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RESONANCE THEORY FOR PERIODIC
SCHRODINGER OPERATORS

BY

CHRISTIAN GERARD (*)

RESUME. — Nous etudions Ie prolongement analytique de la resolvante (H - \)~1

pour un operateur de Schrodinger periodique H. Nous montrons que (H -\)~1 s'etend
a travers Ie spectre de H au complement aire d'un ensemble discret de points, appeles
singularites de Van Hove en physique du solide. Les singularites de Van Hove sont les
points ou la surface de Fermi complexifiee n'est pas lisse et sont en general des points
de branchement pour (H - \)~1. Nous etudions aussi la relation des singularites de
Van Hove avec la structure de bande du spectre, les singularites de la densite d'etats
et les resonances creees par des impuretes.

ABSTRACT. — We study the problem of analytic extension of the resolvent
(H - X)~1 for H a periodic Schrodinger operator. We prove that (H - A)~ 1 extends
across the spectrum of H to the complementary of a discrete set of points, called
Van Hove singularities in solid state physics. The Van Hove singularities are roughly
the points where the (complex) Fermi surface is not smooth, and are usually branch
points of (H — \)~1. We study also the relationship of the Van Hove singularities with
the band structure of the spectrum, the singularities of the density of states, and the
resonances created by impurities.

Introduction
We study in this paper the theory of resonances for Schrodinger

operators with periodic potentials. We consider Hamiltonians of the
following form :

H = -A+V(.r) on r\

where V is a real multiplicative potential which is periodic with respect
to some lattice T in R71.

We want to extend the resolvent (H - \)~1 from the physical region
{ A | ImA > 0} to the lower half plane across the bands of the spectrum
of H , and study the singularities of this extension.

(*) Texte recu Ie 9 decembre 1988, revise Ie 25 octobre 1989.
Ch. GERARD, Centre de Mathematiques, Ecole Polytechnique, 91128 Palaiseau Cedex,
France.
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28 C.GERARD

The existence of such an extension is more or less tacitly assumed in
solid state physics when one studies the resonances created by localized'
impurities. (See for example the book of CALLAWAY [C, chapter 5].)

We will consider two kinds of problems :
i) local extension problem : given Ao € o ' ( H ) , extend analytically

{H — A)~1 to a small neighborhood of Ao? ^nd describe its singularities;
ii) global extension problem : given some open set U extend analyti-

cally (H — A)~1 to U and describe its singularities.
For the local extension problem, we prove that any Ao C o ' ( H ) , there
exist some neighborhood U\^ of Ao, and a finite set S of points which we
call Landau resonances such that (H — A)"1 extends holomorphically to
the universal covering of U\^ \ S. The Landau resonances are usually
branch points of (H — \)~1 instead of poles. We decided to call the
points of S Landau resonances by analogy with Landau singularities in
Feynman integrals. We learned afterwards that these singularities (at least
for the density of states) are known in solid state physics as Van Hove
singularities.

For the global extension problem, we have to add to E a closed set of
measure zero Soo which corresponds to a complex essential spectrum (see
Definition 4.6). Then (H — A)~1 extends holomorphically to the universal
covering of U \ E U Soo.

The Landau resonances can be described geometrically in the following
way : in the study of periodic Schrodinger operators one introduces usually
the Fermi surface S\ for A G H : S\ is the set of Bloch numbers p such
that A is an eigenvalue of the reduced Hamiltonian Hp obtained by the
Floquet-Bloch theory.

The Bloch variety is then the set S = { (p ,A) | p C S\,\ e R}. The
Bloch variety has an extension to complex energies and Bloch numbers,
and is a complex analytic set. Then roughly S is the set of A e U such that
the (complex) Fermi surface S\ is not a union of smooth submanifolds.
(See Definition 3.2.) So the Landau resonances have a simple geometric
interpretation in terms of singularities of complex Fermi surfaces.

Another new feature of the Landau resonances in contrast to the
resonances encountered in two-body Hamiltonians is that they are usually
branch points of (H — A)~1 instead of poles.

Moreover, it can happen that the singular part of (H — A)~1 at a
Landau resonance is not a finite rank operator. (See THEOREMS 3.5, 3.6.)
In simple cases it is however possible to associate resonant eigenfunctions
to the leading singularity of (H — \)~1 at a Landau resonance. (See
COROLLARY 3.7.)

Soo looks more like essential spectrum in the sense that Soo acts as a
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RESONANCE THEORY FOR PERIODIC SCHRODINGER OPERATORS 29

natural boundary for the extension of (H - \)~~1 between L^R71) and
H^^H71) for fixed values of a. Soo comes in part from the fact that
we integrate operator-valued functions and that we have to take care of
domain considerations. To make this remark more clear, let us compare
H with two-body Schrodinger operators with exponentially decreasing
potentials.

In the last case, the resolvent can be extended meromorphically to a
strip {A G C | ImA > —a} for a depending on the rate of decay of the
potential. Soo plays a role similar to ImA = —a in this problem.

In the last part of the paper we present some applications.
We study first the relationship of real Landau resonances with the

band structure of the spectrum. We recover here some results obtained
by BENTOSELA [B] in his study of time independent impurity scattering.
(See THEOREM 4.1.)

We study then the analyticity properties of the density of states d p / d \
and prove that d p / d \ is analytic outside the real Landau resonances.

Finally, we study the resonances created by a localized impurity.
We modelize the impurities by adding to V a potential W which is
exponentially decreasing. This is not a severe limitation in view of the
phenomenon of dielectric screening. (See [C].)

We prove that the impurities add usual poles on (U \ S U Soo)* to the
Landau resonances of (H — A)~1 . As a consequence, we show that the
singular continuous spectrum of H -\-W is empty and that the eigenvalues
can accumulate only at the real Landau resonances which play the role of
threshold energies.

The plan of the paper is the following :
• In Section I, we recall the Floquet-Bloch reduction which will be

used in the next sections.
• In Section II, we prove the meromorphic extension in the energy

and Bloch numbers of the reduced resolvent (Hp — A)"1 using Fredholm
theory.

• In Section III, we prove the main results of this paper using methods
from complex analytic geometry.

• In Section IV, we apply these results to the band structure, to the
density of states and to resonances created by impurities.

Acknowledgements. — We would like to thank F. LCESER and C. SAB-
BAH for many helpful discussions on complex analytic geometry.
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30 C.GERARD

1. The Floquet-Bloch reduction

In this section, we recall the Floquet-Bloch reduction of a periodic
operator on R71 to a family of Schrodinger operators on a n-torus. We will
follow7 the exposition of SKRIGANOV [Sk].

On IR" we consider the following Hamiltonian :

H = -A+y(:r),

where V is a real multiplicative potential which is T-periodic for some
lattice T in R", i.e. :

V ( x + r ) =V(x), VT(ET.

We will assume that V is -A bounded with relative bound strictly less
than 1, so that H is self adjoint with domain H2^71).

We denote by T* the dual lattice of T, which is defined as follows :
if ( a i , . . . , dn) is a basis for T, a basis for T* is given by the ( & i , . . . , bn)
such that (a^b^j) = 27r^, where ( , } is the Euclidean scalar product
on R".

