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ETA INVARIANTS AND COMPLEX IMMERSIONS
BY

JEAN-MICHEL BISMUT (*)

RESUME. — L’objet de cet article est de calculer I’invariant éta d’un complexe qui
est acyclique en dehors d’une sous-variété. On utilise pour cela le théoréeme d’indice
d’Atiyah-Patodi-Singer et les superconnexions de Quillen.

ABSTRACT. — The purpose of this paper is to calculate the eta invariant of a chain
complex of vector bundles which is acyclic off a submanifold. The main tools are the
index theorem of Atiyah-Patodi-Singer and the superconnections of Quillen.

Acknowledgements. — The author is indebted to a referee for his very
helpful comments and suggestions.

Let ¢ : M' — M be an embedding of complex manifolds. Let u be a
holomorphic vector bundle on M’, let

(60): 0—&m — En1 — & —0

be a holomorphic chain complex of vector bundles on M, which provides a
resolution of the sheaf i, O (). In particular the complex (&, v) is acyclic
on M\ M.

Let Z be an odd dimensional real compact spin submanifold of M
which intersects M’ so that Z' = Z N M’ is a submanifold of Z. Then the
complex ({,v)lz is acyclic off Z’.

Assume that &g, ..., &, are equipped with Hermitian metrics and that
TrZ is equipped with a scalar product. Then for 0 < k < m, we
can construct the reduced eta function 7¢*(s) of ATIYAH-PATODI-SINGER
[APS] associated with the Dirac operator D¥ acting on the spinors of TrZ
twisted by k|- Set

m

7(s) = D (=17 (s).

0
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212 J.-M. BISMUT

The purpose of this paper is to calculate (modulo integers) the linear
combination of eta invariants 7¢(0) in terms of a local object on Z and
of an eta invariant on the submanifold Z'. In the case where Z is the
boundary in M of a real submanifold Y, we give an explicit formula in
THEOREM 2.9 which involves :

o A Chern-Simons current ¥% on Z which is constructed using the
results of BismuT [B] and BismuT-GILLET-SOULE [BGS1].

o A Chern-Simons form on Z' naturally associated with certain exact
sequences involving the normal bundles to Z' in Z and in Y.

o An eta invariant on Z' associated with the Dirac operator on Z’
acting on twisted spinors (where the twisting bundle involves the two
normal bundles to Z’' in Z and to M’ in M explicitly).

We now make several comments on our formula.

e Our main result in THEOREM 2.9 still holds in ordinary real geometry.
We work here in a complex geometric setting to be able to directly apply
the results of [B]. The results of [B] have an obvious C* analogue. The fact
that (¢,v) is a resolution of Qs (n) implies that, by the local uniqueness
of resolutions [E], [S], the complex (£, v) degenerates like a Koszul complex
near M'. This would have to be introduced as a supplementary assumption
in a C* context.

e A more serious limitation of our result is that we assume the
manifold Z bounds in M. However such results should hold in full
generality, at the expense of more involved techniques. These will be
developed elsewhere. The main interest of this paper is to give an explicit
answer in a relatively simple case.

o Finally, let us point that our generalized Chern-Simons currents are
directly related with the differential characters of CHEEGER and SIMONS
[CSi].

In a second part of the paper, we consider a holomorphic submersion
m : M — B which restricts to a submersion 7' : M’ — B. Let
s € S1 — ¢, € B be a smooth loop. We then compare the holonomies
of the direct image determinant line bundles A(£) = (det Rm.(£))™!
and A\(p) = (det Rw,(p))~!, when these line bundles are equipped with
the holomorphic Hermitian connections associated with certain Quillen
metrics [Q2], [BGS3]. Again, and for simplicity, we assume that the loop ¢
bounds in B. Our result is then a straightforward application of the
curvature calculations of BisMuT-GILLET-SouLE [BGS3]. The fact that
such a result still holds even when ¢ does not bound in B is now a
consequence of a difficult result of BismuT-LEBEAU [BL], whose proof is
much more complicate than the one given here.
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ETA INVARIANTS AND COMPLEX IMMERSIONS 213

Also note that by a result of BismuT-FREED [BF, Theorem 3.16],
we know that the holonomy of certain connections on C* determinant
bundles of direct images can be evaluated in terms of adiabatic limits of
eta invariants. Therefore our two main results, concerning eta invariants
and determinants of direct images are intimately related, together with
their possible extensions to the non bounding case. Also note that the
relation of the holonomy theorem of [BF] to the differential characters of
[CSi] has been developed in the context of direct images by GILLET and
SouLk [GS].

