Normalité asymptotique locale quantique et autres questions de statistique quantique
Thèses d'Orsay, no. 777 (2009) , 380 p.
@phdthesis{BJHTUP11_2009__0777__P0_0,
     author = {Kahn, Jonas},
     title = {Normalit\'e asymptotique locale quantique et autres questions de statistique quantique},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Facult\'e des Sciences d'Orsay},
     number = {777},
     year = {2009},
     language = {fr},
     url = {http://www.numdam.org/item/BJHTUP11_2009__0777__P0_0/}
}
TY  - BOOK
AU  - Kahn, Jonas
TI  - Normalité asymptotique locale quantique et autres questions de statistique quantique
T3  - Thèses d'Orsay
PY  - 2009
IS  - 777
PB  - Université de Paris-Sud Faculté des Sciences d'Orsay
UR  - http://www.numdam.org/item/BJHTUP11_2009__0777__P0_0/
LA  - fr
ID  - BJHTUP11_2009__0777__P0_0
ER  - 
%0 Book
%A Kahn, Jonas
%T Normalité asymptotique locale quantique et autres questions de statistique quantique
%S Thèses d'Orsay
%D 2009
%N 777
%I Université de Paris-Sud Faculté des Sciences d'Orsay
%U http://www.numdam.org/item/BJHTUP11_2009__0777__P0_0/
%G fr
%F BJHTUP11_2009__0777__P0_0
Kahn, Jonas. Normalité asymptotique locale quantique et autres questions de statistique quantique. Thèses d'Orsay, no. 777 (2009), 380 p. http://numdam.org/item/BJHTUP11_2009__0777__P0_0/

L. Accardi. Some trends and problems in quantum probability. In A. FrigerioL. Accardi et V. Gorini, editors, Quantum probability and applications to the quantum theory of irreversible processes, volume 1055 of Lecture Notes in Mathematics, Berlin Springer Verlag, pages 1-19, 1984. | MR | Zbl | DOI

L. Accardi et Bach, A. Central limits of squeezing operators. In Luigi Accardi et Wilhelm von Wandelfels, editors, Quantum Probability and applications IV, volume 1396 of Lecture notes in mathematics, pages 7-19. Springer, 1987. | MR | Zbl | DOI

L. Accardi et Bach, A. Quantum central limit theorem for strongly mixing random variables. Z. W., pages 393-402, 1985. | MR | Zbl | DOI

A. Acin, E. Jane, et G. Vidal. Optimal estimation of quantum dynamics. Physical Review A, 64 :050302, 2001. | DOI

A. Acin, E. Bagan, M. Baig, Ll Masanes, et R. Munoz-Tapia. Multiple copy 2-state discrimination with individual measurements. Physical Review A, 71 :032338, 2005. | MR | Zbl | DOI

S. Amari. Differential-geometrical methods in statistics. Lecture notes in statistics. Springer Verlag, Berlin, 1985. | MR | Zbl

Erika Andersson, Stephen M. Barnett, Claire R. Gilson, et Kieran Hunter. Minimum-error discrimination between three mirror-symmetric states. Physical Review A, 65 :052308, 2002.

M. A. Armen, J. K. Au, J. K. Stockton, A. C. Doherty, et H. Mabuchi. Adaptive Homodyne Measurement of Optical Phase. Phys. Rev. Lett., 89 :133602, 2002. | DOI

L. M. Artiles, R. Gill, et M. Guţă. An invitation to quantum tomography. J. Royal Statist. Soc. B (Methodological), 67 :109-134, 2005. | MR | Zbl | DOI

Artiles, L., Gill, R., et Guţă, M.An invitation to quantum tomography. J. Royal Statist. Soc. B (Methodological), 67 :109-134, 2005. | MR | Zbl | DOI

W.B. Arveson. On subalgebras of C*-algebras. Acta Mathematica, 123 :141-224, 1969. | MR | Zbl | DOI

K. M. R. Audenaert, M. Nussbaum, A. Szkola, et F. Verstraete. Asymptotic Error Rates in Quantum Hypothesis Testing. arXiv:0708.4282[quant-ph]. | MR | Zbl

K. M. R. Audenaert, M. Nussbaum, A. Szkola, et F. Verstraete. Asymptotic error rates in quantum hypothesis testing, 2007. | MR | Zbl

M. Audin. Geometry. Springer Verlag, Berlin, 2002. | MR | Zbl

E. Bagan, M. Baig, et R. Munoz-Tapia. Optimal scheme for estimating a pure qubit state via local measurements. Phys. Rev. Lett., 89 :277904, 2002. | DOI

E. Bagan, M. Baig, et R. Munoz-Tapia. Entanglement assisted alignment of reference frames using a dense covariant coding. Physical Review A, 69 :050303, 2004a. | DOI

E. Bagan, M. Baig, et R. Munoz-Tapia. Quantum reverse-engineering and reference frame alignment without non-local correlations. Physical Review A, 70 :030301, 2004b. | DOI

E. Bagan, M. Baig, R. Munoz-Tapia, et A. Rodriguez. Collective versus local measurements in a qubit mixed-state estimation. Phys. Rev. A, 69 :010304(R), 2004c. | DOI

E. Bagan, A. Monras, et R. Munoz-Tapia. Comprehensive analysis of quantum pure-state estimation for two-level system. Phys. Rev. A, 71 :062318, 2005. | DOI

E. Bagan, M. A. Ballester, R. D. Gill, A. Monras, et R. Munoz-Tapia. Optimal full estimation of qubit mixed states. Physical Review A, 73 :032301, 2006. | DOI

M. A. Ballester. Estimation of Quantum States and Operations. PhD thesis, Universiteit Utrecht, 2005a.

Manuel A. Ballester. Estimation of SU(d) using entanglement. Preprint, 2005b. URL http://www.arxiv.org/abs/quant-ph/0507073.