We denote by FT a fundamental domain of T, FT* a fundamental
domain of T' which are chosen to be diffeomorphic to the n-torus T". f^r
(resp. I I T * ) will be the Lebesgue measure of FT (resp. FT*)-

For y C 5(IR"), the Schwartz space of rapidly decreasing G00 functions,
and for p G FT* we set :

(1.1) K^(x) = /4/2 ̂  ̂ (x + ry^^.
rCT

The sum in (1.1) is convergent because of the rapid decay of ^ and Kp(p
is r-periodic and satisfies the equations :

(1.2) K^^(x)=e^{P^K^(x) for p C T * .

The family of operators Kp gives a unitary operator WT '•

e
L'^ffT) ̂  C= ( L\FT}dp

J F ^ .
^ i—> Kp^(x).

Then since V is T periodic, it is well known that we can decompose H
as a direct integral of operators :

y®
WrHW^ = \ Hpdp

JF^
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RESONANCE THEORY FOR PERIODIC SCHRODINGER OPERATORS 31

where Hp = (D^ + p)2 + V(x), with domain ^(Fr). Here £^ =
(l/i)(9/9xi). Wf1 is denned by :

(1.3) W^^{x) = (27^)-7^/2(^)-l/2 I e-^Vp(x)dp.
JFT*

With this version of the Floquet-Bloch reduction, the p dependence of the
reduced operator is in the operator itself, and not in the domain.

We denote by Ho,p = (Dx +p)2 the free reduced operator with domain
^(Fr). It is an easy exercise to check that V is also —A bounded with
relative bound strictly less than 1 if we consider V and —A as operators
on L^Fr), so that Hp is self-adjoint with domain ^(Fr).

For p e F^, we will denote by K p 1 : L^Fr) —^ L^H71) the operator :

(1.4) u^e-^^u^x),

where u(x) is extended to IR72' by T-periodicity.

2. The resolvent of the reduced operator

In this section we will write down some formulas for the resolvent
(Hp — A)"1 using Fredholm theory. These formulas have been used for
example by WILCOX (see [W]) to construct families of Bloch eigenfunc-
tions. We will assume that p varies in a bounded open set W in C71, which
will be chosen later. We start with an elementary lemma :

LEMMA 2.1. — For any e > 0, there exist Co » 1, such that :
i) || - A(JJo,p + Q))"11| < 1 + e uniformly for p C W ;

ii) \\(Ho^p + Co)"11| < e uniformly for p e W.
Proof. — Ho^p is diagonalized on the orthonormal basis {^r^r^cr*?

where ^r^(x) = (/^r)"1^2^*^, with eigenvalues (r* +p)2. So

ll-A^p+Q))-1!!^ sup ^(K^+^+Col)"1.
r^er*

Since Re((r* +j?)2 +Co) = (r* +Rep)2 - {Imp)2 + Co, we can choose Co
large enough such that :

| ( T * + p ) 2 + C o | > ( l -£)(r*) 2 , uniformly for p e W

which proves i). ii) can be proven similarly. []

PROPOSITION 2.2. — There exist Co » 1 such that (Hp + Co)~1 exist
and is uniformly bounded from L^F^) into ̂ (Fr) for p C W.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



32 C.GERARD

Proof. — Since V is —A bounded with relative bound a < 1, we get :

\\V(Ho,p + Co)-^|| < a||A(J?o,p + Co)~^\\ + 6||(ffo,p + Co)"^!!

for u e L'2(FTY Using LEMMA 2.1, we can choose Co » 1 such that
\\V(Ho,p + Co)"11| < a < 1, uniformly for p e W.

Using the second resolvent formula, we get :

Hp + Co = (1 + V(Ho,p + Co)-1) (Ho,p + Go).

1 + V(Ho,p + Go)"1 can be inverted by a Neumann serie, which proves
the Proposition.

LEMMA 2.3. — Rp = (Hp + Co)"1 belongs to the Schatten class T^ for
k > -n for p e W.

Proof. — Since (Hp + Co^^-A + 1) is bounded for p E W, it suffices
to show that (—A + 1)~1 belongs to F^ tor k > n/2, which is obvious
since the eigenvalues of (-A 4-1)~1 are the (1 + r*2)"1 for T* C T*. Q

We can now prove the following theorem :
THEOREM 2.4. — (Hp - A)~1 can be written for p e W, X C C as :

(Hp - A) -i D(P,\)
/(P,A)

where D(p^\) (resp. /(p,A)) is holomorphic for p (E W, A e C as a
bounded operator from ̂ (Fr) in ^(Fr) (resp. as a function).

Note that f(p, A) is of course not unique, but the only important object
is the zero set of / in W x C, called the complex Bloch variety, which is
uniquely determined by the Hamiltonian.

Proof. — From the first resolvent formula, we have :

Hp - A = (Hp + Co)(l + p.Rp) for ^ = -(Co + A).

So it suffices to get an expression for (1-1- p.Rp)~1. We use the theory of
regularized determinants. (See [Si].) Let, for N > -?z,

N-l
R(p^) = (1 +^)exp(- ̂ (-^/k) - 1.

i

To invert 1 + fiRp^ it clearly suffices to invert 1 + R(p,^). R(p^) is
holomorphic in (p,/^) C W x C with values in F\. Then f(p^) =
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Z^o^^/^ where Dn(p,p) is a polynomial expression of the
Tv^^fi)) for 1 <, k < n satisfying :

\Dn(p^)\ < (y\w^
where ||fi||Tr is the trace norm of R which is bounded by C{p)\\Rp\\N,
where || \\N is the norm in F N ' (See for example [S].)

It follows that f(p, p) is a holomorphic function of (p, /z) c W x C as a
uniformly convergent series of holomorphic functions.

K f(P^ P) / 0, then 1 + R(p, p) is invertible and (1 + R(p, p,))-1 can be
written as D^p,p,)/f(p^), where D^(p^) is of the form :

+00

^l(P^) =^D^rn{P^),
0

and Di^(p,/A) is a polynomial expression of the R^, ^(fi^) for
1 < k <, m, satisfying :

1)7- ) || ^ /^m 1- || pll7^
ll^1'771!'^ ^mT^ll^llTr-

As before we see that Di(j?,/A) is holomorphic for p C TV, A C C as a
bounded operator on L^^Fr), which proves the theorem. []

PROPOSITION 2.5. — f(p, A) anc? £)(p, A) satisfy the following proper-
ties :

i) / (^+T*,A) = f{p,\) VT* c r*,^ c w, A e c;
ii) if Ur* is the multiplication operator by e1^^x\ D(j)+r*,A) =

ur.D(p,\)u^\ VT* c r*, p e W, A e c.
Proo/.

i) Note first that since T and T* are dual lattices, ^(.^(Fy)) =
H^^FT). It is then a trivial computation to check that :

(2.2)' Î p+r* = Ur^HpU^}.

From this, we get Rp^ = Ur-RpU^, f i( j?+r*,^) = u^R{p^)u^\
and finally /(p + r*,A) = /(p,A) since the trace is invariant by unitary
conjugation. This proves i).

ii) follows directly from (2.2) and i). []

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



34 C.GERARD

3. Analytic extension of (H — A)~ 1

In this section, we will prove the existence of an analytic extension
for the total resolvent (H — A)~1 . As explained in the introduction, the
singularities of (H—\)~1 are different when we consider the local extension
of (H—\)~1 in a small neighborhood ofAo ^ a{H), and when we consider
the global extension of (H — A)~1 to a bounded open set U in C.

