULIA SETS 307

Suppose also that, for each Ay € Ay, there exists Axy1 € Axy1 and a
unique Ax_1 € Ax—1 such that Axs1 C Ax C Ax_1. If Ay, dp satisfy,
for each Ay € Ag, the conditions

VOl(uk+1 n Ak)
VOl(Ak)

diam A < di < 1,

> Ak,

dp, -0 as k — oo,

then
llog A;|
[log d|

k—o0

k
HD(A) > n — limsup E
7j=1

It is clear that if f is a homeomorphism of a domain D onto f(D), then
the distorsion defined by

17,D) = sup (2

satisfies L(f,D) = L(f~1, f(D)). In the proofs we use the following
Koebe’s distorsion theorem, cf. [5].

LEMMA 2. — Let D(z,7) denote the disc of centre z, radius r. Then
for 0 < s < r, there is a constant M (s/r) such that, for every univalent
map g : D(z,7) — C,

S

L(f’D(z’S)) SM(“) :(

r

r+s>4
r—s/’

1. Proof of Theorem 1

Consider the family of maps

A

m? A>O-

N(z) =

The function f, is periodic with period 7, and its Schwarzian derivative
equals Sfy = (fV/f3) — 3(f{/f})? = —2. The singularities of f;' are
a; = 0 and as = . They are the transcendental singularities. Recall
that a point a is said to be a transcendental singularity of f~! (or an

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



308 J. KOTUS

asymptotic value of f) if there exists a curve I' in C such that f(z) — a
on f(I') when z — oo on I. Let

Wy ={z: Rez <0}, Wy={z: Rez>0}.

In each sector W;, ¢ = 1,2, f\ has the following behaviour : there is a
disc B; around a; such that f5*(B;\ {a;}) contains a unique unbounded
component U; C W;, and fy:U; — B;\ {a;} is a universal covering.
These U; are called exponential tracts. It is seen from the graph of fy
restricted to R that f) has two fixed points ¢; = ¢;(\), i = 1,2, with
q1 < 0 < qo, q1 is repelling while g, is attracting. Moreover, if Rez > 0
then f,"(2) — ¢2 as n — oo, hence J(f)) is contained in the half-
plane {z : Rez<0}. As R~ U {0} C J(f\), hence all the preimages
of R~ are in J(fy). In particular the branches of f;>"(R~) belong to,
so called, Cantor bouquet. We recall its definition. Let X be the set of
sequences of s = (sp, 81, S2, - -.), where the s; are integers, |s;| < N. An
invariant subset Cy of J(f\) is called a Cantor N-bouquet for fy if there
exists a homeomorphism h : ¥y x [0; 00) — Cy such that

roh o fy o h(s,t) = o(s),

where 7:Xn x[0; 00) = Xy is the projection map, o is the shift
automorphism defined by o(sg, s1, S2,...) = (s1, S2,--.), and lim h(s,t) =
00 if t — oo, lim f} o h(s,t) = oo if t # 0 and n — oo. An N-bouquet Cy
includes naturally an (N +1)-bouquet Cy 41 by considering only sequences
with entries less than or equal to N in absolute value. The set

c=Jcw
N>0

is called a Cantor bouquet.

Note that one of the asymptotic values 0 is also a pole of fy. Thus fy
satisfies the assumptions of the following lemma proved in [4].

LemMA 3. — Let f:C — C be a meromorphic map. Suppose f has
polynomial Schwarzian derivative of degree (p —2) and has an asymptotic
value a; which is also a pole. Let W; be the sector containing the
exponential tract corresponding to a;. Then for each N > 0, J(f) contains
a Cantor N-bouquet in W; which is invariant under f2.

So, for A > 0 J(f») is contained in the half-plane {z : Rez < 0} and
contains a Cantor bouquet, while F(f)) is an attractive basin of go. We will
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HAUSDORFF DIMENSION OF JULIA SETS 309

show that HD(J(fy))= 2 for A > 0. Fix A > 0. Further on for simplicity
we omit the index A. Denote by g the second iterate of f, g = f2. Choose
p=p(\) suchthat p < —3, e > ((14+A—2p)>+172) 2 and the absolute
value of A/(6p) is small enough, the meaning of this condition will appear
further. Define the sets (see Fig. 1) :

T,={z:Rez<p, Imz—nn|< in}, nez,

T = UTn,

nez
E={z:g"(2) €T for all n € N}.

Tn nmi

Tpoy t(n—1)mi

g(Bs,t)

L
AAkEA’x

1

Figure 1
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310 J. KOTUS

We will show that E C J(f). First, we begin with the
LemMMA 4. — Let g7(2) € T, j=0,...,n — 1, then

[(g")' ()] > 47" exp(2(2" — 1)|p).

Proof. — A simple calculation gives

B A
T 1—exp(—2A/(1 = e %))

' (2) = (2271 g(2) f(2) exp(=A/(1 — e7%) — 2))°.