M. Ban, K. Kurokawa, R. Momose, et O. Hirota. Optimum measurements for discrimination among symmetric quantum states and parameter estimation. Int. J. Theor. Phys., 36 :1269 - 1288, 1997. | MR | Zbl | DOI

K. Banaszek, D'Ariano, G. M., Paris, M. G. A., et Sacchi, M. F.Maximum-likelihood estimation of the density matrix. Phys. Rev. A, 61 :R010304, 1999. | DOI

Somshubhro Bandyopadhyay, P. Oscar Boykin, Vwani P. Roychowdhury, et Farrokh Vatan. A new proof for the existence of mutually unbiased bases. Algorithmica, 34(4) :512-528, 2002. | MR | Zbl | DOI

O. E. Barndorff-Nielsen et Gill, R. Fisher information in quantum statistics. J. Phys. A, 33 :1-10, 2000. | MR | Zbl | DOI

O. E. Barndorff-Nielsen, Gill, R., et Jupp, P. E.On quantum statistical inference (with discussion). J. R. Statist. Soc. B, 65 :775-816, 2003. | MR | Zbl | DOI

Stephen M. Barnett. Minimum-error discrimination between multiply symmetric states. Phys. Rev. A, 64(3) :030303, Aug 2001.

Stephen D. Bartlett, Terry Rudolph, et R. W. Spekkens. Classical and quantum communication without a shared reference frame. Physical Review Letters, 91 : 027901, 2003.

V. P. Belavkin. Generalized heisenberg uncertainty relations, and efficient measurements in quantum systems. Theor. Math. Phys., 26 :213-222, 1976. | MR | DOI

V. P. Belavkin. Optimal multiple quantum statistical hypothesis testing. Stochastics, 1 :315-345, 1975. | MR | Zbl | DOI

Viacheslav P. Belavkin, Giacomo Mauro D'Ariano, et Maxim Raginsky. Operational distance and fidelity for quantum channels. Journal of Mathematical Physics, 46 : 062106, 2005. | MR | Zbl

Charles H. Bennett, Gilles Brassard, et N. David Mermin. Quantum cryptography without bell's theorem. Phys. Rev. Lett., 68(5) :557-559, Feb 1992. | MR | Zbl | DOI

Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, et William K. Wootters. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett., 70(13) :1895-1899, Mar 1993. | MR | Zbl | DOI

J. A. Bergou, U. Herzog, et M. Hillery. Discrimination of Quantum States. In M. G. A. Paris et J. Řeháček, editors, Quantum State Estimation, volume 649 of Lecture Notes in Physics, Berlin Springer Verlag, pages 417-465, 2004. | MR | DOI

S.N. Bernstein. On a modification of Chebyshev's inequality and of the error formula of Laplace. In Collected works, volume 4, 1964.

J. V. Bondar et P. Milnes. Amenability : A survey for statistical applications of hunt-stein and related conditions on groups. Z. Wahrscheinlichkeitstheorie, 57 : 103 - 128, 1981 | MR | Zbl | DOI

L. Bouten, Guţă, M., et Maassen, H.Stochastic schrödinger equations. Jourrnal of Physics A, 37 :3189-3209, 2004. | MR | Zbl | DOI

Luc Bouten, Ramon Van Handel, et Matthew James. An introduction to quantum filtering, 2006. URL http://arxiv.org/abs/math/0601741. | MR | Zbl

Stephen Boyd et Lieven Vandenberghe. Convex Optimization. Cambridge University Press, New York, NY, USA, 2004. ISBN 0521833787. | MR | Zbl

S. L. Braunstein et Caves C. M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett., 72 :3439-3443, 1994. | MR | Zbl | DOI

J. Bretagnolle et P. Massart. Hungarian constructions from the nonasymptotic view point. Ann. Probab., 17(1) :239-256, 1989. | MR | Zbl | DOI

Dagmar Bruss. Optimal eavesdropping in quantum cryptography with six states. Physical Review Letters, 81 :3018, 1998. | DOI

F. Buscemi, G.M. D'Ariano, M. Keyl, P. Perinotti, et R. Werner. Clean positive operator valued measures. J. Math. Phys, 46 :082109, 2005. | MR | Zbl | DOI

P. Busch et P. J. Lahti. The determination of the past and the future of a physical system in quantum mechanics. Foundations of Physics, 19 :633-678, June 1989. | MR | DOI

C. Butucea, M. Guţă, et L. Artiles. Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data. Annals of Statistics, 35(2) :465-494, 2007. | MR | Zbl | DOI

V. Buzek, R. Derka, et S. Massar. Optimal quantum clocks. Physical Review Letters, 82 :2207, 1999. | DOI

L. Cavalier et J.-Y. Koo. Poisson intensity estimation for tomographic data using a wavelet shrinkage approach. IEEE Trans. on Information Theory, 48 :2794-2802, 2002. | MR | Zbl | DOI