In the local case, (H — \)~1 extends holomorphically as a bounded
operator between some weighted I^-spaces to the universal covering of
V \ E, where V is a neighborhood of Ao and E is a discrete set of points
in U^ called Landau resonances.

In the global case, in addition to S, (H — A)~1 can have singularities
on a closed set Eoo; which corresponds to a kind of complex essential
spectrum.

We will prove some properties of (H — A)~1 near S, like finite determi-
nation and moderate growth, which show that (H — A)~1 is a (operator-
valued) function of the Nilsson class.

Using results of Leray and Pham, we will then study the behavior of
(H — \)~1 near generic points of S and get asymptotic expansions which
show that generally a Landau resonance is a branch point rather than a
pole.

Let us first fix notations and prove some formulas.
We fix a bounded open set U in C intersecting with {ImA > 0} and

a bounded open set W in C^ such that FT* C W. From THEOREM 2.4
and the results recalled in Section I, we see that, for ImA > 0, A G U^
(H — \)~1 can be written as :

(3.1) {H-X^u

= c(n, T) / e-^ D<-p^) (V u(x + T)^^) dp.
J FT* JWA) \^^ /

Here c(n,T) = (27^)-n/2/4/2/^l/2. We can rewrite (3.1) as :

(3.2) (^-^r ,̂,,,.
J F T . J W A )

For a (E 1R, k (E N, we will denote by L^R") and H^H^ the spaces

L^ffr) = [u 6 L^(ffr) | e^u e ^(ffT)},

H^H71) = {u € H^R71) | e^u (E H^H71)}.

TOME 118 —— 1990 —— N° 1



RESONANCE THEORY FOR PERIODIC SCHRODINGER OPERATORS 35

Here (x) = (1 + X2)1/2. L^H71) and H^H^ are Hilbert spaces when
equipped with their natural norms.

We have the following proposition :

PROPOSITION 3.1. — If a > supp^ |Imj?|, M(j?,A) originally defined
for Im A > 0, p e FT* , extends holomorphically to W x U as a bounded
operator from L^ff^) into f^JR71), such that

M(p+T*,A)=M(p,A), Vr* er*.

Proof. — Using THEOREM 2.4, it is enough to prove that Kp (defined
in (1.1)) extends holomorphically to p C W as a bounded operator from
L^R^ into L^Fr) and that K p 1 (defined in 1.4) extends holomorphi-
cally to p C W as a bounded operator from ^(Fr) into H'^^H71).

If a > supp^ | Imp], we have |e-^>e^)| < e-^> for p eW, and
it is clear that Kp is holomorphic and bounded from L^IR^) into L^Fr).

If we consider now the function e~^^PJX^u(x) for IA e ^(Fr), exten-
ded by periodicity in re as a function of ^^(R71), it is easy to see that
lle-^p^)^!!^ ^^ < (7||'u||^2(^) and that K p 1 is an holomorphic ope-
rator from ^(Fr) into H^a^)' This proves the first part of the Pro-
position. To prove the last part, we use the fact that ^p+r* = U r ^ K p ,
(Kp^r^K^u^. D

We will now use the T* periodicity of M and / to reduce ourselves to
the case when the integration chain in (3.2) is an absolute cycle. By a
linear change of coordinates in p, we may assume that FT* = [0,2^]^.

We introduce now the variables 6j = e^3 for j = 1 , . . . , n. Since M(p, A)
and /(p, A) are 27T periodic in p i , . . . ,p^, we can write M(p, A) = M(6, A),
/(p,A) = /(0, A), where M and / are holomorphic for (0,A) C W x U,
and W can be chosen of the form :

> V = { ( 0 l , . . . A ) e C n ; a ,< |^ |<a7 1 , a ,<l}.

The integration chain in (3.2) is now the n-torus T77^ = S1 x ' • ' x S1

in C^, which has no boundary. By changing the notations, we can rewrite
(3.2) as :

(3.3) (H - A)-1 = I M(e^)d0^ A . . . A d6n, for ImA > 0.
Jr" J l^A)

To extend (H — A)~1 is a well known problem in complex analysis.
It is well known that the integral (3.3) is holomorphic as long as the
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36 C.GERARD

integration cycle "IP can be deformed continuously avoiding the singular
set {f(0, A) = 0}. The other requirement is that the integration cycle
in 6 stays in a neighborhood of J71 where M(0, A) is a bounded operator.
The singularities of (H — A)~1 will come from the following two types of
obstructions :

a) pinching singularities : the cycle is pinched between some compo-
nents of the singular set;

b) pinching singularities at infinity : the cycle is pinched between
a component of the singular set and the boundary of the holomorphy
domain of M(0,A).

This is the basis of the analysis of Landau singularities in quantum
field theory (see [F-F-L-P], [B-P], [P]), of ramifications of holomorphic
integrals (see [K]) and of functions of the Nilsson class (see [Me]).

We first introduce some notations. We will denote by S the complex
Bloch variety S = {{6, A) € W x U \ f(6, A) = 0} and for A 6 U by S\ the
complex Fermi surface S\ = {6 e >V | {6, A) C S}.

S is a complex analytic set and has a natural stratification with strata
consisting of smooth submanifolds. (See [P, Chapter IV].)

Moreover, since the basis U is one dimensional, there exists a stratifi-
cation of S satisfying Thorn A^ condition, (see [Hil]). In the sequel, we
will always consider such a stratification.

We choose a real analytic map 6 : W —> [0,1] such that (the image of)
T71 is given by {0 | 6(0) = 0}, 9}V = S-^l), W = (^([O.ID, and
B^ = {0 < 6(6) < r} is an increasing sequence of neighborhoods of Tn.

If M is a stratum of S in W x U^ M\ is a union of smooth submanifolds
for A € U. This is obvious if d7r\ -f- 0, and follows from Thorn A^
condition if d7r\ = 0. For A e ZY, we denote by D(\) the set of r e ]0,1],
such that for some stratum M of 5, M\ is tangent to 9Br.

DEFINITION 3.2.
i) S C U is the union of the 7r(M) for each stratum M of S in W x U

such that d7T\_. = 0;
I 1 M

ii) a point Ao e U does not belong to Soo if there exists a neighbo-
rhood V of Ao in U^ such that for any 7*0 G ]0,1[, 3r > TQ with r ^ D(\)
VA C V.

We can say roughly that A G S if the Fermi surface S\ has a singularity.
Indeed i f A G ^\S, S\ is a union of smooth submanifolds, since all strata of
S are transversal to the fibers. We call the points of S Laudau resonances.
E corresponds to obstruction a). Eoo corresponds to obstruction b).
Arguing as in the proof of PROPOSITION 3.3 below, one can show that
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RESONANCE THEORY FOR PERIODIC SCHRODINGER OPERATORS 37

Eoo is included in the set {A C U \ 1 e D(\)}.
Using the arguments of [Ge], one can prove that Eoo is included in a

subanalytic set of measure zero. Of course E and Eoo can intersect the
upper halfplane {ImA > 0}. We have the following Proposition :

PROPOSITION 3.3.
i) E is a finite set of points;

ii) VA e U, D(\) is a finite subset o/]0,1] ;
hi) K = Ux^u{\} x D(\) is closed in U x ]0,1].