This implies

9(2)

19/(2)] = {2A—1|f2<z>f<z>l

—A(1 — e"2Re2 ¢og(2Im 2))
1—2e2Rezcog(2Im z) 4 e~ 4Rez

exp( )CXP(— Rez)}za

and consequently

(1) 1(6) (2)] = 4" A2 { | F(2)| Gu(2) Hn(2)},

with

n

Fu(z) = [] (£ 1(2)£>™(2)),

m=1

Gl = exp(~ ¥ Reqn().
m=0

H,(2) = exp{ i —A[1 - exp(—2Re g™ (2)) cos(2Im g™ (z))]
m=e x [1—2exp(—2Reg™(z)) cos(2Im g™ (z))

+ exp(—4Re g™ (2))] ~1}

First we show |Fy,(2)] > (2A\)™. Let z € (—o0; p) and z — —oo0, then
f(2) €(q;0), g =A/(1—e??) and f(z) — 0~. Moreover, T" = f(Tp)
is a domain attached to 0, contained in the half-plane {z : Rez < 0},
and bounded by the three circular arcs two of them are symmetric with
respect to R™ and pass through 0, while the third one is orthogonal to

TOME 122 — 1994 — ~° 3



HAUSDORFF DIMENSION OF JULIA SETS 311

the previous two. We have f(2) = A/(1 — e7%%) =~ %)\(1 + 271) in the
vicinity of 0. In fact, in the set 7" (which is thin and contained in a small
neighbourhood of 0 by the conditions imposed on p) | f(z)| > %/\Il +2z71.
Now, for z € T, the product |f(z)g(z)| is estimated from below by
If(2)] - [5AQ+ £(2) ")) = $AI1 + £(2)]. This implies that

@) [Fa@@)] = [T @2 = I gL+ 2] > (G0

m=1
since f2m=1(2) € T and | 2™~ 1(2)| < |f™3(2)| < --- < |q|-

We claim that G,(z) > exp((2™ — 1)|p|). To prove this it is enough
to show that Reg(z) < 2Rez, which is equivalent to the inequality
Rew < 2Reg~!(w), where w = g(2). Asw € T

97 (w) = -

og (1 + 2Alog ™! (1 — A\ /w))
og(1+2X/(=2w™ (1 + A/(2w) + - -)))
og(1 —2w(l — A/(2w) +--+))

og(l+ A —2w)

|

|

|

Nl Nl D= N
_— e

Q

and

exp(—Rew) > ((1+ X —2Rew)? + iﬂQ)%

> (14— 2Rew)? + 4Im%w) ?

we have that
2Rew < —log((1+ A — 2Rew)? + 4Im*w) < 2Reg™}(w).

Hence we obtain Rew < 2Reg~!(w). By induction one can prove that
exp(— Re g™(2)) > exp(—2™ Re z) for all m < n. It follows that

(3) Gn(z) > exp((2" — 1)|Rez2|) > exp((2" — 1)|pl).
Now we show that
(4) Hu(2) > 1.
As Reg™(z) < p and |Im g™ (2)|< 37 we have
exp(—2Re g™ (2)) cos(2Im g™ (2)) > 272 exp(—2p) > 1,
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312 J. KOTUS
so —A(1 — exp(—2Re g™(z)) cos(2Im ¢g™(z))) > 0. Moreover,

1 —2exp(—2Re g™ (2)) cos(2Im g™ (2)) > 1 — 2exp(—2Re g™ (2))
and 1 — 2exp(—2Re g™ (2)) + exp(—4Reg™(2)) > 0, hence we get

1 —2exp(—2Re g™(2)) cos(2Im g™ (2)) + exp(—4Re g™ (2)) > 0,
and finally H,(z) > 1. By (1)—(4) we have

(97 (2)] = 4"A™2"{ |F(2) |G (2) Hn(2)}* = 4™ exp(2(2" = D)p|). [

Having estimated the derivatives of iterates we can prove the
LEmMA 5. — E C J(f).

Proof. — Suppose that zp € ENF(f). Then there is a disc D =
D(zp,r) C F(f) and a subsequence of iterates (f™*) holomorphic on D
which converges to a holomorphic function g. Hence ¢'(z) # oo in D.
By LEMMA 4, ¢'(20) = hm ( f™)'(20) = 00, so we arrive at contradiction.
Thus zp € J(f).

Let 2z n = 2m + nmi, m,n € Z and m < p, where p was chosen just
before LEMMA 4. Define the squares

n=1{2:|Re(z = Zmn)l < 17, Im(z — 2mn)| < 37} CT.

Take a square B, ; such that g“l(Bs,t) has at least one component in T
and let A; be one such component. We introduce the following collection
of sets :

Al = {A1}7
Ay = {A2 : Ag is a component of g_2(Bm,n) for some m < p,
m,n € Z, Ay C Al},

A = {A;c Ag is a component of g k( m,n) for some m < p,
m,n € Z, Ay C Ag_; for some Ay_; € Ap_1}.

Moreover, define

= U 4, A= ﬂuk

Ak (S Ak
Then, of course, A C E.