C. M. Caves. Quantum limits on noise in linear amplifiers. Phys. Rev. D, 26 :1817-1839, 1982. | DOI

A. Chefles. Quantum state discrimination. Contemporary Physics, 41 :401-424, June 2000. | DOI

A. Chefles et S. M. Barnett. Entanglement and unambiguous discrimination between non-orthogonal states. Physics Letters A, 236 :177-179, February 1997. | MR | Zbl | DOI

Anthony Chefles et Stephen M. Barnett. Optimum unambiguous discrimination between linearly independent symmetric states. Physics Letters A, 250 :223, 1998a. | DOI

Anthony Chefles et Stephen M. Barnett. Quantum state separation, unambiguous discrimination and exact cloning. J.PHYS.A, 31 :10097, 1998b. | MR | Zbl

Anthony Chefles, Richard Jozsa, et Andreas Winter. On the existence of physical transformations between sets of quantum states, 2003. | Zbl

Anthony Chefles, Akira Kitagawa, Masahiro Takeoka, Masahide Sasaki, et Jason Twamley. Unambiguous discrimination among oracle operators, 2007. | MR | Zbl

Andrew M. Childs, John Preskill, et Joseph Renes. Quantum information and precision measurement. Journal of Modern Optics, 47 :155, 2000a. | MR | DOI

Andrew M. Childs, John Preskill, et Joseph Renes. Quantum information and precision measurement. Journal of Modern Optics, 47 :155, 2000b. | MR | DOI

G Chiribella, G M D'Ariano, P Perinotti, et M F Sacchi. Efficient use of quantum resources for the transmission of a reference frame. Physical Review Letters, 93 : 180503, 2004. | DOI

G. Chiribella, G. M. D'Ariano, et M. F. Sacchi. Optimal estimation of group transformations using entanglement. Physical Review A, 72 :042338, 2005. | MR | DOI

Chih-Lung Chou et Li-Yi Hsu. Minimum-error discrimination between symmetric mixed quantum states. Physical Review A, 68 :042305, 2003.

J. I. Cirac, A. K. Ekert, et C. Macchiavello. Optimal purification of single qubits. Phys. Rev. Lett., 82 :4344, 1999. | DOI

Roger B. M. Clarke, Anthony Chefles, Stephen M. Barnett, et Erling Riis. Experimental demonstration of optimal unambiguous state discrimination. Phys. Rev. A, 63(4) :040305, Mar 2001a.

Roger B. M. Clarke, Vivien M. Kendon, Anthony Chefles, Stephen M. Barnett, Erling Riis, et Masahide Sasaki. Experimental realization of optimal detection strategies for overcomplete states. Physical Review A, 64 :012303, 2001b.

C.D. Cushen et R.L. Hudson. A quantum-mechanical central limit theorem. J. Appl. Prob., 8 :454-469, 1971. | MR | Zbl | DOI

Sonja Daffer et Peter L. Knight. Generating optimal states for a homodyne bell test. Physical Review A, 72 :032509, 2005.

Domenico D'Alessandro et Francesca Albertini. Quantum symmetries and cartan decompositions in arbitrary dimensions, 2005. | MR | Zbl

D. A. R. Dalvit, R. L. De Matos Filho, et F. Toscano. Quantum metrology at the heisenberg limit with ion traps. New Journal of Physics, 8 :276, 2006. | DOI

G. M. D'Ariano, Macchiavello, C., et Paris, M. G. A.Detection of the density matrix through optical homodyne tomography without filtered back projection. Phys. Rev. A, 50 :4298-4302, 1994. | DOI

G. M. D'Ariano, Leonhardt, U., et Paul, H.Homodyne detection of the density matrix of the radiation field. Phys. Rev. A, 52 :R1801-R1804, 1995. | DOI

G. M. D'Ariano, M. F. Sacchi, et J. Kahn. Minimax quantum state discrimination. Phys. Rev. A, 72 :032310, 2005a. URL arXiv:quant-ph/0504048.

G. M. D'Ariano, M. F. Sacchi, et J. Kahn. Minimax discrimination of two Pauli channels. Phys. Rev. A, 72 :052302, 2005b. URL arXiv:quant-ph/0507081.

Giacomo Mauro D'Ariano, Lorenzo Maccone, et Paoloplacido Lo Presti. Quantum calibration of measuring apparatuses. Phys. Rev. Lett., 93 :250407, 2004. URL http://arXiv.org:quant-ph/0408116.

E.B. Davies. On the repeated measurements of continuous observables in quantum mechanics. J. Functional Analysis, 6 :318-346, 1970. | MR | Zbl | DOI

S. R. Deans. The Radon transform and some of its applications. John Wiley & Sons, New York, 1983. | MR | Zbl

D. Dieks. Overlap and distinguishability of quantum states. Physics Letters A, 126 : 303-306, January 1988. | MR | DOI

Lu-Ming Duan et Guang-Can Guo. Probabilistic cloning and identification of linearly independent quantum states. Phys. Rev. Lett., 80(22) :4999-5002, Jun 1998. | DOI

F. J. Dyson. General theory of spin-wave interactions. Phys. Rev., 102 :1217-1230, 1956. | MR | Zbl | DOI

H. S. Eisenberg, J. F. Hodelin, G. Khoury, et D. Bouwmeester. Multiphoton path entanglement by nonlocal bunching. Physical Review Letters, 94(9) :090502, 2005. | DOI