This paper is organized as follows. In Section 1, we introduce our main
assumptions and notations. In Section 2, we give a formula for 7¢(0) in
terms of the eta invariant of a submanifold and of a local quantity. Finally
in Section 3, we give a relation which connects the holonomies of various
determinant bundles over closed loops which bound.

The author is indebted to J. CHEEGER for helpful discussions concern-
ing differential characters.

1. Complex immersions and resolutions

In this section we introduce our main assumptions and notations.

In a), we consider an immersion ¢ : M’ — M of complex manifolds,
a holomorphic vector bundle 4 on M’ and a complex of vector bundles
(&, v) which resolves 4. on M.

In b), we introduce various metrics on the considered vector bundles.

In ¢), we briefly describe the superconnection formalism of QUILLEN [Q1].

a) Complex manifolds and resolutions. — Let M be a compact
connected complex manifold of complex dimension m. Let M’ = U‘li M;
be a finite union of disjoint compact connected complex submanifolds of
M. Let i be the embedding M' — M. Let N be the complex normal
bundle to M’ in M. Let

(11) (57”):0_"£m_?—)§m—li’”'50—’0

be a holomorphic chain complex of vector bundles on the manifold M.
Let p be a holomorphic vector bundle on the manifold M’. We suppose
there exists a holomorphic restriction map 7 : {o|pr — -

We make the fundamental assumption that the sequence of sheaves
(1.2) 0 — Oum(&m) = - = On(bo) — i.O0p () — 0
is exact. In particular, the complex (&, v) is acyclic on M \ M'.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



214 J.-M. BISMUT

For z € M', 0 < k < m, let Hy, be the k*" homology group of the
complex (§,v);. Set Hy = @, Hi,z-

The following results are consequences of the local uniqueness of
resolution [Se, Chapter IV, Appendix 1], [E, Theorem 8] and are proved
in B, Section 1].

o For k£ = 0,...,m the dimension of F} ; is constant on each Mjf, o)
that Hy is a holomorphic vector bundle on M’.

e For z € M', U € T, M, let dyv(z) be the derivative of the chain
map v calculated in any given local holomorphic trivialization of (&, v)
near z. Then dyv(x) acts on H,. When acting on H,, dyv(z) only depends
on the image y of U in N,. So we now write 0,v(z) instead of dyv(zx).

e Forz € M',y € N, (8yv)*(z) = 0. If y € N, let i, be the interior
multiplication operator acting on the exterior algebra A(N*). The graded
holomorphic complex (H,Jyv) on the total space of the vector bundle N
is canonically isomorphic to the Koszul complex (AN* ® p, ).

b) Assumption (A) on the Hermitian metrics of a chain
complex. — We assume that &,...,&, are equipped with smooth
Hermitian metrics h&,..., hém. We equip £ = @y & with the metric
h¢ which is the orthogonal sum of the metrics hé°, ..., hé=. Let v* be the
adjoint of v with respect ot the metric h¢. By finite dimensional Hodge
theory, we get an identification of smooth vector bundles on M’

(1.3) HkE{fefk;vf=0;v*f=0}, 0<k<m.

As a smooth subvector bundle of &, the right-hand side of (1.3)
inherits a Hermitian metric from the metric A% on &. Therefore H
is a holomorphic Hermitian vector bundle on M’. Let hf* denote the
Hermitian metric on Hg. We equip H = @gl H, with the metric A
which is the orthogonal sum of the metrics hfo ... hHm,

Let gV, g* be Hermitian metrics on N,7. We equip the vector bundle
AN* ® pu with the tensor product of the metric induced by g on AN*
and of the metric g*.

Definition 1.1. — Given metrics gV, g" on N,7, we will say that the
metrics h&, ..., hém verify assumption (A) with respect to gV, g if the
canonical identification of holomorphic chain complexes on the total space
of N

(1.4) (H,0,v) = (AN* ® p, i)
also identifies the metrics.

ToME 118 — 1990 — ~° 2



ETA INVARIANTS AND COMPLEX IMMERSIONS 215

PROPOSITION 1.2. — Gliven metrics gV, g* on the vector bundles N, pu,
there ezist metrics h ... hé on &, ..., &y verifying assumption (A)
with respect to the metrics gV, g.