Proof. — Let us first prove i). If M is a stratum of S such that
d7^\TM = °5 for each ^O^o) e M we can find a cl P^11 7 : [°^o[ -^ M
such that 7(0) = 09 ,̂ Ao), 7^) e M W > 0. Then d(7r o 7^)) == 0, which
shows that 7 (and M par connexity) projects on Ao. Then i) follows from
the fact that the number of strata of S in W x U is finite.

We prove now ii). For A E U, M a stratum of 5, we consider the critical
variety cM\ = [0 e M\ \ d6 | TeM\ = 0}. cM^ is a real analytic set.
It 0o € cM^, ro = 6(0o), we can apply the curve selection lemma (see [Mi])
to get an analytic path 7 : [0, £o[ —> cM\ such that 7(0) = 0o, ̂ (t) C cM\
\/t > 0. If we consider the path 6 o 7(^)m]0,1], we have : d{6 o 7^)) = 0
since 7^) e cM\ It > 0. So 6 o 7^) = TO. Since cM\ has a finite number
of connected components in W, we get that D(\) is a finite set.

To prove hi), we take Ao C U, TQ c]0,1] and assume that there exists a
sequence (A^,rJ -> (Ao, -To) , \n € ^,r^ € J^(A^).

Then we can find a stratum M of S, a sequence On C M^, such that
Te^M\^ C T\^9Br^. By compactness, we can assume that On tends to
some 0o C 9Bro, such that (0o^o) ^ M. If (^o,Ao) C M, it is clear that
ro C D(Ao).

If (^o?^o) € -^5 for some stratum N adjacent to M, then using Thorn
A^ condition, TQ^N^ C Te^QB^, and ro e I^(Ao), which proves that K
is closed. []

We can now state the main result of this Section.
THEOREM 3.4.

i) (local extension problem) : for any Ao € U H H, there exists a
neighborhood V of \o in U, such that (H — A)~1 extends holomorphically
from { ImA > 0} H V to the universal covering (V \ E)* of V \ E, as a
bounded operator from L^R") into H^R") for a > Supp^ |Imp| ;

h) (global extension problem) : (H — \)~1 extends holomorphically
from { ImA > 0}rW to the universal covering (Z^\EUEoo)* o/(^\EUEoo)
as a bounded operator from L^R") into H^H71) for a > Supp^ | Imp|.

Proof. — Let us first prove ii). Since uj = (M((9, A)//((9, \))d0^/\.. ./\d6n
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38 C.GERARD

is holomorphic of maximal degree outside of 5, f uj depends only on the
homology class [7] of 7 in Hn(yV)-

We consider the problem of extending {H—\)~1 = fr^n ^ from Im A > 0
to some point Ai along a path i: [0,1] —^ U \ E U Soo 5 with Im^(O) > 0,
t{V) = Ai. Note that for 6 e T^ and ImA > 0, /(6>,A) is non zero,
since Hp — A is invertible there by the selfadjointness of Hp for 6 6 T72'.
{H — A ) " 1 can be extended holomorphically along £ if there exists a
continuous deformation 7^ of T71 such that 7^ C W and 7^ D 5^) = ^>.

Let I be the set of t e [0,1] such that T71 can be deformed along i
between 0 and t satisfying the above conditions. 1 is obviously open and
since [0,1] is connected it suffices to prove that T is closed to prove that
Z=[0,l].

Let tn e T be a sequence with tn —> to when n —> -(-oo. Since
Ai = i(to) G U \ S U Soo ? there exists a small neighborhood V of Ai
such that V D S = ^> and Vro (E ]0,1[, 3r > r-o with r ^ D(A) VA e V.

We can take a point i{tn) e V for n big enough, and a diameter
7*0 E ]0,1[ such that the cycle 7^ is included in Bro.

Then we can apply the local isotopy lemma of [F-K] to Br x V, where
V is given as above : Br x V —>• V is a locally trivial fibration with respect
to 5, which provides the deformation of 71 along the part of i which stays
inV.

Hence T = [0,1] and {H — A)~1 can be extended along any path in
^/\SUSoo. Then it follows from the monodromy Theorem that (ff-A)~1

extends as a function on (U \ E U Soo)*, which proves ii).
Let us now prove i). From PROPOSITION 3.3 i) and ii), we can find some

ro > 0, some neighborhood V of Ao in U^ such that ro ^ D{\) VA e V.
Then the result follows by applying the arguments above to Bro x V. This
proves the Theorem.

Let us remark that one can choose the neighborhood W of "IP such
that S D Sec = (f). Indeed by PROPOSITION 3.3, one can find some ro > 0,
some neighborhoods Vz of the \i C S such that ro ^ D(\) VA e Vi. Then
we just have to replace W by Bro.

It is important to notice that S U Soo is a maximal set of obstructions
to the analytic extension of {H — A)~1 . It can happen that some branch
of {H — A)"1 has a smaller singular set than S U Soo.
We will now study some growth and ramification properties of (H — A)~1 .

• We will say that an operator valued function M(A) is of finite
determination near some point Ao if there exists a neighborhood V of
Ao such that the branches of M(A) over any simply connected subset of
V \ {Ao} span a vector space of finite dimension in ^(^(IR71), H^^R71)).
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• We will say that M(A) is of moderate growth at a point Ao G S,
if there exists a neighborhood V of Ao in U, such that for any simply
connected subset V of V \ {Ao}, for any branch of M(A) on V, denoted
by M(A), there exist Co, No > 0 such that :

\\MW\\<C,\X-\,\-^ f o r A c Y .

Here ||M(A)|| is the operator norm in jC^L^H^.H^H71)).
We first recall a definition. An analytic set S in W x U is called a

divisor if near any point (0o,\o) C S, there exist holomorphic coordi-
nates (2:1,... ,2^+i) such that 5 is given near (0o,\o) by the equation
z\ • ' ' Zk = 0.

To study the growth of (H-\)~1 near a point of E, we need a geometric
hypothesis on 5'. We first add to S the fiber Tr'^Ao) for each Ao e S, which
does not change the set E.

Hironaka desingularization theorem says that there exist an analytic
space X and a proper morphism f3 : X —> W x U such that :

. f3 : X \ ̂ (S) -> W x U \ S is an isomorphism;

. S ' = ̂ (S) is a divisor (see [Hi2]).
We make the same hypothesis than in MERCIER [Me] :

There exists a stratification (M') of the pair (X, S ' ) such
(T) that for each stratum M' of(M') there exists a stratum M

of (>V x U, S) such that f3 : M9 —> M is a submersion.

This hypothesis is made to retain transversality of the strata of 6" to
^^(oBrQ x U) after the desingularisation process. We have the following
result :

THEOREM 3.5.
i) (H — A)~1 is of finite determination near any point of S ;
ii) if condition (T) holds, (H - A)~1 is of moderate growth near any

point of E.