Artur K. Ekert. Quantum cryptography based on bell's theorem. Phys. Rev. Lett., 67(6) :661-663, Aug 1991. | MR | Zbl | DOI

Y. C. Eldar. von Neumann measurement is optimal for detecting linearly independent mixed quantum states. Physical Review A, 68(5) :052303-+, November 2003. | MR | DOI

Y. C. Eldar, A. Megretski, et G. C. Verghese. Optimal Detection of Symmetric Mixed Quantum States. IEEE Transactions on Information Theory, 50(6) :1198 - 1207, 2004. | MR | Zbl | DOI

Yonina C. Eldar. A semidefinite programming approach to optimal unambiguous discrimination of quantum states. IEEE Transactions on Information Theory, 49 :446, 2003. | MR | Zbl | DOI

F Embacher et H. Narnhofer. Strategies to measure a quantum state. Ann. of Phys. (N.Y.), 311 :220, 2004. | MR | Zbl | DOI

Erdélyi. Higher Transcendental Functions, volume 2. McGraw-Hill, 1953. | Zbl

Yuan Feng, Runyao Duan, et Zhengfeng Ji. Condition and capability of quantum state separation. Physical Review A, 72 :012313, 2005.

D G. Fisher, S. H. Kienle, et M. Freyberger. Quantum-state estimation by self-learning measurements. Phys. Rev. A, 61 :032306, 2000.

Jaromir Fiurasek et Miroslav Jezek. Optimal discrimination of mixed quantum states involving inconclusive results. Physical Review A, 67 :012321, 2003.

A. Fujiwara. Strong consistency and asymptotic efficiency for adaptive quantum estimation problems. J. Phys. A, 39 :12489-12504, 2006. | MR | Zbl | DOI

A Fujiwara et H Imai. Quantum parameter estimation of a generalized pauli channel. Journal of Physics A : Mathematical and General, 36(29) :8093-8103, 2003. URL http://stacks.iop.org/0305-4470/36/8093. | MR | Zbl | DOI

A. Fujiwara et Nagaoka, H. Quantum fisher information and estimation for pure state models. Phys. Lett A, 201 :119-124, 1995. | MR | Zbl | DOI

Akio Fujiwara. Estimation of su(2) operation and dense coding : An information geometric approach. Phys. Rev. A, 65(1) :012316, 2001.

W. Fulton. Young tableaux, with Applications to Representation Theory and Geometry. Cambridge University Press, 1997. | MR | Zbl

W. Fulton et J. Harris. Representation Theory : A First Course. Springer Verlag, Berlin, 1991. | Zbl | MR

C. W. Gardiner et P. Zoller. Quantum Noise. Springer, 2004. | MR | Zbl

Jm Geremia, J. K. Stockton, et H. Mabuchi. Real-time quantum feedback control of atomic spin-squeezing. Science, 304 :270-273, 2004. | DOI

Alexei Gilchrist, Nathan K. Langford, et Michael A. Nielsen. Distance measures to compare real and ideal quantum processes, 2004.

R. Gill. Quantum Asymptotics, volume 36 of Lecture Notes-Monograph Series, pages 255-285. IMS, 2001. | Zbl

R. D. Gill. Asymptotic information bounds in quantum statistics. quant-ph/0512443, to appear in Annals of Statistics, 2005a.

R. D. Gill et S. Massar. State estimation for large ensembles. Phys. Rev. A, 61 : 042312, 2000.

Richard D. Gill. Asymptotic information bounds in quantum statistics. math.ST/0512443, 2005b.

Vittorio Giovannetti, Seth Lloyd, et Lorenzo Maccone. Quantum-enhanced measurements : beating the standard quantum limit. Science, 306 :1330, 2004. | DOI

Goodman R. et Wallach N.R. Representations and invariants of the classical groups. Cambridge University Press, 1998. | MR | Zbl

Lov K. Grover. A fast quantum mechanical algorithm for database search. In STOC'96 : Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212-219, New York, NY, USA, 1996. ACM Press. ISBN 0-89791-785-5. | MR | Zbl | DOI

M. Guţă et A. Jenčová. Local asymptotic normality in quantum statistics. Communications in Mathematical Physics, 276(2) :341 - 379, 2007. | MR | Zbl | DOI

M. Guţă et J. Kahn. Local asymptotic normality for qubit states. Phys. Rev. A, 73 :052108, 2006. URL arXiv:quant-ph/0512075. | MR | DOI

M. Guţă et J. Kahn. Local asymptotic normality for finite-dimensional systems. Comm. Math. Phys., pages 79-+, March 2009. doi : 10.1007/s00220-009-0787-3. URL arXiv:0804.3876. | MR

M. Guţă, B. Janssens, et J. Kahn. Optimal estimation of qubit states with continuous time measurements. Comm. Math. Phy., 277(1) :127 - 160, 2008. URL arXiv:quant-ph/0608074. | MR | Zbl | DOI

M. Guţă. Quantum decision theory and comparison of quantum statistical experiments. in preparation.

T. Hannemann, D. Reiss, C. Balzer, W. Neuhauser, P. E. Toschek, et C. Wunderlich. Self-learning estimation of quantum states. Phys. Rev. A, 65 :050303-+, 2002a. | DOI

Th. Hannemann, D. Reiss, Ch. Balzer, W. Neuhauser, P. E. Toschek, et Ch. Wunderlich. Self-learning estimation of quantum states. Phys. Rev. A, 65 :050303(R), 2002b. | DOI

M. Hayashi. Two quantum analogues of fisher information from a large deviation viewpoint of quantum estimation. quant-ph/0202003, 2002a. | Zbl | DOI

M. Hayashi. presentations at maphysto and quantop workshop on quantum measurements and quantum stochastics, aarhus, 2003, and special week on quantum statistics, isaac newton institute for mathematical sciences, cambridge, 2004.