Proof. — This result is proved in [B, Proposition 1.6]. []

From now on, we assume that the metrics hé°,... h¢™ on &,...,&n
verify assumption (A) with respect to the metrics gV, g* on N, p.

c) The superconnection formalism. — Set

(1.5) =@ &; ¢ =@ &

k even k even

Then € = &, @ &_ is a Z,-graded vector bundle.

We now describe the superconnection formation of Quillen [Q1]. Let 7
be the involution on £ defining the Z,-grading, i.e. 7 = £1 on £+. The
algebra End ¢ is naturally Z,-graded, the even (resp. odd) elements in
End £ commuting (resp. anticommuting) with 7. T M denotes the complex
holomorphic tangent bundle to M, and TrM is the real tangent bundle
to M. We use a similar notation on M’.

The algebra A(T/;M) is naturally Z-graded. Therefore the algebra
A(T}M)® End € is also Z,-graded.

If C € End¢, set
(1.6) Tr,[C] = Tr[rC].
Trs[C] is called the supertrace of C. We extend Trs[C] into a linear

map from A(T};M)® End¢ into A(TjM) with the convention that if
w € A(T}HM), C € Endé, then Try[wC] = w Tr[C].

Let V¢ be the holomorphic Hermitian connection on &. Then V¢ =
@, V¢ is the holomorphic Hermitian connection on £. Set

(1.7) V=v+0v"
Then V is a smooth section of End° & For u >0, set
(1.8) A, =V +uV.

Then A, is a superconnection on the Zs-graded vector bundle £ in the
sense of Quillen [Q1].

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



216 J.-M. BISMUT

We will consider A, as a first order differential operator acting on
smooth sections of A(T}M)® End €. Its square A2 is the curvature of the
superconnection A,. A2 is a smooth section of (A(T}M)® End £)ever,

We fix once and for all a square root of 2¢w. Let ¢ be the linear map
from A(T5M) into itself w € AP(T{M) — (2m1)~P/2 w € AP(TEM).

The basic result of QUILLEN [Q1] asserts that for any u > 0, the even
smooth form ¢(Tr,[exp(—A2)]) is closed and represents in cohomology
the Chern character ch(§) = Y g"(—1)? ch(&;).

2. Eta invariants and resolutions

In this Section, we calculate a linear combination of the eta invariants
of the &’s (0 < k < m) on a submanifold Z in terms of the eta invariants
of vector bundles on the submanifold Z' = ZN M' and of a local quantity.
We here make the same assumptions as in Section 1.

In a), we introduce an even dimensional submanifold YV of M with
boundary Z.

In b) we calculate the eta invariant 7°(0) of the complex £|z by a
formula of ATIYAH-PATODI-SINGER [APS].

In c¢), we give another formula (which now depends on a parameter
u > 0), for 75(0).

In d), we use results of [B] to calculate the limit of certain supercon-
nection currents. '

In e), by mimicking [BGS1], we construct singular Chern-Simons
currents on Z.

In f), we obtain our final formula for 7 (0).

a) A manifold with boundary. — To avoid endless considerations,
we will assume that all the considered manifolds and vector bundles are
orientable and spin. Also we assume that the complex line bundles which
we will consider have square roots.

In this respect, remember that by [H, Theorem 2.2], a holomorphic
vector bundle FE is spin if and only if det E has a square root.

Let Y be areal compact connected oriented submanifold with boundary
in M, of even dimension n = 2¢. Let TrY be the (real) tangent bundle
to Y. Let Z = 0Y be the oriented boundary of Y. Set

Y=YnM, Z=ZnM,

(2.1)
Y,=YnM,, Z,=ZnM,.

We assume there is d’, 1 < d' < d such that :

ToME 118 — 1990 — ~° 2



ETA INVARIANTS AND COMPLEX IMMERSIONS 217

eforl <j<d, Yj’ is an even dimensional oriented manifold with
boundary Z;

o ford +1<j<d, Z; =0, and Y] is an even dimensional oriented
manifold without boundary.

We also assume that if y €Y', z € Z'

(TrY")y = (TRY), N (TrM'),,

(2.2) (TrZ"), = (TrZ), N (TRM'),.