Proof. — Since the properties of finite determination and moderate
growth are local, we can consider (H - \)~1 near a point Ai C S. Let us
consider a branch of (H -A)"1 near Ai , obtained by analytic continuation
along a path £ in Li \ E U Soo. Since Ai ^ Soo, there exists a neighborhood
V of Ai , and an r'o > 0 such that TT : B^ x V \ {Ai} -^ V \ {Ai} is a
locally trivial fibration and the continuation of (H - \)~1 in (V \ {Ai})*
is obtained by deforming the integration cycle inside B ^ ' .
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We claim that there exist some ro > r'o such that 7*0 i D(A), VA € V
and such that the following condition holds :

^n Any stratum of S intersecting QB^ x V intersect it trans-
versally.

Indeed arguing as in PROPOSITION 3.3, we see that for any stratum M of
S in W x V the set of critical values of 6 | M is finite.

Let 0 < Tmax < 1 be the maximum of all critical values of 6 \ M for all
strata M of S in W x V. Since Ai ^ Eoc, we can find ro > r^ax, ro > r^
such that ro i D(\), VA (E V. Let Ao a point in V \ {Ai}, and ro e ]0,1[
as above.

We introduce the locally finite family of analytic sets given by 5^
and QBro. By Lojasiewicz Theorem (see [Me]), we can find a semi-analytic
triangulation of B^ which is_finite and compatible with this family. This
induces a triangulation of Br, \ S^ by K, where K is the simplicial
complex made of the simplexes of the previous triangulation which do not
intersect S\^.

Then Hm-i^B^ \ 5\o) is isomorphic to Hm-i(\K\} and we can write
[70] using the simplexes of the triangulation of

l^h[7o]= ^^,^CZ,
j'eJo

Jo a finite set.
For A near Ao, we can also take [7^] = ̂ .̂  bjOj. Then (H - A)-1 =

Sje^o ̂  fa, CJ- Here ^ = ̂  A)^! A . . . A d0n is of finite determination
on each of the simply connected sets ( T J . So (H - A)-1 is a finite sum of
the functions J^ cj, each of finite determination, which proves i).

We prove now ii) : we consider a point Ao e E. Let us denote by
f3 : X -^ W x U the desingularisation of S in W x U. We can write
(H - A)-1 = f^= f^ ^ = f^ /?*^, where 7^ = (f3-1)^ (Here 7^
exist because /3 is an isomorphism outside S.) Using condition (T), we see
that ^(QBro x U) is transversal to all strata of S ' . So denoting again 5"
by S, we are reduced to the case where Tr-^Ao) C 5, S is a divisor, and
9Bro x U is transversal to all strata of S.

We fix a small neighborhood V of Ao, in which we will estimate the
growth of (H - A)~1. We can now finish the proof as in [Me].

We will only indicate the principal steps of the proof. Modulo a change
of coordinates, we can assume that Ao = 0. The_idea of the proof is to lift
the radial vector field on C : C = -(\Q/Q\ + \Q/Q\) = -rQjQr where
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r = | A |, to a vector field ^ in W x V which is tangent to all strata of S and
to (9jE?^ x V. This vector field is then used to construct the deformations
of 7A as A tends to 0 along an integral curve of C, which is of the form :
Q^(Ai) = Aie-5 for s € R4".

Step 1 : Construction of ̂ .
We will construct ^ locally near any point of B^ x V and patch together

the local vector fields with a partition of unity.

1) Near ((9, A) e B^ x V \ (S U 9B^ x V), we take :

^(^+A^)-
2) Near ((9, A) e B^ x V n (5 \ 9Br, x V) : since S is a divisor,

we can take a coordinate chart near (0,A), (^ i , . . . ,2^+1) such that 5 is
given near (0, A) by the equation z ^ " ' Z p = 0, and (0,A) = (0 , . . . , 0 ) .
Since TT'^O) C 5, by the Nullstellensatz (see [Me, p. 82]) we see that
7r(z) = TQ(z)z^ ' " z ^ \ a i , . . . , a f c € N, ro(0) / 0, k <, p. Changing
for example Zi, we can assume that 7r(z) = z^ • " z^. We can take
^ = -1/ai (^i9/c^i + z ^ Q / Q z ^ } , and we have TT^ = C.

3) Near (<9,A) C B^ x V n (S H 9B^ x V) : as before, we can
find a coordinate chart such that S has the equation 2;i • • • Zp = 0, and
Tr^)^1...^.

Since <9£?^ is transversal to each stratum of 5, we can extend the
set of local coordinates (Re z^, Im z ^ , . . . , Re z?, Im Zp) by Up^, V p + i , . . . ,
^4-1,^+1 such that Hp+i = 0 is a G00 equation of 9B^ near (0,A). We
take ^ = -l/ai(z]_9/9zi + z-iQ/Qz^). ^ is tangent to 5 and to <9B^, and
^$ = C.

4) Near _((9, A)_ C B^ x V n (9B^ x (7 \ S) : we can take ^ =
-(A9/9A) + X9/9X. $ is tangent to 9£?^. We now patch together ^ with
a (7°° partition of unity in Br^e x Ve, where l^, where Vg is a small
neighborhood of V. We obtain a vector field supported in -Br-o+e x Ve'

Step 2 : Estimates of (H - A)-1.
We want now to control the growth of (H - A)~1 = f G(6,\)d6^ A

. . . A d6n, when A tends to 0 along a ray Os(Ai) = \^e~8.
Here for A e ^\{Ao}, 7^ is a deformation of the cube 7^1 which stays in

the ball Bro. The integral curves of the vector field ^ induce a 1-parameter
fajnily of diffeomorphisms js = exp(^), from (5^ \ S\^) x {Ai} into
{Bro \ 5a,(Ai)) x {^^(Ai)}. We use here the fact that ^ is tangent to QB^
and 5, and that TT^ is the radial vector field pointing inwards. Moreover
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js is a homeomorphism from the pair

Bro \ 5'Ai to the pair B^ \ S^^y

Since Hm-i (B^ \S\) is a locally constant sheaf over V, (using for example
the triangulation in the proof of i)), we see that [7a,(Ai)] = 0'J*[7Ai]. So
we can write :

(^-^(Ai))-^ j ^= [ j^.
AjsMAl ^7Ai

To prove ii) it remains to show that ||^*cj|| < Ce^, where || || is the norm
induced by the Riemanian structure on W, uniformly on B^ and when
Ai is on some arc of circle, {(9o < ArgAi < 6>i, |Ai| = eo}. This can be
done as in the proof of [Me, Theorem 3.1], with the modifications of [Me
Theorem 3.2]. Q

Behavior of the resolvent near a Landau resonance in generic cases.
We now give asymptotic expansions of,(Jf - A)~1 near some points

of S. We consider the case of Landau resonances Ao C S generated by a
pinch of the integration cycle at a point OQ e W.

We make the following hypotheses :

(3 7) Near ^°7 Ao^ ^ is a union °^ complex hypersur faces S ^ , . . . , S k ,
intersecting in general position at (<9o, Ao).

This means that near (<9o,Ao) Sz has a irreducible equation <s,((9,A) = 0,
with Si(0o,\Q) = 0, d^ i , . . . ,dsk linearly independent at (<9o,Ao) .