M. Hayashi. Quantum estimation and the quantum central limit theorem. Bulletin of the Mathematical Society of Japan, 55 :368-391, 2003. ( in Japanese ; Translated into English in quant-ph/0608198). | MR

M. Hayashi. A linear programming approach to attainable cramér-rao type bound. In Asymptotic theory of quantum statistical inference, Selected Papers, 2005a. | DOI

M. Hayashi. Parallel treatment of estimation of su(2) and phase estimation. quant- ph/0407053, 2004.

M. Hayashi et K. Matsumoto. Asymptotic performance of optimal state estimation in quantum two level system. quant-ph/0411073, 2004.

M. Hayashi et K. Matsumoto. Statistical model with measurement degree of freedom and quantum physics. In Masahito Hayashi, editor, Asymptotic theory of quantum statistical inference : selected papers, pages 162-170. World Scientific, 2005. (English translation of a paper in Japanese published in Surikaiseki Kenkyusho Kokyuroku, vol. 35, pp. 7689-7727, 2002.). | DOI

Masahito Hayashi. Quantum Information. Springer-Verlag, BerlinHeidelberg, 2006. | MR | Zbl

Masahito Hayashi, editor. Asymptotic theory of quantum statistical inference : selected papers. World Scientific, 2005b. | Zbl

Masahito Hayashi. Optimal sequence of quantum measurements in the sense of stein's lemma in quantum hypothesis testing. MATHEMATICAL AND GENERAL, 35 :10759, 2002b. | MR | Zbl

T. Heinonen. Optimal measurements in quantum mechanics. Physics Letters A, 346 :77, 2005. | MR | Zbl | DOI

C. W. Helstrom. Quantum Detection and Estimation Theory. Academic Press, New York, 1976. | Zbl

C. W. Helstrom. Quantum detection and estimation theory. Journal of Statistical Physics, 1 :231-252, 1969. | MR | DOI

U. Herzog. Optimum unambiguous discrimination of two mixed states and application to a class of similar states. Physical Review A, 75 :052309, 2007. | DOI

Ulrike Herzog et János A. Bergou. Minimum-error discrimination between subsets of linearly dependent quantum states. Phys. Rev. A, 65(5) :050305, May 2002.

Ulrike Herzog et Janos A. Bergou. Optimum unambiguous discrimination of two mixed quantum states. Physical Review A, 71 :050301, 2005. | MR | Zbl

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58 :13-30, 1964. | MR | Zbl | DOI

A. S. Holevo. Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, 1982. | MR | Zbl

A. S. Holevo. Statistical decisions in quantum theory. Journal of Multivariate Analysis, 3(4) :337-394, 1973. | MR | Zbl | DOI

R. Holtz et J. Hanus. On coherent spin states. J. Phys. A, 7 :37, 1974. | DOI

M. Hübner. Explicit computation of the bures distance for density matrices. Phys. Lett. A, 163 :239-242, 1992. | MR | DOI

R. L. Hudson et K. R. Parthasarathy. Quantum itô's formula and stochastic evolutions. Commun. Math. Phys., 93 :301-323, 1984. | MR | Zbl | DOI

B. Huttner, A. Muller, J. D. Gautier, H. Zbinden, et N. Gisin. Unambiguous quantum measurement of nonorthogonal states. Physical Review A, 54 :3783-3789, November 1996. | MR | DOI

Hiroshi Imai et Akio Fujiwara. Geometry of optimal estimation scheme for su(d) channels. Journal of Physics A : Mathematical and Theoretical, 40(16) :4391-4400, 2007. URL http://stacks.iop.org/1751-8121/40/4391. | MR | Zbl | DOI

I. D. Ivanovic. How to differentiate between non-orthogonal states. Physics Letters A, 123 :257-259, August 1987. | MR | DOI

I.D. Ivanovic. Geometrical description of quantum state determination. Journal of Physics A, 14 :3241-3245, 1981. | MR | DOI

G. Jaeger et A. Shimony. Optimal distinction between two non-orthogonal quantum states. Physics Letters A, 197 :83-87, February 1995. | MR | Zbl | DOI

B. Janssens. Unifying decoherence and the heisenberg principle. arxiv.org/abs/quant-ph/0606093, 2006. | MR

H. Jeffreys. An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society of London. Series A, 186(1007) :453-461, 1946. | MR | Zbl

M. Jezek, J. Rehacek, et J. Fiurasek. Finding optimal strategies for minimum-error quantum-state discrimination, 2002.

Zhengfeng Ji, Hongen Cao, et Mingsheng Ying. Optimal conclusive discrimination of two states can be achieved locally. Physical Review A, 71 :032323, 2005.