We will show that HD(A) = 2.

TOME 122 — 1994 — ~n° 3



HAUSDORFF DIMENSION OF JULIA SETS 313

LeEmMMA 6. — For each k € N, A, € Ag, we have
diam 4y, < 45727 % exp(—2(2* — 1) [p|).

Proof. — Let Ay € Ay. Then g*(Ax) = By, for some m < p,
m,n € Z, so diam g¥(A) = 727 2. As g¥(Ay) is convex and ¢7(2) € T,
j=0,...,k—1, we can apply LEMMA 4 which gives

. k A
diam A, < 329" (k) _ oy exp(—2(2F = 1) Ip|). []

PRVIVITTIRRVIERS
inf|(g*(2))|
For Ay € Ay we define G(Ak) = {Ak+1 € Agy1 : Ak C Ak}.
Then Upr1 NAr = |J  Ags1 and
Ar+1€G(Ag)
(5) vol@Uy+1 N Ax) 1 vol(g*(Ax+1)) ’
VOI(AIC) N L(gk’Ak)2Ak+1€G(Ak) VOI(gk(Ak))

where L(g*, Ax) denotes the distorsion of g% on the set Ay. So we need
an upper bound of this quantity, which appears to be uniform in A.

LEMMA 7. — There is a constant 1 < Cy; < oo such that for each
Ay € Ay, k € N, the distorsion L(g*, Ax) is bounded above by C.

Proof. — Recall that the singularities of f~! are 0 and A, where 0 is
also a pole, while A belongs to an attractive basin of a fixed point go > 0.
So the function g = f2 has only one finite asymptotic value

A

A= 1—e 2

> 0.

Moreover, Re f¥(\) > 0 for k € N, so the branches of f~*, and conse-
quently the branches of g~* are univalent in the half-plane {z : Rez < 0}.
Thus g¢* is a homeomorphism of Ay onto g*(A), and

L(gkaAk) = L(g_kag(Ak)) = L(g_kam,n)

for some By, nC T. As By, C D(zm,n,2_%7r) C D(2mm, Ip|), it follows
from LEMMA 2 that

2'%7r) _ (Ip]+2“%7r)4'

L(g~*, B SM(
(g m,n) lpl lpl _ 2_% T

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



314 J. KOTUS

So by the definition of p there is a constant C; such that 1 < C; < ©
and L(g~F, Bimn) <Ci. (]

Let Ag € Ay, k € N. Note that g¥(Ag41) is a component of g~ (By,,n)
for some m < p and m,n € Z. As g**1(Axy1) is convex subset of T, it
follows from LEMMA 4 that

diam g*** (Ag41)
infAk+1 |(gk+1(z))/|

diam g*(Ay41) < < Q%ﬂexp(2p) < 1—1277

Thus

Z VOl(gk(Ak+1)) > VOl(g_l(T) N Wm,n)a
Ar4+1€G(Ag)

where
Winn = {2 € C: |[Re(z — 2mn)| < %w, Im(z — 2mn)| < %ﬂ'} C Bmpn

and gk(Ak) = Bm,n'

LeEmMA 8. — There is a positive constant Co such that for each m < p,
m,n € Z, vol(g~*(B) N Wy, ) > Ca, where

B= U Bz

kLEZ
k<p

Proof.— By periodicity of g it is enough to consider only the sets Wi, o.
Fix m < p, m € Z, and take the points z¢ + 4y in W,, o, where zg is
fixed. We want to find the maximal s such that ¢g=1(T%) N Wy 0 # 0,
k| =0,1,...,s. Let

L,:—L:{w:u+i(k:|:i)w:u<p}C8Tk.
If we T, then g~'(w) &~ — 1 log(1 + A — 2w). It follows
g1+ A —2(u+i(k+ 3)m))
g[(1+ A —2u)® + 4(k + 1)*n?]
siarctan(2(k £ 3)m/(L+ A — 2u)) : u<p}

6) g7 (L)~ {=—

119
51
110
7!
+

As g~} (L{) intersects zo + iy if

Reg ML) =z and |[Img~'(LF)| <

5™

ToME 122 — 1994 — ~° 3



HAUSDORFF DIMENSION OF JULIA SETS 315

we have
20 = — 3 log((1+ A — 2u)? + 4(k + 1)%22),

which is equivalent to exp(—4zo) = (1 + A — 2u)? 4+ 4(k £ 1)?x2. Thus

(7) (14X — 2u) = (exp(—4zo) — 4(k £ 1)7?) i)
By (6) 1
k+ 3w
[m g~ (L)| = [% arctan(f(:)\if_)zz)' %w.