(OQ,\Q) is a non degenerate critical point of TT for the
(^S) stratum A = f^ 5',, and is not a critical point of any

other stratum of S.

We denote by a the absolute cycle on which we integrate (M((9, A)//((9, A))
for A near Ao, A / Ao to obtain one of the branches of (H - \)~1 near Ao.
Explicitely we will study one branch of (H - A)"1 near Ao defined by :

(^-A). l=/7^)^lA...A^.
J a J ^ ^ )

We will denote by N the intersection index of a with the vanishing cell
defined by the manifolds S^ . . . , Sk (See [P, Chapter V]). N is zero if a
is not pinched by the 6 ' i , . . . , Sk when A tends to Ao, in which case we
expect that this branch of (H - A)"1 will have no singularities at Ao.
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Using the hypotheses above, we can write for (0,A) near (0o,Ao),
(M(^A)/ / (^A))as _

M(^,A)
s^(0^)...sa,k(e^)

with a i , . . . , Ok e N, ai > 1, a = ai + • • • + o^. We have the following
Theorem :

THEOREM 3.6. — Under the hypotheses (3.7), (3.8), (H - \)^ can be
written for A near \Q as :

i) if n + k is even :

(H - A)^ = Eo(\) + CoN(\ - \^^k-i)/2)-a
x (M(0o,Ao)+(A-Ao)^ i (A)) ;

ii) if n + k is odd, n + k > 2a + 1 :

(H - A),1 = Eo(\) + Co7V(A - \,)^k-i)/2-a

x Log(A - Ao)(M(^Ao) + (A - Ao)£;i(A)) ;

iii) if n + A; %5 orf^, n + A; < 2a + 1 :

(^ - A),1 = Eo(A) + CoN{\ - \^k-i)/2-a

x (M(0^ Ao) + (A - Ao)^i(A)) + ^VLog(A - Ao)^(A) ;

iv) i f n = k — l :

(H - A);1 = Eo(A) + CoN(\ - Ao)"-" (M(0o, Ao) + (A - Ao)^i(A))

where: EQ, E\, E^ are holomorphic functions in £(L^(IR71), H^^H71)), and
CQ is a non-vanishing constant.

Proof. — We use the results of LERAY [L] and PHAM [P] as stated in
the book of P ham (see [P, Chapter VI]).

We first reduce ourselves to a case when M(^,A) is independent of A.
To do this, we use the fact (see [P, Section V.2]) that under the hypotheses
(4.7), (4.8), there exist a neighborhood of (^ Ao) still denoted by W x V
and a holomorphic change of coordinates defined on W x V : (0^ A) \—f
(0{0^ A), A) such that in the new coordinates (0, A) the functions 5 i , . . . , Sk
take the simple form :

s, = A - 0i + • • • + 0k-i + Ol + • • • + ̂ _i = A - f(0) ;

52 = Q\ ; . . . ; Sk == Ok-1-
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For simplicity, we will still denote by ((9, A) the new coordinates. We
can also^assume that the cycle a is contained in TV, by substracting to
(H ~ A)"1 some operator holomorphic in A. This can be done as in the
proof of VI.2.1 in [P]. Using Taylor's formula, we can write :

(39) M^)
v • / ^^•••^ fc

= E ^f^^i^^r14-^2--^
0</?<^i-l p ' v /

4-fi(0,A)52-a2..•^a fc

= ^ M^s^^s^2 • . . s^ + R{6^ \)s^2 . . . s^ .
0</?<<^i-l

From (3.8), it follows that (<9o,Ao) is not a critical point of TT for
the stratum ^ H • • • H ̂ , hence ^ H(6, \)s^2 • • • s^dO^ A . . . A d6n
is holomorphic near Ao.

So we are reduced to the study of f^ M^^s^^s^2' "s^dO^ A
. . . A d6n for /? < ai - 1. Then the theorem follows directly by applying
VI.2.1 in [P] to each of the terms in (3.9.). In (3.9) only the first term
corresponding to M((9,/((9)) contributes to the leading singularity at
A = Ao. The only thing that we have to check is that some constant
appearing in the formulas VI.2.1 of [P] is non zero. More precisely we can
write :

k

d\ = ̂ cLids, at (<9o,Ao).
1=1

Let us check that a, ^ 0 for i = 1,... ,k. If for example ai = 0, then
(^o,Ao) would be an element of the critical manifold of the stratum
5s H .. . n 5fc, which is excluded by (3.8). This concludes the proof of
the Theorem. []

COROLLARY 3.7. — Assume that k = a = 1. Then M((9o, Ao) is a rank
one operator^, with for u € ^(R71) : TTQU = (^o)^o, where if0o = e^°

• ipo C H2,^71) is a pQ-Floquet periodic solution of :

(H-\o)^o =0

• f>o € H^^H71) is a po-Floquet periodic solution of :

(H - Ao)(^o = 0.
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Proof. — If k = a = 1, Ao is a simple eigenvalue of Hp^, so (Jfpo - A)"1

can be written as : Eo{\) + (7To)/(A — Ao), where 71-0 is a rank one operator
with : TfQU = (u^Q)^o for u C I/^Fr). It is well known that '0o (resp. ^o)
are solutions of (^Zpo - Ao)^o = 0 (resp. (Hp^ - \o)^o = 0).

From (3.2), it follows that M(0o,\o) can be written as : M(OQ,\Q)U =
Co{u,f)o)^o, where :

^o(rc) = e-^°^o(^) ^o(^) = e-^^^x).

(Here we extend '0o^o to IR71 by r-periodicity.) This proves the Corollary.
D

Remark 3.8. — M(OQ^\Q) is always a finite rank operator, but can be
equal to zero in some cases. When M(^o?Ao) 7^ 0, THEOREM 3.6 shows
that the leading singularity of (H — A)"1 at Ao is of finite rank. However
£?i(A), E^(\) are not necessarily of finite rank.

4. Applications

In this section, we present some applications of the results of Section 3.
In the first subsection, we study the relation of real Landau resonances

with the band structure of the spectrum of H.
In the second subsection, we prove that the density of states is analytic

outside the real Landau resonances.
In the last subsection, we study the resonances created by localized

impurities.

a. Relation of Landau resonances with the band structure.
Let us first recall some well known facts about the band structure of

a{H), (see [Re-Si]).
If /(p, A) is the determinant defined in THEOREM 2.4, the eigenvalues of

Hp for p C FT- are the roots A = En(p), n C N of the equation /(p, A) = 0.
The n-th band of H is the set Bn = UpcFr* ̂ ^P)}-

In space dimension greater than two, it is well known that the bands
can overlap, (see for example [Sk]).

• We will say that a band Bn is simple if Bn H Bm == <^ Vm -^ n.
• We will say that two bands Bn and Bm overlap effectively if

3p C FT* such that En(p) = Em(p)'
• We will say that two bands Bn and Bm overlap artificially if

Bn n Bm + <)> but En(p) + Em(p) V? C FT* •

If Bn is simple or overlaps only artificially with other bands, it is
well known that the functions En(p) are holomorphic in a small complex
neighborhood of FT- .
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• We will say that Ao C Bn is a critical energy^ if Ao is a critical
value of En(p). Ao will be called non degenerate if it is associated with
non degenerate critical points of En(p).