Zhengfeng Ji, Guoming Wang, Runyao Duan, Yuan Feng, et Mingsheng Ying. Parameter estimation of quantum channels, 2006. | MR | Zbl

K. R. Jones. Fundamental limits upon the measurement of state vectors. Phys. Rev. A, 50 :3682, 1994. | MR | DOI

J. Kahn. Sélection de modèles en tomographie quantique. Master's thesis, École Normale Supérieure, Université Paris-Sud, 2004.

J. Kahn. Clean positive operator valued measures for qubits and similar cases. J. Phys. A, Math. Theor., 40 :4817-4832, 2007a. URL arXiv:quant-ph/0603117. | MR | Zbl | DOI

J. Kahn. Fast rate estimation of unitary operations in SU(d). Phys. Rev. A, 75 : 022326, 2007b. URL arXiv:quant-ph/0603115. | DOI

J. Kahn. Model selection for quantum homodyne tomography. URL arXiv:0712.2912. Accepté par ESAIM : Probability and Statistics. | MR | Zbl | Numdam

J. Kahn et D Petz. Complementary reductions for two qubits. J. Math. Phy., 48 : 012107, 2007. URL arXiv:quant-ph/0608227. | MR | Zbl

Vladislav Kargin. On the chernoff bound for efficiency of quantum hypothesis testing. ANNALS OF STATISTICS, 33 :959, 2005. | MR | Zbl

M. Keyl et R. F. Werner. Estimating the spectrum of a density operator. Phys. Rev. A, 64 :052311, 2001. | MR | DOI

Gen Kimura, Hajime Tanaka, et Masanao Ozawa. Solution to the mean king's problem with mutually unbiased bases for arbitrary levels. Physical Review A, 73 :050301, 2006.

Masahiro Kitagawa et Masahito Ueda. Squeezed spin states. Phys. Rev. A, 47(6) : 5138-5143, Jun 1993. | DOI

E. Knill, R. Laflamme, A. Ashikhmin, H. Barnum, L. Viola, et W. H. Zurek. Introduction to quantum error correction, 2002.

J. Komlós, P. Major, et G. Tusnády. An approximation of partial sums of independent rv-s, and the sample df. Z. Warscheinlichkeitstheorie Verwandte, 32 : 111-131, 1975. | MR | Zbl | DOI

K. Kraus. Complementary observables and uncertainty relations. Phys. Rev. D, 35(10) :3070-3075, May 1987. | MR | DOI

K. Kraus. States, effects and operations. Springer Verlag, Berlin, 1983. | MR | Zbl

J. I. Latorre, P. Pascual, et R. Tarrach. Minimal optimal generalized quantum measurements. Phys. Rev. Lett., 81 :1351, 1998. | MR | Zbl | DOI

L. Le Cam. Asymptotic Methods in Statistical Decision Theory. Springer Verlag, New York, 1986. | MR | Zbl

L. Le Cam. Sufficiency and approximate sufficiency. The Annals of Mathematical Statistics, 35(4) :1419-1455, 1964. | MR | Zbl | DOI

Lucien Le Cam. Locally asymptotically normal families of distributions. Certain approximations to families of distributions and their use in the theory of estimation and testing hypotheses. Univ. California Publ. Statist., 3 :37-98, 1960. | MR | Zbl

U. Leonhardt. Measuring the Quantum State of Light. Cambridge University Press, 1997.

U. Leonhardt, Paul, H., et D'Ariano, G. M.Tomographic reconstruction of the density matrix via pattern functions. Phys. Rev. A, 52 :4899-4907, 1995. | DOI

U. Leonhardt, M. Munroe, T. Kiss, Th. Richter, et M. G. Raymer. Sampling of photon statistics and density matrix using homodyne detection. Optics Communications, 127 :144-160, 1996. | DOI

A. I. Lvovsky et M. G. Raymer. Continuous-variable optical quantum state tomography, 2005. URL arXiv.org:quant-ph/0511044.

H. Mack, D. G. Fischer, et M. Freyberger. Enhanced quantum estimation via purification. Phys. Rev. A, 62 :042301, 2000. | MR | DOI

H. Martens et W.M. De Muynck. Nonideal quantum measurements. Found. Physics, 20(3) :255-281, 1990. | MR | DOI

S. Massar et S Popescu. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett., 74 :1259-1263, 1995. | MR | Zbl | DOI

P. Massart. Concentration Inequalities and Model Selection. Lecture Notes in Mathematics. Springer-Verlag, 2006. École d'été de Probabilité de Saint-Flour 2003. | MR | Zbl

K. Matsumoto. A new approach to the cramer-rao type bound of the pure state model. J. Phys. A, 35(13) :3111-3123, 2002. | MR | Zbl | DOI

K. Matsumoto. unpublished manuscript.

Katia Meziani. Estimations Et Tests Non Paramétriques En Tomographie Quantique Homodyne. PhD thesis, Université Paris VII, 2008.

Masoud Mohseni, Aephraim M. Steinberg, et Janos A. Bergou. Optical realization of optimal unambiguous discrimination for pure and mixed quantum states. Physical Review Letters, 93 :200403, 2004.