Let NY' be the (real) normal bundle to Y’ in V. Set

~Sy! TRMlYI

N. .
1 (TRY +TRM’)|y1

Similarly let NZ' be the real normal bundle to Z’ in Z. Set

~Z/ _ TRMlZI .
YT (TrRZ + TrM')z

Then we have the exact sequences of real vector bundles

0 — NY — Ngy — NY — 0;
(2.3) , o
0 — N/ — Ngjz» — N/ — 0.

Note that because of our assumptions after (2.1) and by (2.2)

(2.4) N{ = 1Y|Zr§ N7 = 1Y|Z'-

Since Y and Y’ are even dimensional and oriented, N and N} are also
even dimensional and oriented. Also it should be pointed out that N,z
only depends on §|z, 7|z, and not on the embedding Z — M. In fact
by (1.4)

(2.5) Hiz = (AN* ®p) .-

b) The eta invariant of the chain complex on the boundary.

Let g% be a smooth scalar product on TrZ. Let F be the Hermitian
vector bundle of TrZ spinors on Z. The Levi-Civita connection VT=Z on

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



218 J.-M. BISMUT

TrZ lifts into a unitary connection V¥ on F. For 0 < k < m, let V¥ be
the connection on F' ® &

(2.6) VF=VFR1+10 Vi,

For 0 < k < m, we denote by D* the Dirac operator acting on the
set of smooth sections of F' ® &k|z associated with the metric g? and the
connection V¢+. Recall that if ¢(TrZ) is the Clifford algebra of T Z, F®&;
is a ¢(TrZ) Clifford module. If X € TrZ, let ¢(X) be the corresponding
element in ¢(TrZ). If e1,...,e, is a locally defined smooth orthonormal
base of TrZ, then

n

Dk = Z c(ei)V’; .

1

For 0 < k < m, let n°¢(s) be the eta function associated with the
self-adjoint operator D¥ defined in ATryAH-PATODI-SINGER [APS]. Set

(2.7) 7 (s) = 5 (n°*(s) + dim Ker D*).

N =

By [APS, Theorem 4.2] the function 7*(s) is holomorphic at s = 0.
7% (0) is called the reduced eta invariant of the operator D*. Set

m

(2.8) 7(s) = Y _(=1)* 7% (s).

0

Let now g¥ be a smooth metric on TrY which has the following two
properties :

o gY restricts to g% on TrZ;

o gY¥ is product near the boundary Z = 8Y’;

o the restriction of g¥ to Y’ is product near the boundary Z' = 8Y".

Let VT=Y be the Levi-Civita connection on TRY and let LT®Y be its

2
22 Then

curvature. Let A be the Hirzebruch polynomial A\(z) = _sinh(:c /2)

A(LT#Y /(2rr)) is a smooth differential form on Y.
We now recall a fundamental result of ATIYAH-PATODI-SINGER [APS].
TuEOREM 2.1. — The following identity holds in R/Z
~ ¢ LTrRY —(V¥)?
= —
(2.9) 7°(0) /YA( oy ) Trs [exp( )]

uT

ToME 118 — 1990 — ~° 2
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Proof. — By ATiYAH-PATODI-SINGER [APS, Theorem 4.2] for any k,
1<k<m »

- LTRY _(Vﬁk)2
2. ek = _ i .
w0 = [ A5 rlen(TT)] ez
(2.9) follows from (2.10). []
c) Eta invariants and superconnections. — We now will give

another expression for 7¢(0) in terms of Quillen’s superconnections
forms [Q1].

PROPOSITION 2.2. — For any u > 0, the following identity holds in R/Z

T TrY
(2.11) ﬁ%0y=j£A(£Z;)¢Chskmﬂ—AbD

+ (%)dim Y/Q/ZA\(LTRY){/OU %Trs [\/EVexp(—Aﬁ)]%}.

Proof. — For u = 0, (2.11) coincides with (2.9). Also by the transgres-

sion formula for superconnections [Q1], we know that
9 2y] v 2
(2.12) ™ Tr, [exp(—A2%)] = —d Tr, [m exp(—Au)].

Using (2.9), (2.12) and Stokes’s formula, we obtain (2.11). [|

d) The limit as u — oo of the superconnection currents.

Let V¥ be the holomorphic Hermitian connection on N.

