Sur les lois du frottement de glissement
Bulletin de la Société Mathématique de France, Tome 51 (1923), pp. 22-33.
@article{BSMF_1923__51__22_1,
     author = {Delassus, Et.},
     title = {Sur les lois du frottement de glissement},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {22--33},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {51},
     year = {1923},
     doi = {10.24033/bsmf.1029},
     language = {fr},
     url = {http://www.numdam.org/articles/10.24033/bsmf.1029/}
}
TY  - JOUR
AU  - Delassus, Et.
TI  - Sur les lois du frottement de glissement
JO  - Bulletin de la Société Mathématique de France
PY  - 1923
SP  - 22
EP  - 33
VL  - 51
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/bsmf.1029/
DO  - 10.24033/bsmf.1029
LA  - fr
ID  - BSMF_1923__51__22_1
ER  - 
%0 Journal Article
%A Delassus, Et.
%T Sur les lois du frottement de glissement
%J Bulletin de la Société Mathématique de France
%D 1923
%P 22-33
%V 51
%I Société mathématique de France
%U http://www.numdam.org/articles/10.24033/bsmf.1029/
%R 10.24033/bsmf.1029
%G fr
%F BSMF_1923__51__22_1
Delassus, Et. Sur les lois du frottement de glissement. Bulletin de la Société Mathématique de France, Tome 51 (1923), pp. 22-33. doi : 10.24033/bsmf.1029. http://www.numdam.org/articles/10.24033/bsmf.1029/
  • Cheesman, Noah; Hogan, S. J.; Kristiansen, Kristian Uldall The geometry of the Painlevé paradox, SIAM Journal on Applied Dynamical Systems, Volume 21 (2022) no. 3, pp. 1798-1831 | DOI:10.1137/21m1455590 | Zbl:1505.70018
  • Alart, Pierre; Renouf, Mathieu On inconsistency in frictional granular systems, Computational Particle Mechanics, Volume 5 (2018) no. 2, p. 161 | DOI:10.1007/s40571-017-0160-9
  • Da Costa, A. Pinto Assessing the complete solution set of the planar frictional wedging problem, Computer Methods in Applied Mechanics and Engineering, Volume 205-208 (2012), pp. 139-148 | DOI:10.1016/j.cma.2010.12.019 | Zbl:1239.74063
  • Liu, Caishan; Zhao, Zhen; Chen, Bin The bouncing motion appearing in a robotic system with unilateral constraint, Nonlinear Dynamics, Volume 49 (2007) no. 1-2, p. 217 | DOI:10.1007/s11071-006-9123-z
  • Feng, Q. Discrete models of a class of isolation systems, Archive of Applied Mechanics, Volume 76 (2006) no. 5-6, pp. 277-294 | DOI:10.1007/s00419-006-0026-8 | Zbl:1161.70351
  • Kaufman, Danny M.; Edmunds, Timothy; Pai, Dinesh K., ACM SIGGRAPH 2005 Papers (2005), p. 946 | DOI:10.1145/1186822.1073295
  • Kaufman, Danny M.; Edmunds, Timothy; Pai, Dinesh K. Fast frictional dynamics for rigid bodies, ACM Transactions on Graphics, Volume 24 (2005) no. 3, p. 946 | DOI:10.1145/1073204.1073295
  • Feng, Q.; He, H. Modeling of the mean Poincaré map on a class of random impact oscillators., European Journal of Mechanics. A. Solids, Volume 22 (2003) no. 2, pp. 267-281 | DOI:10.1016/s0997-7538(03)00015-9 | Zbl:1038.74590
  • Stewart, David E. Rigid-Body Dynamics with Friction and Impact, SIAM Review, Volume 42 (2000) no. 1, p. 3 | DOI:10.1137/s0036144599360110
  • Anitescu, Mihai; Potra, Florian A.; Stewart, David E. Time-stepping for three-dimensional rigid body dynamics, Computer Methods in Applied Mechanics and Engineering, Volume 177 (1999) no. 3-4, pp. 183-197 | DOI:10.1016/s0045-7825(98)00380-6 | Zbl:0967.70003
  • Pang, Jong-Shi; Stewart, David E. A unified approach to discrete frictional contact problems, International Journal of Engineering Science, Volume 37 (1999) no. 13, pp. 1747-1768 | DOI:10.1016/s0020-7225(98)00143-8 | Zbl:1210.74131
  • Stewart, D. E.; Trinkle, J. C. An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction, International Journal for Numerical Methods in Engineering, Volume 39 (1996) no. 15, pp. 2673-2691 | DOI:10.1002/(sici)1097-0207(19960815)39:15<2673::aid-nme972>3.0.co;2-i | Zbl:0882.70003
  • Moreau, J. J. Unilateral Contact and Dry Friction in Finite Freedom Dynamics, Nonsmooth Mechanics and Applications (1988), p. 1 | DOI:10.1007/978-3-7091-2624-0_1

Cité par 13 documents. Sources : Crossref, zbMATH