H. Nagaoka. On the parameter estimation problem for quantum statistical models. In M. Hayashi, editor, Asymptotic Theory of Quantum Statistical Inference, pages 125-132. World Scientific, 2005. | DOI

H. Nagaoka. A generalization of the simultaneous diagonalization of hermitian matrices and its relation to quantum estimation theory. Trans. Jap. Soc. Indust. Appl. Math., 1 :43-56, 1991.

Hiroshi Nagaoka et Masahito Hayashi. An information-spectrum approach to classical and quantum hypothesis testing for simple hypotheses. IEEE Transactions on Information Theory, 53 :534, 2007. | MR | Zbl | DOI

Michael Nussbaum et Arleta Szkola. A lower bound of chernoff type for symmetric quantum hypothesis testing, 2006.

M. Ohya et Petz, D. Quantum Entropy and its Use. Springer Verlag, Berlin-Heidelberg, 2004. | MR | Zbl

Alexei Ourjoumtsev. Étude théorique et expérimental de superpositions quantiques cohérentes et d'états intriqués non-gaussiens de la lumière. PhD thesis, Université Paris-Sud, 2007. URL http://tel.archives-ouvertes.fr/tel-00200715/en/.

Masaki Owari et Masahito Hayashi. Two-way classical communication remarkably improves local distinguishability. New Journal of Physics, 10 :013006, 2008.

M. Ozawa. Research Reports in Information Science A, 74, 1980.

P.J. LahtiP. Busch et P. Mittelstaedt. The Quantum Theory of Measurement. Lecture Notes in Physics. Berlin Springer Verlag, 1991. | Zbl

M. G. A. Paris et J. Řeháček, editors. Quantum State Estimation, 2004. | MR | Zbl

K. R. Parthasarathy. On Estimating the State of a Finite Level Quantum System. ArXiv Quantum Physics e-prints, August 2004. | MR | Zbl

Vern I. Paulsen. Completely bounded maps and dilations. John Wiley & Sons, Inc., New York, NY, USA, 1987. ISBN 0-470-20369-2. | MR | Zbl

A. Peres. How to differentiate between non-orthogonal states. Physics Letters A, 128 :19-19, March 1988. | MR | DOI

A. Peres. Quantum Theory : Concepts an Methods. Kluwer Academic Press, 1993. | MR | Zbl

Asher Peres et Petra F. Scudo. Transmission of a cartesian frame by a quantum system. Physical Review Letters, 87 :167901, 2001.

D. Petz. An Invitation to the Algebra of Canonical Commutation Relations. Leuven University Press, 1990. | MR | Zbl

D. Petz. Sufficient subalgebras and the relative entropy of states of a von neumann algebra. Commun. Math. Phys., 105 :123-131, 1986. | MR | Zbl | DOI

D. Petz et A. Jenčová. Sufficiency in quantum statistical inference. Commun. Math. Phys., 263 :259 - 276, 2006. | MR | Zbl | DOI

D. Petz, K. M. Hangos, A. Szántó, et F. Szöllősi. State tomography for two qubits using reduced densities. MATH.GEN., 39 :10901, 2006. | MR | Zbl

Dénes Petz. Complementarity in quantum systems, 2006. | MR | Zbl

Arthur O. Pittenger et Morton H. Rubin. Mutually unbiased bases, generalized spin matrices and separability. Linear Algebra and its Applications, 390 :255, 2004. | MR | Zbl | DOI

E. Prugorevčki. Information-theoretical aspects of quantum measurement. International Journal of Theoretical Physics, 16(5) :321-331, 1977. | Zbl | DOI

Daowen Qiu. Minimum-error discrimination between mixed quantum states, 2007.

P. Raynal et N. Lütkenhaus. Optimal unambiguous state discrimination of two density matrices : Lower bound and class of exact solutions. Physical Review A, 72(2) :022342-+, August 2005. | DOI

Philippe Raynal, Norbert Lutkenhaus, et Steven J. Van Enk. Reduction theorems for optimal unambiguous state discrimination of density matrices. Physical Review A, 68 :022308, 2003.

N.W. Rickert. Amenable groups and the fixed point property. Trans. Amer. Math. Soc., 127 :221 - 232, 1967. | MR | Zbl | DOI

E. Riis et S. M. Barnett. Letter experimental demonstration of polarization discrimination at the helstrom bound. Physial Review A, 64 :012303, 2001.

Terry Rudolph, Robert W. Spekkens, et Peter Shipley Turner. Unambiguous discrimination of mixed states. Physical Review A, 68 :010301, 2003.

Massimiliano F. Sacchi. Optimal discrimination of quantum operations. Physical Review A, 71 :062340, 2005a.

Massimiliano F. Sacchi. Minimum error discrimination of pauli channels. Journal of the Optical Society of America B, 7 :S333, 2005b.

Massimiliano F. Sacchi. Entanglement can enhance the distinguishability of entanglement-breaking channels. Physical Review A, 72 :014305, 2005c.

Masahide Sasaki, Stephen M. Barnett, Richard Jozsa, Masao Osaki, et Osamu Hirota. Accessible information and optimal strategies for real symmetrical quantum sources. Physical Review A, 59 :3325, 2002.

