@phdthesis{BJHTUP11_2006__0707__P0_0, author = {Engoulatov, Alexandre}, title = {Geometry and {Conformal} {Field} {Theory}}, series = {Th\`eses d'Orsay}, publisher = {Universite Paris-Sud Facult\'e des Sciences d'Orsay}, number = {707}, year = {2006}, language = {en}, url = {http://www.numdam.org/item/BJHTUP11_2006__0707__P0_0/} }
Engoulatov, Alexandre. Geometry and Conformal Field Theory. Thèses d'Orsay, no. 707 (2006), 66 p. http://numdam.org/item/BJHTUP11_2006__0707__P0_0/
[1] Harnack inequality and heat kernel estimates on manifolds with curvature unbounded from below, Bull. Sci. Math. 130 (2006) 223-233. | MR | Zbl | DOI
, , ,[2] Diffusions hypercontractives. Sém. de Probab. XIX. Lecture Notes in Math. 1123 (1985) 177-206. | MR | Zbl | Numdam
, ,[3] Logarithmic Sobolev inequalities, Poincaré inequalities and heat kernel bounds, preprint 1997.
, , ,[4] Harnack inequalities on a manifold with positive or negative Ricci curvature. Rev. Mat. Iberoamericana 15 (1999) 143-179. | MR | Zbl | DOI
, ,[5] The mean Dehn function of abelian groups, math.GR/0606273 | Zbl | DOI
, ,[6] Brownian bridge on hyperbolic spaces and on homogeneous trees, Probab. Theory Relat. Fields 115 (1999) 95-120. | MR | Zbl | DOI
, ,[7] Differentiability of Lipschitz functions on metric measure spaces, Geom. Fund. Anal. 9 (1999) 428-517. | MR | Zbl | DOI
,[8] On the structure of spaces with Ricci curvature bounded below III. J. Diff. Geom. 52 (1999) 37-74. | MR | Zbl
, ,[9] A lower bound for the heat kernel, Comm. Pure Appl. Math. 34 (1981) 465-480. | MR | Zbl | DOI
, ,[10] Differential equations on Riemannian manifolds, Comm. Pure Appl. Math. XXVIII (1975) 333-354. | MR | Zbl | DOI
, ,[11] On-diagonal lower bounds for heat kernels and Markov chains, Duke Univ. Math. J. 89, 1 (1997) 133-199. | MR | Zbl
, ,[12] Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana, 9, 2 (1993) 293-314. | MR | Zbl | DOI
, ,[13] Théorèmes de comparaison en géométrie riemannienne, Publ. RIMS, Kyoto Univ. 12 (1976) 391-425. | MR | Zbl | DOI
, , ,[14] A universal bound on the gradient of logarithm of the heat kernel for manifolds with bounded Ricci curvature, J. Fund. Anal. 238 (2006) 518-529, http://www.math.u-psud.fr/~engoulat/liste-prepub.html | MR | Zbl | DOI
,[15] Gradient estimates for Dirichlet parabolic problems in unbounded domains, J. Diff. Equations 205 (2004) 329-353. | MR | Zbl | DOI
, , ,[16] Lectures on conformal field theory, in Mathematical Aspects of String Theory, Amer. Math. Soc., 2000. | Zbl | MR
,[17] The heat equation on non-compact Riemannian manifolds, in Russian : Matem Sbornik 182, 1 (1991) 55-87. | MR
,[18] Heat kernel upper bounds on a complete non-compact manifold, Revista Matematica Iberoamericana, 10, 2 (1994) 395-452. | MR | Zbl | DOI
,[19] Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Diff. Geom. 45 (1997), 33-52. | MR | Zbl
,[20] Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser, 1999. | MR | Zbl
,[21] Stochastic analysis on manifolds. Graduate Studies in Mathematics, Vol. 38, Amer. Math. Soc., Providence, Rhode Island, 2002. | MR | Zbl
,[22] Estimates of derivatives of the heat kernel on a compact Riemannian manifold. Proc. Amer. Math. Soc. 127 (1999) 3739-3744. | MR | Zbl | DOI
,[23] Gradient estimate of the heat kernel on modified graphs, preprint. | MR | Zbl | DOI
,[24] Homological mirror symmetry and torus fibrations, math.SG/0011041 | Zbl | DOI
, ,[25] A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow, math.DG/0611298 | Zbl | DOI
, ,[26] Estimates of Eigenvalues of a compact Riemannian Manifold, Proc. Sympos. Pure Math., Vol. 36 (1980), 205-239. | MR | Zbl | DOI
, ,[27] On the parabolic kernel of the Schrödinger operator. Acta Math. 156 (1986) 153-201. | MR | Zbl | DOI
, ,[28] Short time behavior of the heat kernel and its logarithmic derivatives. J. Diff. Geom. 44 (1996) 550-570. | MR | Zbl
, ,[29] Hypoelliptic heat kernel inequalities on Lie groups, math. AP/0508420 | Zbl | DOI
,[30] U(2) Invariant four dimensional Einstein metrics, Indiana Univ. Math. J. 44 (1995) 451-465. | MR | Zbl | DOI
, ,[31] Gradient estimates for some diffusion semigroups, Probab. Theory Relat. Fields 122 (2002) 593-612. | MR | Zbl | DOI
,[32] Limits and degenerations of unitary Conformal Field Theories, hep-th/0308143 | Zbl | DOI
, ,[33] Uniformly elliptic operators on Riemannian manifolds, J. Diff. Geom. 36 (1992) 417-450. | MR | Zbl
,[34] Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc. 38 (2006) 1045-1053. | MR | Zbl | DOI
, ,[35] Upper bounds on derivatives of the logarithm of the heat kernel, Comm. Anal. Geom. 6 (1998) 669-685. | MR | Zbl | DOI
, ,[36] An Introduction to the Analysis of Paths on a Riemannian Manifold, Mathematical Surveys and Monographs, Vol. 74, Amer. Math. Soc. (2000). | MR | Zbl
,[37] Transport Inequalities, Gradient Estimates, Entropy and Ricci Curvature Comm. Pure Appl. Math. 68 (2005) 923-940. | MR | Zbl
, ,[38] Logarithmic Sobolev inequalities for diffusion processes with application to path spaces. J. Appl. Probab. Stat. 12, 3 (1996) 255-264. | MR | Zbl
,[39] On estimation of the logarithmic Sobolev constant and gradient estimates of heat semigroups, Probab. Theory Relat. Fields 108 (1997) 87-101. | MR | Zbl | DOI
,[40] Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theory Relat. Fields 109 (1997) 417-424. | MR | Zbl | DOI
,