We identify Ny with the subvector bundle of Ng|y. orthogonal to N
in Ngjy:. Then Ngjy: = N @& NY'. Moreover N} and NY" are now
equipped with the metrics induced by the metric gV on Ngy:.

Let PN, PNY'| be the orthogonal projection operators from N R|y On
NY', NY' respectively. Let VM, VN7 be the Euclidean connections which
are the orthogonal projections of the connection VNR“/, on le/, NY'
respectively. Let RY, RN, RN denote the curvatures of the connections
VN, UNT N

Because of (2.4), note that NZ', NZ' are also equipped with metrics
and connections, which are the orthogonal projections of V¥ Rz

In the sequel, we will use the notation ch(¢), A(TrRY), A(NY),
A(NY),... instead of

(€2 T ., pNY' __ pNY'
T fern (0], A(TE), A(T), A(T). -

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



220 J.-M. BISMUT

These will in fact be closed differential forms.

Let Fj FY' = FIYJIr @ F _ be the Hermltlan Z,-graded vector bundle of
N1 splnors The connection VN 1 lifts into a unitary connection on F} FY'.
Let ch(F:l i Fly ) denote the corresponding Chern-Weil representative
of the Chern character of F1 ; - f’ly . Remember that the symmetric

functions associated with ch(F1 P F ) is given by

(2.13) H(e% —e_%>.

It NY' = {0}, ch(fﬂi - Flyl_) should be replaced by one.
THEOREM 2.3. — The following identity holds

(214)  lm E(TRY)so(Trs[exp(—Ai)])=

N —=5C ’ NYI* ~Y.l*
/ AT Y)—T(—%e seaNv) ch (Fy 7 — F, ) ch(p).
! R Y’

Proof. — To make the references simpler, we first assume that Y is
itself a complex manifold. le , N are temporarily considered as complex
bundles instead of real bundles. Then by BismuT [B, Theorem 5.1], w
know that

(2.15) hm A(TRY) (Trs [exp(—A2)]) =

u— 400

A(TRY) Td™ (N)emax(NY) ch(p).

YI
Now using (2.13), it is clear that
Sy TRY =Y, =Y,
(2.16) cmax(NY ) = ANy ) ch(Fy 7 — F, 7),
Td(N) = A(Ng)ete (V).
From (2.15), (2.16), we get (2.14).

Let us now assume that Y is not complex. Observe that in the proof of
[B, Theorem 5.1], the only stage where the complex structure of N}, NY
is used is when expressing Pfaffians of complex endomorphisms as complex

ToMmE 118 — 1990 — n° 2
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determinants. Inspection of the proof shows that if e(NY") denotes the 7
Chern-Weil representative of the Euler class of N}, then

(217)  lim [ A(TRY)p(Tr, [exp(-43)])
Y

A(TRY) Td"Y(N) e(NY") ch(p).
v

(2.14) follows in full generality. []

Observe that on Z’, we have the exact sequences of vector bundles
0 — Nf' — Ngjz — NZ' —0;
0 — TrZ' — TrZ — N7 — 0.
Let B be a Chern-Simons form on the manifold Z’ such that

- - A(Ngz
A(TrZ) - A(TrZ") —AA(—@

R
= =dB.
(N?')

B is unambiguously defined modulo coboundaries.

For 1 < j < d|, let 7%, (0) be the reduced eta invariant of the Dirac
J

operator D on Z; associated with :

o the metric of TRZ; and the corresponding spinors of T RZJ’- ;

o the Hermitian vector bundle with connection p ® (det N. Z;_)_l/ 2 ®

=Y, mY.

(Fl,lr —-F).

Here 77, (0) is the difference of the reduced eta invariants associated
respectively with u® (det N|Z;_)_1/2®Iﬁ*"v1};l_’* and u®(det Nz )_1/2®1A511f'_’*.

IfY and M]’»— i.e. if Z and M]’-— intersect transversally, ﬁfg_* — f‘ly_* is
equal to the trivial Hermitian line bundle C. Set

(2.18) 74(0) = D77 (0)

Remember that since the form B is well defined modulo coboundaries,
B can be unambiguously paired with closed forms on Z'.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



222 J.-M. BISMUT

THEOREM 2.4. — The following identity holds in R/Z
(2.19) lim A(TRY) ¢(Tr, [exp(—A2)]) = 7#(0)
uU—+00 Y

S i
+/ pANT) e M2 eh (B — Fy ) ch(p).
'+ A(NRgyz')

Proof. — Let B’ be a Chern-Simons forms on Y’ such that
(2.20) A(TRY) — A(TRY") TG dB'.