I. V. Schensted. A course on the application of group theory to quantum mechanics. Neo press (Peaks Island), 1976.

S. Schiller, G. Breitenbach, S. F. Pereira, T. Müller, et J. Mlynek. Quantum statistics of the squeezed vacuum by measurement of the density matrix in the number state representation. Phys. Rev. Lett., 77 :2933-2936, 1996. | DOI

J. Schwinger. Unitary Operator Bases. Proceedings of the National Academy of Science, 46 :570-579, April 1960. | Zbl | DOI

G. A. Smith, A. Silberfarb, I. H. Deutsch, et P. S. Jessen. Efficient Quantum-State Estimation by Continuous Weak Measurement and Dynamical Control. Phys. Rev. Lett., 97 :180403-+, 2006. | DOI

D. T. Smithey, Beck, M., Raymer, M. G., et Faridani, A.Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography : Application to squeezed states and the vacuum. Phys. Rev. Lett., 70 : 1244-1247, 1993. | DOI

Charles Stein. Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proc. 3rd Berkeley Sympos. Math. Statist. Probability, 1 :197 - 206, 1956. | Zbl

W. F. Stinespring. Positive functions on c*-algebras. Proceedings of the American Society, 6 :211-216, 1955. | Zbl

J. K. Stockton, Jm Geremia, A. C. Doherty, et H. Mabuchi. Characterizing the entanglement of symmetric multi-particle spin-1/2 systems. Phys. Rev. A, 67 : 022122, 2003. | DOI

H. Strasser. Mathematical Theory of Statistics. De Gruyter, Berlin, New York, 1985. | Zbl | DOI

Xiaoming Sun, Shengyu Zhang, Yuan Feng, et Mingsheng Ying. Mathematical nature of and a family of lower bounds for the success probability of unambiguous discrimination. Phys. Rev. A, 65(4) :044306, Apr 2002.

E. Torgersen. Comparison of Statistical Experiments. Cambridge University Press, 1991. | Zbl | DOI

M. A. P. Touzel, R. B. A. Adamson, et A. M. Steinberg. Optimal bounded-error strategies for projective measurements in non-orthogonal state discrimination, 2007.

A. Van Der Vaart. Limits of statistical experiments. unpublished manuscript.

A.W. Van Der Vaart. Asymptotic Statistics. Cambridge University Press, 1998. | Zbl

A.W. Van Der Vaart et Wellner, J.A. Weak Convergence and Empirical Processes. Springer, New York, 1996. | Zbl | DOI

G. Vidal, J. I. Latorre, P. Pascual, et R. Tarrach. Optimal minimal measurements of mixed states. Phys. Rev. A, 60 :126, 1999. | DOI

S. Virmani, M. F. Sacchi, M. B. Plenio, et D. Markham. Optimal local discrimination of two multipartite pure states. Physics Letters A, 288 :62, 2001. | Zbl | DOI

David Vitali, Stefan Kuhr, Michel Brune, et Jean-Michel Raimond. A cavity-qed scheme for heisenberg-limited interferometry, 2006. | Zbl

K. Vogel et H. Risken. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A, 40 : 2847-2849, 1989. | DOI

K. Vogel et Risken, H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A, 40 : 2847-2849, 1989. | DOI

A. Wald. Statistical Decision Functions. John Wiley & Sons, New York, 1950. | Zbl

A. Wald. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Amer. Math. Soc., 54 :426-482, 1943. | Zbl | DOI

Jonathan Walgate, Anthony J. Short, Lucien Hardy, et Vlatko Vedral. Local distinguishability of multipartite orthogonal quantum states. Physical Review Letters, 85 :4972, 2000. | DOI

Guoming Wang et Mingsheng Ying. Unambiguous discrimination among quantum operations. Physical Review A, 73 :042301, 2006.

R. F. Werner. Optimal cloning of pure states. Phys. Rev. A, 58 :1827-1832, 1998. | DOI

W. K. Wootters. Statistical distance and hilbert space. Phys. Rev. D, 23(2) :357-362, Jan 1981. | DOI

W. K. Wootters et B. D. Fields. Optimal state-determination by mutually unbiased measurements. Annals of Physics, 191 :363-381, May 1989. | DOI

H. Yuen, R. Kennedy, et M. Lax. Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inform. Theory, 21 :125-134, 1975a. | Zbl | DOI

H. Yuen, R. Kennedy, et M. Lax. Optimum testing of multiple hypotheses in quantum detection theory. IEEE Transactions on Information Theory, 21(2) :125-134, 1975b. | Zbl | DOI

H. P. Yuen et Lax, M. Multiple-parameter quantum estimation and measurement of non-selfadjoint observables. IEEE Trans. Inform. Theory, 19 :740, 1973. | Zbl | DOI

B. Yurke. Input states for enhancement of fermion interferometer sensitivity. Phys. Rev. Lett., 56(15) :1515-1517, Apr 1986. | DOI

A. Zavatta, S. Viciani, et M. Bellini. Quantum to classical transition with single-photon-added coherent states of light. Science, 306 :660-662, 2004. | DOI

Jun Zhang, Jiri Vala, K. Birgitta Whaley, et Shankar Sastry. A geometric theory of non-local two-qubit operations. Physical Review A, 67 :042313, 2003.

Shengyu Zhang, Yuan Feng, Xiaoming Sun, et Mingsheng Ying. Upper bound for the success probability of unambiguous discrimination among quantum states. Phys. Rev. A, 64(6) :062103, Nov 2001.

K. Zyczkowski et H. J. Sommers. Average fidelity between random quantum states. Phys. Rev. A, 71 :032313, 2005. | Zbl | DOI