In particular, the extremities of a simple band are critical energies.
We have the following Theorem :

THEOREM 4.1. — Let Bn be a simple band. Then :
i) E D Bn is the set of critical energies in Bn, denoted by S^ ;
ii) if \Q is a non degenerate critical energy in Bn associated with a

unique critical point in FT* , AO is a true singularity of (H — A)~ 1 .
If Bn and Bm overlap artificially, E D (Bn U Bm) = En U S^.
Proof. — i) is obvious. To prove ii), we use THEOREM 3.6. It suffices

to prove that (H — A)~1 is multivalued near Ao, hence to show that the
intersection index N between the cycle FT^ and the vanishing cell of
S^ = {(j9,A) | A = En(p)} at (po^\o) is non zero, ifj?o is the critical point
of Ao. Using Morse lemma, we can find complex coordinates ( ^ / i , . . . ,^)
near po such that yz(po) = 0, i = 1 , . . . , n, and

n

En(y) = Ao + ^,2/z2, for y near 0.
2=1

The cycle FT* is transformed in some cycle R^ x iHn~k, with k depending
on the index of the critical point po. In these coordinates, it is easy to
check that N is non zero.

The last statement is obvious since the two hypersurfaces {A = En(p)}
and {A = Em(p)} do not intersect for A near Ao, p near F T * ' ) so no
additional Landau resonances are created. Q

COROLLARY 4.2. — Let Bn a simple band such that En(p) is a simple
eigenvalue of Hp for p 6 FT* , and let Ao e Bn a non degenerate critical
energy associated with a unique critical point po. Then if n is odd :

{H - A)-1 = EoW + Co(A - Ao)"72-1 (Ko + (A - Ao)^i(A))

for A near Ao ; if n is even :

{H - A)-1 = Eo(\) + Go(A - Ao)"72-1 Log(A - Ao)(^o + (A - Ao)J^i(A)) .

for A near Ao. Here EQ, Ei(\) are holomorphic operators in £(2^(1^),
^a^^)) an^ ^o ls a ran^ one operator having the kernel : ko(x^y) =
^o(x)(fo(y), where ^po is a po-Floquet periodic solution of (H — \o)(po = 0.
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Proof. — This follows directly from THEOREM 3.6 and COROLLARY 3.7.

Remark 4.3. — Corollary holds also when Ao is associated with several
non degenerate critical points, if we add the contributions from the various
critical points. It is also interesting to remark that for n = 2,3, (H — \)~1

has exactly the same singularity at Ao as a usual two-body Schrodinger
operator at A = 0.

We have seen in THEOREM 4.1 that artificial overlapping of bands does
not create new singularities. The problem of effectively overlapping bands
is difficult to treat in general since the geometry of the Bloch variety
can be quite complicated. We will just discuss the simplest case of band
overlapping making some generic assumptions. We will consider two bands
Bn and Bn-\-i which overlap effectively at Ao. Then there exists PQ C FT*
such that f(po,\o) = {9f/9\)(po,\o) = 0.

The simplest case is when (9 ' 2 f /9 \ ' 2 ) / 0. Then using Weierstrass
preparation Theorem, we can write :

f(p, A) = c(p, A) ((A - a(p)2 - b(p)) for (p, A) near (po, Ao) ,

where c(j?o^o) 7^ 0, a(po) = Ao, b(pQ) = 0. Since the roots of f(p,\) = 0
are real for p C FT* , we see that a(p) and b(p) are real for p near po? and
moreover that b(p) > 0 for p near PQ. Again the simplest situation is when
b(po) = ̂ 7pb(po) = 0, and B = ̂ [9^^,b(po)} is positive definite.

Then the Bloch variety S == { (p ,A) | (A - a(p))2 - b(p) = 0} has
two strata near (j^Ao) : M = S \ {(po,\o)} and N = {(po,\o)}.
If (BVpa(j?o),Vpa(po)) i=- 1, one sees easily using implicit function
theorem that cM = (f). On the other hand, cN = N so Ao C S. It is
quite easy to see (using that the set of selfadjoint matrices with a double
eigenvalue has codimension 3) that this hypothesis is sensible only i f 7 z = 3 ,
i.e. the physical case. Then an easy computation using Morse lemma with
parameters shows that (under some generic assumptions) (H — A)~1 is
actually analytic near Ao.

b. The density of states. — We study now the analyticity properties
of the density of states associated with H. The density of states measure
p is defined as follows (see [Re-Si]) : let Q be a n-cube in (R71 and IQ the
characteristic function of Q. Then

^]-00'A]) = vo^o. Vo^Q) Tr(l^-^])•
Here E^ is the spectral projection of H on f^, for any borelian fL Using
the translation invariance of H and of the £^, it is very easy to see that :

(4.1) p(]-cx),A]) = -iTr^^-o^]),
f^T
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where XT is the characteristic function of the fundamental domain FT,
and /AT is the Lebesgue measure of FT.

Using the fact that the spectrum of H is absolutely continuous, it is
easy to show that p is absolutely continuous with respect to the Lebesgue
measure d\.

Then the density of states of H is the Radon-Nikodym derivative of p,
denotes by (dp/d\).

For simplicity, we will assume that the space dimension n is equal to 2
or 3. We have the following Theorem :

THEOREM 4.4. — Assume in addition to the hypotheses of Section I
that 9iV and 9^V are bounded from H2(Rn) into L2^). (See Appendix
for the precise meaning of this condition). Then the density of states
(dp/d\) is analytic on R \ S.

Proof. — For c e IR, c > mia(H) + 1, we consider the following
function :

/(A) - Tr{XT(H + c)-1^^) = TT{XT(H + c^E^Xr).

Here Ao and A belong to the same connected component of IR \ E, denoted
by JA() • Then we have :

/(A)—A.+c)-1^.
2 Ao ds

To prove the theorem, it suffices to prove that /(A) is analytic in JA(). It
{e^}^N is an orthonormal basis of L^R71), we have :

00 00

fW=^{(H+c)-lE^^XTe„XTe,)=^g,{\)^
1=0 i=0

where the series ̂ ^ \9iW\ is convergent for each A e [Ao,+oo[.
Using Stone formula and the absolute continuity of the spectrum of H,

we have :

i r x
g,(\) = \m^ ̂  ((H + c)-1 (R(s + ie) - R(s - ie^Xre^ XTC,) ds.

From the appendix PROPOSITION A-l, we know that we can choose
c » 1 big enough so that (H + c)~1 is bounded from H'^^H71) into
H^H71). So we have :

1 ^ x

9zW =^j {(H + c)"1 (^(5 + ^0) - R(s - iO))XTe^XTe,) ds.
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We use here the fact that (H — A)"1 extends holomorphically as a
bounded operator from L^H71) into ff^lR72'), from the upper and lower
halfplanes to a small complex neighborhood of s € IR, if s ^ E. We
fix a small complex neighborhood Uo of J^y, such that the extensions
of (H — \)~1 from the upper and lower halfplanes, denoted by J?±(A), are
holomorphic in UQ .