Applying (7) we have

1
2 < tan(im) =37,

2(k + §)7 [exp(—4zo) — 4(k £ §)*n%] 3

or, equivalently,
16m%(k + $)? < 3exp(—4xo), |k+31| < 32 (47Texp(2x0))_1.
Thus

(8) s>32 (47rexp(2:v:9)).1 -

>l

Let Ji be a subinterval of the line {z : Rez = z¢} lying in W, ¢ such
that y € Ji if and only if f(zg + iy) € Tk. Denote

yr=-1 arctan{27r(k + 1) [exp(—4zo) — 4(k + %)27@]—% }’

1 —1
Y = —% arctan{27r(k—~%)[exp(—4$0) — 4(k— Z)2W2] ’ }

We want to estimate the length of the interval Ji, k > 0, as |Jx| = |J_k|,
that is

1 1
ot —ye| = (k+ DEF — (k- i)Ki)'

1 1
KZK7? +4m2(k? - k)

% arctan (27r

where
K1 = exp(—4zo) — 4(k — §)°7%, Kz = exp(—4wo) — 4(k + 1)
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316 J. KOTUS

‘We obtain

|Jk| = |5 arctan

(QW Ak r(K1? + K1/2) + MK+ Ky ) ‘
2

2 .1/2
Ky HG o+ am? (k2 — )
(K12 K ) 2 )
16K, + 4m2(k2 — 1)
As (k£ 1)? < 3(167% exp(4z0)) ' we have, for o < p

2

% arctan (27r

|| > | 4 arctan{m(} exp(—2z0))[exp(—4zo) + 2m exp(—2z0)] ' }|

V

> —;—arctan( mexp(2z0)) > 3 7Texp(2w0)

The above inequality together with (8) imply that

> " 1Jkl > mexp(2z0)[37 (47 exp(2z0)) ™t — 2]
k=0

> 0.0541 — 0.2945 exp(2p) > 0.052.

Thus vol(g~1(T) N Winn) > 2( %w)0.052 > 0.1 =: C} and hence
vol(g71 (B) N Win) > Ca
for some C3 > 0. (Observe that Mlim vol(Bpr)/vol(TN{z: Rez < M})

= g, where By = Ur eezrem<p Bro)- [
The sets Ay, satisfy the conditions of LEMMA 1. By LEMMA 6
diam A < dy = 4572~ 3 exp(—2(2k - 1) p|)-
Moreover, LEMMA 7 and LEMMA 8 together with (5) imply that
VOl(uk.;,.l n Ak) > 4C,
vol(Ag) ~ (nCh)?
independently of k. Thus we have
k|log(4Cs/m2C?
2 > HD(A) > 2 — limsup [log(4C/m>C1)
k—00 [log dy|
k|10g4 +log Cy — 2logm — 2logC'1|
=2 —limsup I
k—o00 |log7r + klog4 — 5 log2 —2(2k - 1) |p||

- Aka

=2,

since Cp, Cy do not depend on k. As A C E C J(f)), we obtain
HD(J(fx)) =2 for all A > 0, hence THEOREM 1.

TOME 122 — 1994 — ~° 3



HAUSDORFF DIMENSION OF JULIA SETS 317

2. Proof of Theorem 2

Let fa(2) = 1/(A+e7%%), A > 0. We remind to the reader some of
the essential properties of this family described in [4]. The function fy
maps R diffeomorphically onto the interval with asymptotic values 0, 1/A
as the endpoints, so f) has an attracting fixed point py € (0; 1/)), and
the entire real axis lies in the immediate basin of py. In particular, both
asymptotic values lie in the immediate basin of py, and so there are discs
about these points which lie in the basin. Taking preimages of these discs,
it follows that there are half planes of the form

Hy={z:Rez<v; =vi(\)} and Hy = {z: Rez > 1p = 15(\)}
with v; < px < v, which lie in the immediate basin of py. Let
S,=H UHyU{z:v1 <Rez <y, [Imz—nr| <p, neZl}

where g = p(A). Then fy:S, —S,, so S, C F(fx). The complement

of S, consists of infinitely many congruent rectangles R,,, where m € Z

and R,, are indexed according to increasing imaginary parts. In each R,,

fx has exactly one pole s, = —1 logA+i(m + 1), m € Z, and maps

cach R,, diffeomorfically onto C \ fA(S,). Thus J(fx) = () f(C\ 5,.),
n>0

so J(f) is a planar Cantor set, while F'(f)) is the attractive basin of py.

Fix A and assume that 0 < A < € with ¢ small enough (we can take
e.g. € = 10719). As before we omit the index \. Let sx be a pole such
that

—% log A < (K + 3)m < —% log A+,

wg be the preimage of s with 0 < Imwg < %71’, that is,

Wi = —% log((1/sk) — A),
Rewg ~ — 1 log((5 log” A+ S Alog® A+ B A2log ) % /(5 log? \))
~ —Llog((Slog®A)~2) = 1 log(—(2.5)% log \),
Imwg ~ — 3 arctan(3 log A\(— 1 log A — S Alog? \)~?)
~ 1 arctan 3 ~ 0.6245.

