Sur un nouveau critère de normalité pour les familles de fonctions holomorphes
Bulletin de la Société Mathématique de France, Tome 63 (1935), pp. 185-196.
@article{BSMF_1935__63__185_0,
     author = {Miranda, Carlo},
     title = {Sur un nouveau crit\`ere de normalit\'e pour les familles de fonctions holomorphes},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {185--196},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {63},
     year = {1935},
     doi = {10.24033/bsmf.1231},
     zbl = {0013.27202},
     language = {fr},
     url = {https://www.numdam.org/articles/10.24033/bsmf.1231/}
}
TY  - JOUR
AU  - Miranda, Carlo
TI  - Sur un nouveau critère de normalité pour les familles de fonctions holomorphes
JO  - Bulletin de la Société Mathématique de France
PY  - 1935
SP  - 185
EP  - 196
VL  - 63
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/bsmf.1231/
DO  - 10.24033/bsmf.1231
LA  - fr
ID  - BSMF_1935__63__185_0
ER  - 
%0 Journal Article
%A Miranda, Carlo
%T Sur un nouveau critère de normalité pour les familles de fonctions holomorphes
%J Bulletin de la Société Mathématique de France
%D 1935
%P 185-196
%V 63
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/bsmf.1231/
%R 10.24033/bsmf.1231
%G fr
%F BSMF_1935__63__185_0
Miranda, Carlo. Sur un nouveau critère de normalité pour les familles de fonctions holomorphes. Bulletin de la Société Mathématique de France, Tome 63 (1935), pp. 185-196. doi : 10.24033/bsmf.1231. https://www.numdam.org/articles/10.24033/bsmf.1231/
  • CHARAK, KULDEEP SINGH; KUMAR, RAHUL SOME PICARD TYPE THEOREMS AND CORRESPONDING NORMALITY CRITERIA IN SEVERAL COMPLEX VARIABLES, Poincare Journal of Analysis and Applications, Volume 10 (2023) no. 1, p. 105 | DOI:10.46753/pjaa.2023.v010i01.008
  • Niu, Peiyan; Xu, Yan A normal criterion of families of holomorphic functions, Analysis and Mathematical Physics, Volume 11 (2021) no. 3 | DOI:10.1007/s13324-021-00539-8
  • Chang, Jianming On the Spherical Derivatives of Miranda Functions, Computational Methods and Function Theory, Volume 19 (2019) no. 2, p. 253 | DOI:10.1007/s40315-019-00270-3
  • Liu, Zhixue; Cao, Tingbin Zalcman's lemma and normality concerning shared values of holomorphic functions and their total derivatives in several complex variables, Rocky Mountain Journal of Mathematics, Volume 49 (2019) no. 8 | DOI:10.1216/rmj-2019-49-8-2689
  • Meng, Da-Wei; Hu, Pei-Chu Normality Criteria of Meromorphic Functions Sharing a Holomorphic Function, Bulletin of the Malaysian Mathematical Sciences Society, Volume 38 (2015) no. 4, p. 1331 | DOI:10.1007/s40840-014-0089-6
  • LEI, Chunlin; FANG, Mingliang; ZENG, Cuiping Some Normality Criteria of Meromorphic Functions, Acta Mathematica Scientia, Volume 33 (2013) no. 6, p. 1667 | DOI:10.1016/s0252-9602(13)60113-7
  • Grahl, Jürgen; Roth, Oliver An extension of Lewis's Lemma, renormalization of harmonic and analytic functions, and normal families, Mathematische Nachrichten, Volume 282 (2009) no. 4, p. 540 | DOI:10.1002/mana.200610753
  • Bergweiler, Walter Bloch’s Principle, Computational Methods and Function Theory, Volume 6 (2006) no. 1, p. 77 | DOI:10.1007/bf03321119
  • Grahl, Jürgen Hayman’s Alternative and Normal Families of Non-vanishing Meromorphic Functions, Computational Methods and Function Theory, Volume 2 (2004) no. 2, p. 481 | DOI:10.1007/bf03321861
  • Li, Bao Qin A joint theorem generalizing the criteria of Montel and Miranda for normal families, Proceedings of the American Mathematical Society, Volume 132 (2004) no. 9, p. 2639 | DOI:10.1090/s0002-9939-04-07452-0
  • Deng, Fangwen NORMAL FAMILY OF COMPOSITIONS OF HOLOMORPHIC FUNCTIONS AND THEIR HIGH ORDER DERIVATIVES, Acta Mathematica Scientia, Volume 23 (2003) no. 4, p. 544 | DOI:10.1016/s0252-9602(17)30498-8
  • Bergweiler, Walter Covering properties of derivatives of meromorphic functions, Complex Variables, Theory and Application: An International Journal, Volume 43 (2001) no. 3-4, p. 241 | DOI:10.1080/17476930108815315
  • Hayman, W. K.; Hinkkanen, A. Normal families and the final set, Complex Variables, Theory and Application: An International Journal, Volume 43 (2001) no. 3-4, p. 495 | DOI:10.1080/17476930108815337
  • Zalcman, Lawrence Normal families: New perspectives, Bulletin of the American Mathematical Society, Volume 35 (1998) no. 3, p. 215 | DOI:10.1090/s0273-0979-98-00755-1
  • Lo, Yang A general criterion for normality, Acta Mathematica Sinica, Volume 1 (1985) no. 2, p. 181 | DOI:10.1007/bf02560032
  • Bibliography, An Introduction to Classical Complex Analysis, Volume 82 (1979), p. 462 | DOI:10.1016/s0079-8169(08)61293-3
  • Drasin, David Normal families and the Nevanlinna theory, Acta Mathematica, Volume 122 (1969) no. 0, p. 231 | DOI:10.1007/bf02392012
  • Edrei, Albert On the zeros of successive derivatives, Proceedings of the American Mathematical Society, Volume 6 (1955) no. 3, p. 386 | DOI:10.1090/s0002-9939-1955-0068623-2
  • Chuang, Chi-Tai Étude sur les familles normales et les familles quasi-normales de fonctions méromorphes, Rendiconti del Circolo Matematico di Palermo, Volume 62 (1938) no. 1, p. 1 | DOI:10.1007/bf03013860

Cité par 19 documents. Sources : Crossref