We consider now the operator :

A±(A) = Xr(H + C^R^WXT for A (E Uo.
A±(A) = Xre^^A + ̂ -'(A + ife-^^H + C^R^XT.

From THEOREM 3.4 and PROPOSITION A.I, we get that

(A + i^e-^^H + c^R^WXr

is bounded from L2^) into L^R71). Then Xre^^A+z)-2 is trace class
(see [Re-Si]), so A±(A) is trace class with :

(4.2) ||A±(A)||^ < C\ uniformly for A in a compact subset ofZ^o-

It follows from (4.2) that the series ^^o ̂ (^) ls convergent for each A
in a compact subset K of^/o? cmd that ^^o 1^(^)1 <- ^i? uniformly on K.
Using for example Lebesgue dominated convergence theorem, we get that
the series ]C^o^W oc^verges in D'(K\ so that /(A) == ^^o^(^) ls

holomorphic in K. []

c. Perturbation by localized impurities. — We will now study the
resonances created by impurities.

We assume that the effect of a localized impurity can be described by
an additional real potential decaying exponentially.

The time dependent theory of impurity scattering has been treated by
THOMAS (see [T]). An approach closer to ours has been used by BENTO-
SELA in [B], where a time independent theory of impurity scattering is
developped. In particular, BENTOSELA proves that for artificially overlap-
ping bands, the resolvent (H — A)~1 extends to the non-physical sheet
outside the critical energies of the band, which is contained in our THEO-
REM 4.1.

We will assume that the effect of localized impurities is described by a
real potential W such that :

(4.3) 3a > 0 such that e^^W^A + z) 1 is compact.

We will denote by H the Hamiltonian H +W with domain H2(Rn). Then
we have the following Theorem :
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THEOREM 4.5.

i) (local extension problem) : for any Ao ^ U n R, there exists a
neighborhood V of \o inU, such that (H — \)~1 extends meromorphically
from {1m X > 0} H V to the universal covering (V \ S)* of V \ E, as
a bounded operator from L^R^ into H^^R^ for a small enough with
poles in (V \ S)* having finite rank residues ;

ii) (global extension problem) : (H - \)~1 extends meromorphically
from {ImA > 0}rW to the universal covering (^\SuEoo)* o/^/\SUSoo
as a bounded operator from L^R^ into H^^R71) for a small enough with
poles in (1U \ S U Soo)* having finite rank residues.

We will call resonances of H the poles of (H — \)~1 in (V \ S)* or
(U \ E U Soo)*, and denote by r the set of these resonances.

Proof. — Let us prove i), (ii) can be proved similarly). We use the
second resolvent formula. For Im A > 0, we have :

{H - A)-1 = {H - A)-1 (1 + W(H - A)-1)"1 = {H - A)-1 (l + K(\))~1.

We can choose a small enough in THEOREM 3.4 such that (H — \)~1

extends analytically to (V\E)* as an operator from ^(R") into H2,^71)
and such that W(H - \)~1 is compact on L^R").

So, K{\) is holomorphic in (V \ S)* and compact, and (1 + K(\)) is
invertible for ImA » 1, using a Neumann serie. The Theorem follows
then from the analytic Fredholm theorem. []

COROLLARY 4.6. — Let us denote by FR = m{ImA > O},SR = SHIR.
Then :

i) a^(H) C FR U SR.Fn C app(H) ;

ii) asc(H) is empty and the eigenvalues of H can accumulate only at
the points of SR.

Ao A e S

Figure 4.1
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Before proving this corollary, let us notice that it may happen that a
"real" pole Ao °f (H — A)~1 is not an eigenvalue of H^ if Ao is obtained
by continuing {H — \)~1 along a path encircling a point of S, (see Figure
4.1). This phenomenon is well known in two-body Schrodinger operators.

Proof. — To prove i) we use an idea of BALSLEV-COMBES ([B-C]). We
have the following formula, if dE\ denotes the spectral measure of H :

^j-oc^-^-oo^^ Hm (z-\)(H-\)-1.
Im z>0

Let Ao e app{H). Then ^]_oo^o] - ̂ l-oo^ot = ^{Ao} ls ̂ n zero. Since
L^R71) is dense in L2^), we can find some (p C L^H71), such that

(E^^, ̂ ) = lim {(z - \o)(H - z)-1^ ̂  ^ 0.
z—^-Ao

lmz>0

Then (H — z)~1 must have a singularity at z = Ao, so Ao € FR U SR.
Suppose now that Ao C FR and that Ao is not an eigenvalue of H. Then

for any (^i, (^2 ^ L^fH71), we have

lim (^-AoX^-^r1^^)^,
^^•A()
Im^>0

which is impossible if we choose (^i and (^2 correctly with respect to the
residues in the Laurent expansion of (H - z)~1 at z = Ao. This proves i).

Let us now prove ii). THEOREM 4.6 implies that (Tsc(H) C SR U FR.
(See for example [Re-Si].) This set is a set of points having only a locally
finite set of accumulation points, ̂ o Sp UT^ cannot support a continuous
measure, which proves that (Tsc(H) ~=- ^- The properties of eigenvalues of
H follows directly from i). Q

Remark 4.7. — Using THEOREM 3.6, one can check that in general
the singularity of {H - \)~1 at a Landau resonance Ao C S can be an
essential singularity, since the singular part of K(\) at Ao is not always
of finite rank. However in the case considered in COROLLARY 4.2, one can
prove that the number of poles of (H - \)~1 on each sheet of the (local)
Riemann surface of (H — A)~1 near Ao is finite in a small neighborhood
ofAo .
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Appendix
We prove here the continuity result used in the proof of THEOREM 4.4;

let us first make precise the meaning of 9iV and 92 V.
We can define Q^V = [9x,, V] as a quadratic form with domain (^(IR^),

or equivalently as an operator between ^(IR71) and D^R"). It is easy to
see that 9,V is bounded from H^H71) into H^^). We ask that this
operator extends continuously from H2^71) into L^R^).

Similarly we define 9^V = [Q^^Q^V} as an operator between C^IR71)
and D'^). We ask that 9^V extends continuously from H2^)
into L2^).

PROPOSITION A.I. — If 9iV and9^V are bounded from H2^) into
L2(Rn), 3c » 1 such that (H + c)-1 is bounded from H2.^) into
Hi^H71).

Proof. — We write e-^^H + c^e^ = Ha + c where

Ha = (D, + zaV(rr))2 + V(x) = -A + V^

where Va is a first order differential operator. It is easy to see that Va is
-A bounded with relative bound strictly less than 1, so that (Ha + c)~1

exists and is bounded from L^IR71) into H2^) for c » 1 big enough.
Hence (H + c)-1 is bounded from L2,^) into H^H^.

If w C ̂ J^) and u = (H + c)-^ we have :

(H + c)9x^u = 9x^w — 9x,Vu

in the distribution sense. If 9^V is bounded from H2^) into L2^),
using the fact that V is a multiplication operator, we see easily that 9x,V
is bounded from J^JFr) into L^JIR71). This prove that Q^u e ff2^^).

Arguing the same way, we can prove that 9x,QxjU 6 H^^R71), which
proves the Proposition.
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