Observe that since the metric g¥ is a product near Z = 0Y, and since
its restriction to Y’ is product near Z' = 9Y’, on Z, A(TrY) restricts
to A(TrZ) and on Z', A(TRY') restricts to A\(TRZ’). Therefore we may
assume that the restriction of B’ to Z' coincides with B. Clearly

~ A(NY' .
(2.21) A(TRY) A—(—l—)-e—“c‘(le')ch(F —F")chp
Y’ A(NRlyl
dl
=" | A@py')e Fa(Ne) en(FYy - F ) chp
1 7Y
A\ NZ/ 1 ~ ! ~ '
+‘/ B—A—(%—)—e_ﬁcl(le’)ch(FKﬁ—Fl),/_’*)chp
+ A(TRY Ye~t Ny ) eh (FY 3" — FY2") chop.
d’'+1

Now for 1 < j < d', the metric of Y] is product near Z} = OY}’ .
Therefore by ATIYAH-PATODI-SINGER [APS1, Theorem 4.2], we have
in R/Z

2.22 740) = | ATRY")e 2 WNiv) ch(FY"* — FY"*) ch p.
z! , L+ A,

Moreover since for d' +1 < j < d, the Y}/’s are closed orientable spin
manifolds, by the Atiyah-Singer Index Theorem, we know that

A(TrY") e 2N e (B = FY*) chop
Y]

ToME 118 — 1990 — ~° 2



ETA INVARIANTS AND COMPLEX IMMERSIONS 223

is an integer. Identity (2.19) now follows from TuEOREM 2.3 and
from (2.21), (2.22). []

Remark 2.5. — It is very important to observe that the right-hand side
of (2.19) only depends on Z’ and not on Y.

e) A Chern-Simons current.

THEOREM 2.6. — There is C > 0 such that if p is any smooth
differential form on Z, if u > 1, then
C 1
(2.23) | / uTr [VaV exp(-42)]| < Selera),
z Vu

Proof. — This result is proved in [B, Theorem 4.1] if Z is instead the
manifold M itself, and in [B, Section 5] if, more generally, Z is a complex
submanifold of M transversal to M’. The same arguments as in B lead.
easily to (2.23) in the case which is considered here. []

As in [BGS1, Definition 2.4] we now construct a current yvZ on Z
associated with the immersion Z' — Z and with the complex (§,v)| Pe

Definition 2.7. — Let 42 be the current on Z

+o0 d
e2) 7= [ p(TuVaVexn(-a2)]) 5o

By Theorem 2.6, the current 4Z is well-defined. More precisely, we have
the following result.

THEOREM 2.8. — The wave front set of vZ is included in NIZ’. Also

(2.25) dy” = ch(€) = Td™"(N)z) e(NY") ch(p)8( 7y

Proof. — The wave front set properties of the current 4% follow from
[BGS1, Theorem 2.5]. (2.25) follows from (2.12), (2.23) and from [B,
Theorem 5.1]. []

f) A formula for 7*(0). — We here obtain our final formula, for 7¢(0)
in terms of 7#(0), of B and 2.

THEOREM 2.9. — The following identity holds in R/Z
(226) 70 =10+ [ ATe2)+?
zZ
+ / BTd™(Nyz:) e(NZ') ch(p).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



224 J.-M. BISMUT

Proof. — (2.26) follows from ProrosITION 2.2 and from THEOREMS 2.4,
2.6 and from DEFINITION 2.7. []

Remark 2.10. — As should be the case, formula (2.26) only involves
quantities which are calculated over Z. Also observe that 7¢(0) does not
depend on the chain map v. Therefore the right-hand side of (2.26) does
not depend either on the chain map v. It has all the properties of a
differential character in the sense of CHEEGER-SiMONS [CS], which is here
evaluated on the manifold Z.

3. The holonomy of the determinant bundle of a direct image

We make the same assumptions as in Section 1. Let 7 : M — B be a
holomorphic submersion with compact connected fiber Y, which restricts
to a submersion 7’ : M’ — B, with compact fiber Y.

We assume that 7 : M — B is locally Kéhler in the sense of [BGS3,
Definition 1.25], i.e. there exists an open cover U of B such that if U € U,
7~ 1(U) is Kéhler. Then clearly 7' : M’ — B is also locally Kahler.