Above and in the sequel G(\) ~ H(A) means

lim GO)/H() = 1.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



318 J. KOTUS
Let

€= —3logA—Rewg ~ — logA — 3 log(—(2.5) % log \)
~1log(~(2.5)% Alog \),

I

n=ir—Imwg ~ 0.9463.
Define the sets (see Fig. 2) :
Bn = {z:Rewg <Rez < —1logh, |Im(z - sn)| < n},

T= U B,

mel
[=Z\{-K,...,0,..., K — 1},
E={z:f"(2) €T for all n € N}.

Figure 2
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HAUSDORFF DIMENSION OF JULIA SETS 319

We want to show that E C J(f) and estimate HD(E) from below.
LemMA 9. — If fi(2) €T, j=0,...,n—1, then

[(f")(2)] = T,

for a constant Cy > 1.

Proof.— Note that |f'(2)| = 2|(A\+e~2%)e?| 2. Taking the points zo+iy
in B,, C T, where z is fixed, we have then

| (zo +iy)| = |f (zo + i(Imwg + mm))|.
Now, take = + iyg in B,, with yg = Imwg + mn. Then
|f(z +iyo)| = |f' (Rewk + iyo)|,
and consequently |f'(2)| > |f'(wk + imn)| for all z € B,,. As

|f (wi +imm)| = |f/(f " (sk))| = 2|sk (1 — Ask)]
= (—log A)[10(1 + Alog A + 2A%log® \)]

1
2

= Cl,

Cy > 1, then |[(f™)(2)| > C? for z € B, and by periodicity of f, for all
z€T. []

Take the smallest M € N satisfying M > 10Y/27~!(~log \) + 1. Note
that M > K. Fix N € N such that N > M. For a pole sy, consider the
preimage f~!(sy) lying in By, and define ny = |Im(so — f~1(sn))|- We
introduce auxiliary sets :

Bm,n ={z: Rewg < Rez < —% log A, Ny < |Im(z — sm)| < 1},

Tn = |J Bmn,

mel
Exy ={z:f"(2) € Ty forall n € N}.

Clearly By,,n C B N+1, IN C Tny1, En C Engq for each N > M,
N € N. Thus

UBmy=Bm, JIn=T, |JEv=E.
N>M N>M N>M

To estimate from below the Hausdorff dimension of the set E, it is enough
to find a lower bound for the dimension of each Ey.
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LemMma 10. — For each N > M, N € N, the set En is contained
in J(f), so E C J(f).
The proof is analogous as that of LEMMA 5.
Note that B, n has two components and f(By, n) N Bn,n # 0 for
mneh={neZ: —-(N+1)<n<—(K+1) or K<n<N}

Take a specific set Bs n, s € I1, and let Ay 1 be a component of f~1(Bs x)
contained in Ty . Define the following collection of the sets inductively :

An1={An1},
Anz = {Anz2: AN is a component of f~%(By, n)
for some m € I, and Ay C An,1},

AN = {AN,k : AN is a component of f_k(BmyN) for some m € I,

and Ay, C Ay k-1 for some Ay 1 € An -1}

Thus Ap x consists of (2(N — K +1))*~! sets Ay, k € N. Let

o0
Uni = U Ang, An= ﬂ AN k-
ANk € ANk k=1

Thus Ay C En and so it is sufficient to find a lower bound for HD(Ay).
LEMMA 11.— For each ANk € ANk, k € N,diam Ay, < Dka, where
D = (11log*(—(2.5)3 Xog \) + 4n?) % .

Proof. — By the definition of Ay f¥(An k) is a connected component
of By, v for some m € I1. As B, v C B,

diam f*(An ) < (6 +47%)'/?
= (L1087 (~(2.5)/2Alog A) + 472) * = D.

Moreover, fk(AN,k) is convex subset of Ty C T, so by LEMMA 9
diam Ay, < diam f*(An)/infa, . [(f¥)'|< DCTF. []

The sets Ay x and constants d, = DC| k, k € N, satisfy the conditions
of LEMMA 1. To use this lemma we should find Ay such that for
each Ay € An i

(9) VOI(UN,]C.H n AN,k)
VOI(ANJC)

> AN k-
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Note that Uy g4+1 N AN,k = UAN,k+1€G(AN,k) AN,k+1a where
G(Anx) = {ANk+1: ANj+1 € AN+, ANg+1 C ANk},

volUn k1 N AN k)
VOI(ANJC)

(10) > L(f*, Ay )2

Z VOl(fk(AN,k+l))

k .
AN,k+1€G(ANYk)V01(f (AN,k))

LEMMA 12. — For each Anx € ANk, k € N, the distortion L(f*, An k)

18 bounded above by a constant Cy < 4.