Let 7Y be a Hermitian metric on the relative tangent space TY', which
is Kéhler on each fiber Y. Let g7 be the restriction of g7¥ to the relative
tangent space TY'. Then g7 induces a K#hler metric on each fiber Y.
Set

M&) = (det Rmg&)™!, 0<i<m;
(3.) 2O = @E) ™

A(p) = (det Rl p)~".

Then by [KM], A(&;), A(€), A\(p) are holomorphic line bundles. Also A(§)
and A(n) are canonically isomorphic.

We equip A(&i)o<i<m and A(n) with the Quillen metrics constructed
in [BGS3]. Then by [BGS3, Corollary 3.9], the Quillen metrics are smooth
on A(&)o<i<m and A(n). We equip A(§) with the tensor product of the
metrics on the (A(&))(71)"’s.

Let VM8, VXK be the holomorphic Hermitian connections on A(§),
A(p) respectively.

Let s € S1 = R/Z — ¢; € B be a smooth loop which bounds a disk D.
Let 72(8), 72(#) be the holonomy of the connections V(&) VA(#) on the
loop ¢+ 7€ and 7*(*) are complex numbers of module 1, which represent
the parallel transport operators from ¢y into ¢; = ¢q along s € [0,1] — cs.
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Let @ be a Chern-Simons form on M’ such that
(3.2) #Td(TY) — TdTY")Td(N) = dQ.
Let v™ be the current on M

\/;7 /0+°° go(TI's [\/EVexp(_Ai)])Z_Z‘

Using THEOREM 2.8, we know that the wave front set of v is included
in N; and moreover

(3.3) M=

(3.4) dy™ = ch(¢) — Td™(N) ch(g") barry-

By [BGS 1, Section 2b], the restriction of the current Y™ to the sub-
manifold 7~1(c) of M or to the fibers Y is well-defined. Note that except
when Z and M’ are transversal the current v has no natural restriction

to Z. The current vZ considered in Definition 2.7 is not in general the
restriction of y™ to Z.

THEOREM 3.1. — The following identity holds
(3.5) MO = A exp{—2i7r/</ Td(TY )M
c Y

+ [ Qrayanm) )

Proof. — By BisMuT—GILLET-SOULE [BGS3, Theorems 1.27 and 3.14],
the curvature of VX&) is given by

(3.6) 2 [ /Y Td(TY) ch({)] (2).

Using (3.6), we find that

3.7) O = exp{—2i7r / oy TTY) ch(g)}-
On the other hand by (3.4), we find easily that

(3.8) / . Td(TY) ch(§) = / o) Td(TY) Td™*(N) ch(n)
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Also by (3.2), we find that
(3.9) / Td(TY) Td™!(N)ch(n) =
m'=1(D)

/ Td(TY') ch(n) + / Q Td™}(N)ch(n).
©'=1(D)

n'=1(c)

Using [BGS3, Theorem 1.27 and 3.14] again, we know that
(3.10) T = exp{—2i7r/ Td(TY") ch(n)}-
n'=1(D)

From (3.7)—(3.10), we get (3.5). []

Remark 3.2. — A result of Bismur-FreeD [BF, Theorem 3.16] calcu-
lates the holonomy of closed (not necessary bounding) loops of determi-
nant bundles of C* direct images as the adiabatic limit of eta invariants
of the cylinder constructed over the loop.

As explained in [BBos, Section 6], the result of [BF] can be used
only if the metric g7¥ is the restriction to TY of a Kihler metric on
a neighborhood of 7~ !(c) in M. Another easy deformation argument
is needed in the general case. So Theorem 3.1 can be considered as a
consequence of Theorem 2.9.

Observe that the relation of the holonomy theorem of [BF] to the
differential characters of CHEEGER-SIMONS [CSi] has been considered in
detail in GILLET-SOULE [GS].

Finally note that a recent result of BismuT-LEBEAU [BL] calculates
the Quillen norm of the canonical isomorphism between A(x) and A(§).
From [BL], one easily deduces THEOREM 3.1 for arbitrary (i.e. non
necessarily contractible) loops c¢. However the complexity of the arguments
in [BL] gives some value to the shortness of the proof of THEOREM 3.1,
even if this Theorem is only proved to hold for contractible loops.
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