Proof.— The branches of f~%, k € N, are univalent in T since f*(0) and
fE(1/X) are contained in R. Thus f* is a homeomorphism of Ay x € AN
onto f*(An ) and

L(fk,AN,k) = L(f_kvfk(AN,k‘)) = L(f_k7Bm,N)’

As B, n is contained in a disc D of diameter 2s = diam B,,, and
D C D(sy,r) with r = (K + %)w, it follows from LEMMA 2 that

s r+s\4
L(f~%, Bmn) < M(;) = (r ~ 8)
_ (‘% log A + 3[4 log?(~(2.5) Alog X) + ) )
~3log A — 1[1 log?(—(2.5) Alog ) + 47|
§ (1+ (0.0277 + £(N)) )4
= \1- (00217 + ()% /)’

where () = (1 log?(—(2.5) % log \) + 3.581)/(91og® A). Thus

MG) < (1.414)% < 3.9976 = Cp < 4

if A< 10710, []

LEMMA 13. — There exist constants 0 < ayn, By < 1, and C3, C4 >0
such that for each Ay € Ay, k€N

C3 —ay < Z vol(f*(Ank+1)) < Cs — BN.
AN k+1€G(AN k)
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Proof. — Let W,,, C B,,, be defined by

Wm = {2 :Rewgi2 < Rez < —}log A, nn < |Im(z — s,,)| < 0},

Wm,N = Bm,N n Wma

where wx 2 = f~!(sk42), m € I. Then for each Ay € Ay

(11) Z vol (f¥ (AN k+1)) = %VOI(f_l(TN) NWin),
AN k+1€G(AN k)

where f¥(Ap 1) is a component of B,, n for some m € I. Note that f(B,)
intersects By, n for n € I and covers B, y for n € I3 where

L={neZ:-3(N-5)<n<—(K+1) or K<n<i(N-3)}

and I3 = I\ I. Indeed, f maps {z : Rez=Rewg} onto the circle
of radius 7o = r/(r? — X\?) and centre 29 = —\/(r* — \?), where r =
exp(—2Rewk). For 0 < A <e, ro & —(2.5)7 log A, 20 ~ —(2.5)Alog? A,
80 ro/m < %(N —1). The lines

{z:Imz=(m+ 3w —n}, (resp. {z:Imz=(m+ })m+n})
are mapped by f onto circles passing through 0, 1/A and the pole sk
(resp. s_(k+1)), while f({z: Rez = —1 log A}) istheline {z: Rez = 2}.
As
_ _ 2
Wl BB = [ e

BmNf(Bn)
and (f1)(2) = (22(1 — A2))~!, we have

-1

xgixl(f'l)’| < (4[% logZ(—(Z.S)% log A) + (mm)?] (1 + ()\TTL’IT)Z)> ,

min|(7')'| > (4[4 108 A+ (m 4 4+ n/mPx?] (14 Qo))

In these estimates we take simply |1 — Az|?> ~ 1 + (Amn)?2, which is
a sufficient approximation for our purposes.
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Now, we estimate vol(f (| Bn) NW,,) for m € I3 andn € I :

vol (f~H(U Bm) N W)
>2 > vol(Bp)(min|(f7)?)
m>(N=1)/2 B
(— 3 log(—(2:5) 2 Alog A))2n

>2
mZ(%;l)/2 4[ 1 log® A + (m + 1/2 + n/7)2m2)(1 + (Amm)?)

> %F(—10g(—(2-5)%Mog/\))/oo(/\%“)_l((w2+D§)(w’2+D?))_ld%

where 27 > %71’, a= %N+7]/1r, Dy =1/(An), Dy = (—log A\)/(27),
vol(f~ (U Bm) N Wy)

Ll 1 ® (z2+ D3~ — (22 + D?)!

= g7 (—log( (2.5)2)\10g)\))/a Neri(D? — D3) dz

= _817??(__(2%?2%1:\;;%\;\) [D;l arctan( I% ) -D7t arctan( g; )] :o

114G [, N7+ 2n
=& ——G3()\) [w 2w arctan(———_ Tog A ) + Gg()\)]
with
G1(\) = —log(—(2.5)} log \)/(~ log ),
G2(\) = mAlog A(ir — arctan(3 AN +n))),
G3(A) =1 - 1) %log? \;
we get

vol(f~ (U Bm) N Wy)
2 8%(1 + Gl(S)){?T2 - 27rarctan(10% +2(m +1)(~log ™' ¢))
+ n2elog %6}
> 0.0569 =: C}.

Thus forn € I

(12) vol(£7 (| Bm) W) >G4,

mels
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Analogously we can find an upper bound for vol(f~!( U Bm)NB

n € I, namely mels
vol( U B, ) 2 Z vol(By,) (max |(f71)'|?)
mels m>(N—-1)/2 B
_1
<2 Z (=5 log )7

m>(N—1)/2 4[ % log?(—(2.5) % log \) + (mm)?] (14 (Am)?)

[es) 2 + D2)—1 _ (ZZ +D2)—1
< l7r(—log)\ / (= 3 1
* ) (N-3)/2 A4 (D — D3)

dz,

where Ds = log(—(2.5) % log \)/(27), and therefore

—log A 1,27 2 1 z
<=0 [1— 3A%log?(—(2.5)% log A)] [D3 arctan(D )]

o]

1(N-3)
—log A 0.55

< 7 <
2r[102 (—log A)/m — 2] m

—.
. C4 .
Moreover, if

melh={neZ:-4(N-5<n<—(K+2)
or (K+1)<n<(N-3)},

then using

W=

vol(B, N f(By)) < m(— log)\)(—— — [2.5 = (k7/log A)?]
we obtain

vl (F71(|J Bm) N Ba)

meEly

Z T

P log (=(2:5)% log ) + (mm)?] [1 + (Am)?]

- T(v-1) (% — [2.5 — (zm/log A)?] %)da:
2m(~log A)/K [ log”(—(2:5)% log A) + (mm)2] [1 + (Am)?]

)

IN

IA

a(V-1) 1
sm(—log )\)/ (2 — [25— (zm/log N)?] % ) (rz) 2 dz
K

(2.5)2
<3 / (1~ (25 -17)%)y 2dy < 0.0091 =: C.

2

TOME 122 — 1994 — N° 3



HAUSDORFF DIMENSION OF JULIA SETS 325

As vol(f 1 (B_(k+1) U Bk) N By) < 0.0001 =: Cy’ we have for n € I
(13) vol( (L y 5 ) N n) <O+ CY+ O <0.177 =: Cy.

Note that for n € I

(14) Jim vol( (U BmN)ﬂWnN) —vol( (U Bm)N )»

mel mel
so by (11)—(12) and (13)—(14) there are constants C3 = 3 C4 and ay, Sn
such that
Cs—an < Y vol(f*(Anx41)) < Ca— B,

AN k+1€EG(AN,k)
and ay, By — 0if N — co. LEMMA 12 and LEMMA 13 together with (10)
imply that

VOl(uNyk.H N AN,k:) > Cs —apn

VOI(AN’k) - 02205
with C5 = —log(—(2.5) zAlog)) > vol(Bp) > vol(Bm,n), that is,
ANk = (C3 — an)/(C5Cs) by (9).
Now we can apply LEMMA 1 to the sets Ay . Thus

k|log[(Cs — an)/(C5Cs)]|

HD(An) > 2 — limsup

k— 00 [log(DC*)|
_ o [10g[(Cs —an)/(C3CH)]|
|10g Cl'
As Ay C Ayyrand | An = A we have
N>M
) |log(C3/(C3Cs))|
> > 92— .
HD(A) > 1\}1_1}100 HD(AN) > 2 log C1]
By the definition Ay C En foreach N > M and |J Ex = E C J(f»), so
N>M
log(C3/(C3Cs))l
HD(J >2—
( (f)\)) = llOgC1|

log 0.0284 — log 3.9982 — log(— log(—(2.5) )2 Alog A) )]
B |log(—log A) + 2 log(10(1 — Alog A + 2 A21log® \))|
log(|log A| — log(1.581 |log A|)) + 6.331
log(|log A|) + 1.152

__ ¢
log |log A|
for some C > 0.
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Our lower bound for HD(J(f))) tends to 1 if A — 07, as follows from
the above inequality valid for 0 < A < 10719, []

3. Proof of Theorem 3

Let fa(z) = Atanz. Suppose A € R and 0 < |[A| < 1. Then 0 is
an attracting fixed point for f). Let I denote the component of the
basin of attraction of 0 in R. I is an open interval of the form (—p; p),
where fy(£p) = +p. The points £p lie on a repelling periodic orbit of
period two if —1 < A < 0, or are repelling fixed points if 0 < A < 1.
The set R\ f5*(I) consists of infinitely many disjoint open intervals I,,,,
m € Z. Bach of them contains exactly one pole s, = (m + 3)m. Thus
frilm — (RU{oo})\ I and |f\(x)| > 1 for each x € I,,. Thus

J(fr) \ {oo} = ﬂ LT U L)

meZ
is a Cantor subset of R.

As before we fix X and assume additionally 0 < [A| < 3. Let

wy = f7(s1) = arctan(s; /\) ~ %7r — 2|A|/(3m),
6 =861 = |so — wr| = 2|\|/(37).

Define the sets :

B ={z€R: |z~ sm| <6},

T=J Bm,

meJ
J=Z\{-1,0},
E={zeR: f*(z) €T for all n € N}.

Fix N € NN N > M > 10, and define 6y = |sg — wn|, where
wy = f1(sn) € (0,7). Let
Bnn ={2€R:6y <|z—sm| <6},
Ty = U BN,

meJ
Ey={z€R: f*(z) € Ty for all n € N}.
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(N + 1)mi s o
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fBrn) 374 I
I
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Figure 3

Then B, v C Bmn+1, IN C Tny1, EN C Enyy for each N > M,
N € N, and thus

U BN = B, U Ty =T, U Enx =E.
N>M N>M N>M

We show that F C J(f) and estimate HD(E) from below.
Take z € By, 2 # Sm. As f'(2) = M(1 + tan? 2), it is easy to see that
I () 2 | (sm = 6)] = | (sm + 6)|- But

|f'(8m = O] = £ (f7H(s2))] = A1+ (s1/N)H)] = C1 > 1.
Thus |f/(2)| > C1, and if additionally f/(2) € T, j =0,...,n — 1, then
(15) min|(/")| > CF.
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Using this property one can prove that Eny C J(f), and consequently

E= |J En C J(f) (compare LEMMA 5).
N>M

The set By, y consists of two intervals, f(Bm n) N Bpn # 0 if
mnesi={neZ: —(N+1)<n<-2or1<n<N},
and f(Bm,n) D Bpw if
neho={neZ:—-N<n<-3or2<n<N-1},, meJ.

Let s € Jy. Take a component of f ‘I(BS‘ ~) contained in Ty and denote
it by An,1. Define the following family of sets :
An = {An 1},
Ango = {AN72 : Ay 2 is a component of f%(Bm.n) for some m € Jy,
and AN72 C AN,I},

ANk = {ANnk : ANk is a component of f_k(Bm,N) for some m € Js,
and Ay C An k-1 for some Ay x—1 € An -1}

Let Un i = UANk EANkANk and Ay = ﬂUNk, so clearly Ay C En
k=

for each N > M. To estimate HD(Ay) we should find the constants dy,

and Ay such that

vol(Un k+1 N AN k)

(16) vol(An k)

> ANk,

and diam Ay < di < 1. Let Anx € ANk, then fk(AN,k) is connected
component of By, n for some m € J,. By (15)
diam f*(Ay, k)

1anNk }(fk) | N LC_

(17) diam (An ) <

where L = 2(6 — §n). As before
G(Ank) = {ANk+1 € ANjpt1: ANg+1 C ANi)e

Then

VOI(UN’k.H N AN,k)

(18) VO](AN,k)

1 M.
ol(f

N )
L(fk’Ava) AN k+1EG(AN K ) (AN’k))
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First we find a bound for L(f*, Ay k). The branches of f=*, k € N,
are univalent in 7', since both asymptotic values Ai, —Ai of f tend to the
attracting fixed point 0 along the imaginary axis. Thus

L(f*, Ang) = L(f 7%, f*(Anx)) = L(f %, Bm,N)-

AS BN C D(8m,8) C D(Sp, 37), and it follows from LEmMMA 2 that

/G _ g,

(19) L(*, Ana) < M( =300

Let Wy, = {2z €R : |2 =8| <0}, Wiun = {zER iy < |2 — 8| <1}
where n = 1 = |so— f~(s1+6)], f1(s1 +6) € (0;7), and nn =
lso — f~Y(sn +6)|, f1(sn +8) € (0;7) for N > M. Then W,,, C By,
Wp,n C B, n. Note that

(20) > vol(f¥(Aw k41)) = Evol(f7HT) N Wo,w),

AN k+1€G(AN,k)
if f¥*(An ) is a connected component of B, y, m € Jo, and

(21) ngn vol(f~HTN) N Wi, n) = vol(f~HT) N Wi).

Consider the quotient vol(f~(T) N W,,)/vol(B,,). The uniform bound
for it from below for m € J is obtained from the inequalities

Al
+((m+ 3)m+6)2

223 e =2 Y
T A A4 (m+1)2n? A2 + m2m?

m=3

I
[\
zmng
e

=‘coth|)\| AT = 201 [(A% + 7)1+ (A2 + dn2) l]‘=;c3,

since 1/\ — Z 20/(A? + n%7?) = coth) from the well known expansion

of coth in fractlons
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As f¥(Ap 1) is a connected component of By, y C By, for some m € Ja,
this implies together with (20)—(22), that there are constants 0 < ay < 1
such that ay — 0, and

vol(fk(A
(23) Z vo(lj(tfi(;;’k*-)l))) 2 C3 — QpN.
AN k+1€G(AN,k) Nk

By (16), (18)—(19) and (23) Ay x = (C3 —an)/C%. Applying LEMMA 1

to the sets Ay, we have

k|log[(Cs — an)/C3]|

1> HD(A,) > 1 - limsup

k— o0 [log(LCT*)|
| hogl(cs - awy/c3)
[log Ct |
As Ay C Ey and |J An = A, we obtain
N>M
- |log(C3/C3)|
1>HD(A) > 1 HD(Ay)=1—- —2—L—=~".
- ( )—Ninoo (An) |log C1]
Moreover, for each N > M, Ay C Exy and |J Ex = E C J(f)\) CR, so
N>M
|log(C3/C3)|
1> HD(J >1] - ————=-
= ( (f)\))— |10gC1|

5 T T 8
_ Jos{feomin gy - [ 88 + e ]|} tos{ F25REST |
B [log [A] + log (1 + 972/(41)?)|

C
Z JR—
llog [All
for some C > 0, which concludes the proof of THEOREM 3.

In the second part (see [6]) we give the global formula for a lower bound
for the Hausdorff dimension of the Julia set of meromorphic function.
To prove it we construct a limit Hausdorff measure of the computable
dimension, supported on hyperbolic subsets of the Julia set.
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